Android Studio
Ladybug
Essentials

publishing

Android Studio Ladybug
Essentials

Kotlin Edition

Android Studio Ladybug Essentials — Kotlin Edition
ISBN: 978-1-965764-05-3
© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Payload
-

https://www.payloadbooks.com

https://www.payloadbooks.com

Contents

Table of Contents

1. INEFOAUCHION ..ceeenreieieeeiceeeereeecsneeeseeeesaeesssneesssesssssssssnssssssasssnsssssnssssssssssnssssanssssssasssnssssssessssessssnssssnsssssnanss 1
1.1 Downloading the Code SAMPIEScccreureeureurineiriirieirerseeneireerei et sesseseens 1
1.2 FEEADACK ...ttt sttt bttt b bbb b s s assssebebebebeb s s s ssssasansesetesas 1
1.3 B At ettt b e b et et a e e a e b ae b et et et et e b s be b et et et e s 2

2. Setting up an Android Studio Development Environment

2.1 System reqUITEMENTS........ccceuviimeriiiueiricriieeiee e sessnaes
2.2 Downloading the Android Studio package
2.3 Installing Android StUAIO........cccureerierecrircrreceee e eaene
2.3.1 Installation 0n WINAOWSccueureerirrieriirieeireeneeseeenetsese e sseesesesssasesessssessesssssssesssasesens 4
2.3.2 Installation 0n MACOSc.cveiireceiericeiree et ese s ese s sse s sse s ansns 4
2.3.3 Installation 0N LINUX.......cccvuureemirreerierieniireeeiseeeneesesesessesessssesesssssesessessssessssssessssssesssssssens 5
2.4 Installing additional Android SDK packagescceeueuemcrrieemrerieenemneeemeneenenseeesersesessessesenne 5
2.5 Installing the Android SDK Command-line TOOLS........c..cceeuriurmreriueenernieererneenrenneeneneenerenenne 8
2.5.1 WIIAOWS 8.1 ..eimieeireeceeieeeesetesenseesese st eae s ssese s s sssas s sssas s sssasesessssessesssassscssssesssnsassns 9
2.5.2 WINAOWS 10 ...ttt sse s sse s sse s sse s sse s sse e ssesssssssessesens
2.5.3 WIIAOWS 11 oot sse s sse s sse s s sse s sse s sse e ssesessessesesens
2.5.4 LINUX coviiiiiiciiitis bbb bbb bbbt
2.5.5 MACOS...... it R s
2.6 Android Studio Memory managementcccvueeecurerreremrereeemrersesenseseesensessesesseseeseasessesessessesenne
2.7 Updating Android Studio and the SDKcccouveeuimrecrnirecrniereeneeecrreeenaens
2.8 SUIMIMATY ..ttt bbb esanees

3. Creating an Example Android App in Android Studio..........ccevuverueruiruinnnennes

3.1 ADOUL the PIOJECL c.ceuveeuicicicireieecireiseetneieeeirei sttt sttt sttt
3.2 Creating a New AnNdroid ProjJect.......ocvecrernciniirencineinieineiseenesseesessesessessesessessesessessesessesscsenns
3.3 Creating an ACHVILY ..ccccuiuiiiiiiciic e
3.4 Defining the Project and SDK Settingscecveureurereureurereireinereerersenessessesessessesessessesessessescssesscsenns
3.5 Modifying the Example APPIiCAtion......c.ccocureurereureurecineeneeineireetresseessessesessessesessessesessessesessesscsenns
3.6 Modifying the User INtErfacec..eveureeeereureinineineinicireirecineiseereisee ettt ssessesesessesenns
3.7 Reviewing the Layout and Resource Files........cocuuinrneininencineineneineinecineiseeenesseensessesessessesenne
3.8 AddINg INtEIaCTION ..cevuievricireeeecirctrectret ettt b sttt ettt eae
3.9 SUMIMATY w.oviiiiiiitc et

4. Creating an Android Virtual Device (AVD) in Android Studio

4.1 About Android Virtual Devices ...
4.2 Starting the Emulator.........ccocecvevenenecncrnecnnenne.
4.3 Running the Application in the AVD...........cc........
4.4 Running on Multiple Devices........cccocveueurerrecurenneee
4.5 Stopping a Running Application............ccecuveeurennee.
4.6 Running the Emulator in a Separate Window.
4.7 Removing the Device Frame.......ccc.vveeireeeerreeeeneirecereeeeneseeeneseeessesessessesessessesessessesensessesenses
4.8 SUIIMATY ..ovueeiieciiicieiiiesetes ettt st es

5. Using and Configuring the Android Studio AVD EMUulatorceneniininnieneneniinisinenenenninnins 39

Table of Contents

5.1 The Emulator ENVIFONMENTc.vcuiuiciriieecireinecirereeenereeeneseese s ssesessessesessessessasessesessesens
5.2 EMulator TOOIDAr OPIONScc.evreecveereueirieieireeieirieietseeestseaeietsesessesesessesesessesesessesessssesesessesessssesenas
5.3 Working in Zoom Modeccoocveeernervencurernennnn.
5.4 Resizing the Emulator Window
5.5 Extended Control Options.......c.ccoceurenecerenenennes
5.5.1 Location
5.5.2 Displays................
5.5.3 CIUIAT «...reeeteeieeceeteecet ettt ese s ese st aes
5.5.4 BatterY..uiuiiiiiiiicccic s
5.5.5 CAIMEI Q..o
5.5.6 PRONIE ...ttt es
5.5.7 DIrectional Pad..........ccueeinieeniiniciiicineceieeeiseesese s sse s sssensesnsaes
5.5.8 MICTOPRONE.cuuiinieiricieineceeireic ettt bttt ettt sttt eses
5.5.9 FINGEIPIINT .o
5.5.10 VIrtUal SENSOLS ...euveemrreecineirieceeirieeneireeeeeiseeesessesessessesesssasesesssasesesssasesesssssssesssasssessssssscsneaes
5.5.11 SNIAPSNOLS...cvriucuiiriieiricieiseeeeieaci et teae ettt b sttt ettt sttt sttt s
5.5.12 Record and PIaybackcc.ocurecriireceiiniceieeeiseesiseeessieeesessesesssssssesssssssesssssssesneaes
5.5.13 GOOGLE PLaYcevuiieeiiecictecieieeneieeenei et ese s nse st s sasasnacsasaes
5.5.14 SEHHNES ..ooviiiiiiircrii s
5.5.15 Helpoooooooocceerreeeeee
5.6 Working with Snapshots
5.7 Configuring Fingerprint Emulation
5.8 The Emulator in Tool Window Mode
5.9 Common Android Settings.........ccccveurecrrerrennne
5.10 Creating a Resizable EMUIAtOr.........c.ccocriueiciniireneineirecieeceieeeesee e ssesessessesessesens
5.11 SUIMMATY oo bbb bbb bbb bbb

6. A Tour of the Android Studio USer INLEITACEccovueeeeerrreereerirreeeeeerrseerecsssseeeeessssseesssssseeessssssssesssssssesssns 49

6.1 The WElCOME SCIEEMcuucuiiiicicicic et
6.2 The MENU BAT ...t e
6.3 The Main WINAOW ..o st
6.4 The TOOL WIIAOWScouiumiiiiiicicicic st e
6.5 The TOOl WINAOW MENUScucuuicicicicieciaineiiieseesessesesse e ssesssssssss s ssenas
6.6 Android Studio Keyboard SROTTCULSc..c.eccureurecireireeineirecireireereisee et seseens
6.7 Switcher and Recent Files Navigation
6.8 Changing the Android Studio Theme
6.9 SUIMIMATY ..ottt sensnas

7. Testing Android Studio Apps on a Physical Android Device

7.1 An Overview of the Android Debug Bridge (ADB).......c.ccoeniurererreurencmnerrenemnerseennerneensersesensennens
7.2 Enabling USB Debugging ADB on Android Devices..........ccveecureurencunerrecenernecenerseennersesenneneens

7.2.1 macOS ADB CONfIGUIALIONc.cvueveeerrrrreeciniireeereireeenesseeeseeeesesseeeeesssssesesssesssesssasssessssssscsneaes

7.2.2 Windows ADB CONIGUIAtIONc.vucvuiveeeemierieerieieennerreeensiseeserssaeeeseesesesssasssesssssssessessssesesnes

7.2.3 LInUX adb CONAIGUIAtIONcvuvevreeecrneereecieireeeieteeeneiseeeseseeeessteeesssasesesssasesesssasssesssaenscsneanes
7.3 Resolving USB Connection ISSUEScvueecuriurecrnerrecrnernecneineeneinesenessesesessesesessesesessesessesens
7.4 Enabling Wireless Debugging on Android DevVicescccvuveverreurencrnerrereenerneennerneensenseenneneens
7.5 Testing the adb CONNECHIONc.ovcucureeiriericirrcreteereeceie e neneeas
7.6 DeVice MIITOTING.....coiiiiiiiiiiiiiiiii s
7.7 SUITIMIATY ..ottt s sa bbb bbb bbb bbb bbb bbbt

8. The Basics of the Android Studio Code Editor

ii

Table of Contents

8.1 The Android Studio EItOr. ..ot ase e ssessesenns 67
8.2 Splitting the Editor WINAOWccccuveiriireciriiriereieecreieeieseensessee e aessesessessesessesescssessesenns 70
8.3 Code Completion.......c.ccceevecererenenes

8.4 Statement Completion.........c.c.......
8.5 Parameter Information
8.6 Parameter Name Hints
8.7 Code Generationc.cvceeeecurerenene

8.8 C0dE FOLAING.....eeuvreenirericireiecteieee et nns
8.9 Quick Documentation LOOKUDcccvuveueureiueirineieineeisineecinieaeisteeeiseesetseeiesseeesssesesesesesssesessenenes 75
8.10 Code RefOrMAtting........ceeereueecrrereeciriieeenrerseeeereeseaeseeseeessese e s s asessesessessessssesescssessssenns 75
8.11 Finding Sample COde ...t sseseasessesessessesssesscsenns 76
8.12 LiVe TEMPIALES ...cuvviuiirincerireeeieicieirieee ettt ettt sttt sttt bbb sssesebeeneaes 76
813 SUMMATY ..ot 77

9. An Overview of the ANAroid AXChIiteCtUreuciiciireeeeeeiiieeeeiirieeeeerrieeeeeesrseeeessssssseesssssssessssssssessssassees

9.1 The Android Software Stack
9.2 The Linux KeINel.....c.euiiiuriiiriinicireinieirtieeeineisee ettt bttt se et sns
9.3 Hardware Abstraction Layer
9.4 Android Runtime - ART...................
9.5 Android Libraries........cccovceeeeeurerrenen.

9.5.1 C/C++ Librariesccocceeeereeenee
9.6 Application Framework....................
9.7 Applicationsc.ccecevevrecererrencerernennne
0.8 SUIMIMATY ..ttt et et

10. The Anatomy of an ANAroid APPcoeverrerinuiseisininininisieiisisiieieesissessssseessssses

10.1 ANAIOIA ACHVITIES ..v.vvevieeeiieieiereteeeeiet ettt sssa e e b s st s sebe e ssasssesesesesessssasssesesesessananns
10.2 Android Fragments..........cccueeeeeureuemerneeeeeneremesseseeesseseesessesessessessesessesessessessssessesessessesessessesesses
10.3 ANAIOIA INEENLES ...uvevveveveeeeiiieiereteeetet ettt et e s sa e e b e ss s sesebe s ssssssesesesesessssasssesesesessannnes
10.4 BroadCast INTENES.......c.ceeeiririererereeeeietetese e eetste et teessssssesesesssssssssesesesessasssssesesesessssssssesesesesssnnnns
10.5 BroadCast RECEIVETSccevviruererereieirrerereeeeisseseteseessssssesesessssssssesesessssssssssesesesesssssssesesesessssnnns
10.6 ANAIOIA SEIVICES .uvvivivieeeiieieiereteeetet ettt et s s s ebe s s s s s ebe e ssssssssesesesessssasssesesesesssnanns
10.7 Content Providersccccevvvrunnenee.

10.8 The Application Manifest
10.9 Application Resources....................

10.10 Application Context.........ceereueene

1011 SUIMIMATY ottt bbb bbb bbb bbbt

11. An INtroduction t0 KONccicciieeeeeiiiieeeeiineeeeeesreeeeessssseeessssssesessssssseesssssesessssssssesssssssssssssssssessnans

11.1 What 8 KOtIN? . .viviiiieiiiececcte ettt et s st be bbb s assssnaesesenes 87
11.2 KON QN JAVA ..ttt sttt sttt e st s et ese st se st saenssseseseneasenensnan
11.3 Converting from Java t0 KOtHNc.ccccuiiiiiincicicciiniicicireece e
11.4 Kotlin and Android STUAIOcceueveieieeieceeceeree ettt ettt s s as s aesesenes
11.5 Experimenting with KOlcccciiiiiiiiiiciicceicccccse e ssecsesaesasssesaens
11.6 Semi-colons in KOtHIccccoiiiueieieieieieccccc ettt ettt be b s s as s s sesenes
11,7 SUIMATY ¢ttt e bbbt

12. Kotlin Data Types, Variables, and Nullability

12.1 Kotlin Data Types.......ccocoveeeuverrerennes
12.1.1 Integer Data Types....................
12.1.2 Floating-Point Data Types

iii

Table of Contents

12.1.3 BOOlean Data TYPe.......ccccururereurerreerrirreeinerreetressesessessesessessesessessesesessessaessesesessesessessesesesens
12.1.4 Character Data TYPe.....ccvueercureueercererreeireireetrersesesessesesessesessesseseaesseseasessesesessesessessesssesens
12.1.5 String Data Type.....c.ccoueevvecrvinicnrincncneinnns
12.1.6 Escape Sequences...........ceeeevrererrenererecnnne
12.2 Mutable Variables..........cccoouvueernrureccrniurncrnieennens
12.3 Immutable Variables..........ccccocuue...
12.4 Declaring Mutable and Immutable Variables.....
12.5 Data TYPes re ODJECES ...vuvvreuermiereeerrirriecrirreeereireiesseesesesseesesesssasssesssssesesssasesesssasssesssasssesssssssesseaes
12.6 Type Annotations and Type INEIeNCeccvurveuiureeeirreeriireenieeeneseeneeeesenseeeeesesensenseees
12.7 NUILEDLE TYPE .ecrnrrierriieerrirreeceeireeeietseeeeseiseee e sseasesesssasese s sse s s sssasese st asssesssasssessssesaenseanes
12.8 The Safe Call OPEratorcceueucerineecirieieiricieiseeie ettt asese st saese et se s s sseaees
12.9 NOt-NUIL ASSEITION......ereerueriecrniereeenseirieeneeseeesseasesesseasesesssasesesssasssesssssesessasesesssasesesssasssessssesaesneses
12.10 Nullable Types and the let FUNCHONcceuiureceiirecirecireeeeeieeneeeeeeneeeeeenesensenseees
12.11 Late Initialization (JAteINit)coceievireriereeiererieeeeeeee ettt rere e ereeeseseerese s sesneseneesenes
12.12 The EIVIS OPEIatOr ...ccocucuieuirieacirieeeinteeetsieie st ssesesetsesesesesetsasesesetssaesstseaesesassesssncsessences
12.13 Type Casting and Type Checkingc.oceeureeeeureceiurecrirreenieneeneesesesessesessseesesesesseneees
12.14 SUIMIMATY .ottt bbb bbb as

13. Kotlin Operators and Expressions.........ccceeeveuse

13.1 Expression Syntax in Kotlin........cccccoeeevereuennee
13.2 The Basic Assignment Operator..........c.cccc......
13.3 Kotlin Arithmetic Operatorsc.coceeveurevnnce
13.4 Augmented Assignment Operators
13.5 Increment and Decrement OPEratorsceeueereeceeereueeienesesseesesessessesessessssessessssessessssesseses 102
13.6 EQUALILY OPEIALOLS ...c.ucvevuereeineereecieeseeetetsesesseeseseseesese s ssese e st ss s ss s ssss s sseassaessssssesassnes
13.7 Boolean Logical OPEratorscccueuirimiuriuniiseiieseseesessssessessesssssssssssssssssssssssessssesaces
13.8 RANEE OPEIALOL ...ttt s
13.9 BitWise OPEIators.......ccccciuiuiuiiiiiiiiiiicieieiet et
13.9.1 BitwiSe INVETSIONcucviiiiiiiniiitctctetttc bbb as
13.9.2 Bitwise AND ..ottt
13.9.3 BitWise ORu...couiiiiiiiiiiiiiii sttt
13.9.4 Bitwise XOR.....c.ceiiiiiiiiiiiiiii sttt
13.9.5 Bitwise Left SHift.......c.cccuiiciiciiciii s saes
13.9.6 Bitwise Right Shift.........ccocuiiiiiiiiiiiiiirce e saes
13,10 SUINIMATY c.viiiiiiicccieee ettt et s st

14. Kotlin Control Flow

14.1 Looping Control flow
14.1.1 The Kotlin for-in Statement
14.1.2 The Whil€ LOOP .eeucueiciriceeiritieiricieirecietreeietee ettt seaesebseese st ssese et ssseaenas
14.1.3 The do ... While 100D ..uuviieiiiiciriccircercece ettt
14.1.4 Breaking from LOOPSc.vveeeueeeeerreeeeerreeeeetreeeeensenenessesensessesessessesessessessssessesssessesssessenes
14.1.5 The cONtiNUE StAEIMENTc.vevrevrrereeererrereeetreeenerseaensessesensessesensessesessessesessessesensessesessessenes
14.1.6 Break and Continue Labels.........ccc.oeecinieiiniccriceneeeeeienreeeeenseseeensesenenenes

14.2 Conditional Control FLOW ..o ssesesessessesessessesssesens
14.2.1 Using the if EXPIesSiONSccocveeererreeerrerreeeenerrereeennenenesseseesessesensessesessessesessessesessessesesessenes
14.2.2 Using if ... else ... EXPIESSIONS ...ccccureueverrieeeeireeeeetneienetreseesetsesensesseseesessesensessesensessesensessenes 114
14.2.3 Using if ... else if ... EXPIESSIONSc.vueverreremcrreeeeeirerenetreseesesseseesesseseesesseseesessesensessesensessenes 114
14.2.4 Using the When StatemMentccocuveeeecrreeeencireeeenernerenerrereeersesenesseseesesseseesessesesessesessessenes 114

14.3 SUIMNIMNATY ..ot bbb bbb bbb as 115

iv

Table of Contents

15. An Overview of Kotlin Functions and Lambdasc.ccccceeeeerreeeeeirreneeccsrrneeecsssnneeesssssseessssssesessssnnens 117

15.1 What is @ FUNCHONT ...ttt sse s naens 117
15.2 How to Declare a Kotlin Function........cc.ccecccuuen.e.
15.3 Calling a Kotlin Function...........ccececveveererneerenennes
15.4 Single Expression Functions..........c.cccoveuveunnineucnnes
15.5 Local FUNCHONSucvuveererereeeeeeeeneerereesenensensennes
15.6 Handling Return VALUESccocuviuiireiiineneiereienenieeieeecssessesesesse e ssessessessssssssssssssesens
15.7 Declaring Default FUNction Parameters........cc.ceeeeeeeeeneunienemnennerenensenserensersensessesssssesessens
15.8 Variable Number of FUNCtion Parametersccceeereurereneenersensenenerensenensensensesssssessens
15.9 Lambda EXPIeSSIONSc.eueuueureueiniereeeiniirieeieiseseseeseaesseesesesssasesessssesesssssesesssasssesssssesssnsssssessssssaess
15.10 Higher-order FUNCHIONSccoiuieuiiriciiiicitciecsni et ssesssesesssssesesssssnaens
I5.11 SUIMIMIATY cocviriiiiniiiicrciii st bbb bbb

16. The Basics of Object Oriented Programming in Kotlin

16.1 What 18 a0 ODJECT? ...ecvuveeeiiireeeieireeeieereeeieiese e seaeteesese s sssese s sese s s sssas s sssesesssssssessssesaces 123
16.2 What is a Class?.......cccccoeuviurrurennen.
16.3 Declaring a Kotlin Class.................
16.4 Adding Properties to a Class..........
16.5 Defining Methodsccecveeeevcrneeeencrneenncrnecnnennene
16.6 Declaring and Initializing a Class Instance
16.7 Primary and Secondary Constructors..................
16.8 Initializer BIOCKS.........cccccuovirivininiiiniiinciciicics
16.9 Calling Methods and Accessing Properties
16.10 CUSLOM ACCESSOLS ...vurviriirirrirriiiscttise st b e bbbt sa s sea b b e astes
16.11 Nested and INner Classes ... ssssssssssssaens
16.12 COmMPANION ODJECES.....vuvuevurreeeiriireeernrireeeeeereeeseeseeeseesesesstssesesssssseessesessesssssssesssssssesnssessesssessess
16.13 SUIMIMATY «.cuiiiiiiiiiii ettt bbb b bbbttt

17. An Introduction to Kotlin Inheritance and Subclassing

17.1 Inheritance, Classes and SUDCIASSES..........c.cucvuererueeenimerreiiireneie e naessesssaseaesens
17.2 SUDCIASSING SYNAXeovuvrieiriiieiiieeeeieieese et esess e sss s sse s sas s s nans
17.3 A Kotlin Inheritance Example........ccccocoeuverreucenennee.

17.4 Extending the Functionality of a Subclass
17.5 Overriding Inherited Methods..........cccovvvruneinncs
17.6 Adding a Custom Secondary Constructor
17.7 Using the SavingsAccount Class
17.8 SUMMATY ..eviiniiiiiicriiciiennees

18. An Overview of Android View Binding.........ccevevurrinvininisnsnsnininininninincisinissismss
18.1 FINA VIEW DY I ..ttt ese st nae s ese st ese s sese s sssesnssssacen 139
18.2 VIEW BINAING ..eevuiieiniiecieireicitireietttseieietseee et sesessssese s sasese st ese s ese s s sasssesesssssssesnsssaces 139
18.3 Converting the AndroidSample ProJect........cccrevcunrureernerreenneereeneeeeessesensessessesessesessens 140
18.4 Enabling VIew BINdING......ccocvueuneureeeeiureeeeiineeeiiiseeseinesestisesessssesessessssesssssesesssssssesssessessesessens 140
18.5 USING VIEW BINAINGvurvrrviniirieciiirieeiiireicieiseeeietseseseesesesssasesessssesessessesesssasssesssssssesnssessessssessens 140
18.6 ChOOSING AN OPHOI c.ccuvrreiaeieeeieireeetneiseeeeeeseae et seesesesssesesessssssesssssesesssasesesssssssessssessessssesaees 142
18.7 View Binding in the BOOK EXAMPLEScovurueriurieiiiriciiirieiiteeeeeeeseseneeeeseseseesesssseesessessesens 142
18.8 Migrating a Project to VIeW Binding.......ccoceueureureeuniureceniuneeriineeneeeeeneesesesseseesesseseesessesessens 142
18.9 SUIMMATY ..ttt bbb 143

19. Introducing Gemini in Android Studio........cooceeerirreiiirniniiiiniiniitneccecese et 145
19.1 Introducing Gemini ALc.cc.occuurieiiirieieirei e eaens 145

Table of Contents

20. Understanding Android Application and Activity Lifecycles

19.2 Enabling Gemini in Android StUAI0ccuiueecrieercrnieenceeeeeee e seesenenees
19.3 Gemini CONAAGUIALIONcvuvvrecumierieerieriereieesereee et sese s eesesse s sseneeas
19.4 Asking Gemini qUestions...........ececveeeecreeennces

19.5 Question contexts...........
19.6 Inline code completion
19.7 Transforming and documenting code
19.8 SUIMMIATY ..ot

20.1 Android Applications and Resource Management.............cc.ccuccecueucienenimneusemneesemseesessessenens
20.2 Android Process Statescocucuucicimirimriiieiieissisessese e sse s sssessss s sees
20.2.1 FOIeground PTOCESSccuucuuueuimimimrieiaiasessesessssese s s s s s sssssssssssssssssessssesssses
20.2.2 VISIDIE PIOCESSouvuvriniciici ittt sa st
20.2.3 SErviCe PrOCESS ...oviuiiieiiiiciic s
20.2.4 Background ProCess..........cc.cuuucuuriuiunieiiiiiiseiiise s sss s sssse
20.2.5 EMPLY PIOCESS ...cuciiiiiiiiiiiiciiicc st nenens
20.3 Inter-Process DEPendenciescucureueereueineinieeeneineseseenesesessesesssssesesssssssessssssessssssseseses
20.4 The ACtIVILY LIfECYCLe...ciirimeiiirieeieireeciiriectcireeteis ettt bbb ssses
20.5 The Activity Stack
20.6 Activity Statesocoeceevccuereiiiiniiciiceeeans
20.7 Configuration Changescccccocueeeeurruriunenn.
20.8 Handling State Change..........cccccoeueeeeuriuniunnn.
20.9 SUIMMATY ..ttt bbb et s s

21. Handling Android Activity State Changes..........cocvcruireirnsnisisnisisnnininisssnesessssneseessssssee 161

22. Android Activity State Changes by Example

21.1 New vs. Old Lifecycle TeChNIQUES.......cvurveuirreeemieriecniiieerieseeeneeseeessasesessesesesssssnsessssnseseses 161
21.2 The Activity and Fragment Classes...........cccvuureemerreemnirreeriuneeneesesenessesessessssessessssesesssseseses 161
21.3 Dynamic State vs. Persistent State........ccoociiiiiiiiiii s 163
21.4 The Android Lifecycle Methods.........ccovvveuirieriuriciniinieeiieeneseeneesesessesesessseesesesseseseses 163
21.5 LIEHIMES ..ottt s 165
21.6 Foldable Devices and Multi-Resume...........ccoeuviviniiiiniinciniciiicccsesnes 166
21.7 Disabling Configuration Change ReStartsc.ceeeureeeirreerirreernieneerneeseeneesesenessesenesees 166
21.8 Lifecycle Method Limitations...........cccoeuuveunce.

21.9 SUMMATY ..o

22.1 Creating the State Change Example Projectoocvvuvincincivcincininieiniecsesesessseseesenns 169
22.2 Designing the User INTErface ..o sssssesaes 170
22.3 Overriding the Activity Lifecycle Methodsccocviuneiniincincincicieinicirieneseseese s 171
22.4 Filtering the Logcat Panel..........cc.ccccuiiiiiniiiiniicscccc e naes 173
22.5 Running the APPLCAtion ... saes 174
22.6 Experimenting with the ACHVItYccccccuriiiiininicc s 175
22.7 SUIMIMATY ..ttt ettt et st benen st 176

23. Saving and Restoring the State of an Android ACtiVity.......cooevvuisirnnnsinisisnnninincnnneneensene 177

vi

23.1 Saving Dynamic STate ...
23.2 Default Saving of User Interface State
23.3 The Bundle Classcccveureeererreeererreeeererrenennes
23.4 Saving the State........
23.5 Restoring the State
23.6 Testing the Application.........ccocveeeeverreeeercrrerennes

Table of Contents

23.7 SUMMATY ..ottt 180
24. Understanding Android Views, View Groups and Layoutsc.ceeueeeerersuencnrenscsensensscsesseessessennes 181
24.1 Designing for Different Android Devices

24.2 Views and View Groupsc.cecveeereereerreerecrneenes
24.3 Android Layout Managers
24.4 The VIEW HIETATCHYouiviiirieeiirciciereectcnceetereietet ettt sttt ses et ses et sesenaes
24.5 Creating User INTErfaces.........ocoouiiuiuriuiineincieiieeeiiecisesesisessssse et ssesssssessssssssses
24.6 SUIMIMATY ..ottt bbb bbb

25. A Guide to the Android Studio Layout Editor TOOL.........cccceuirurrenreninnisunsnsensinisnisensensesesscssssessessesses 185
25.1 Basic vs. Empty Views Activity Templates..........ccocureeeerreemncrreemneineeemerneenensesenesseseeensesennes 185
25.2 The Android Studio Layout EIOrcccveeeeineeeencrrieeeineeeeireeeeireeeeensenenessesensesseseesensesennes 189
25.3 DESIGN MOME.....ouiiieiireeieireeecireieeetseee ettt seae et sese s se st sese st st sesensessesennes 189
25.4 The Palette ... 190
25.5 Design Mode and Layout VIEWS........c.cceeeureeeeerreeeeerreeemerseeemessesemessesemsessesemsessesessessessssessesenses 191
25.6 NIGHE MOAE ...ttt seae s sese s sese st se st sesesse st se st sesessessesennc 192
25.7 €0de MOE......ccuiiiniiiiii s 192

25.8 SPLIt MIOAE ...ttt sttt ettt 193
25.9 SttING AITIDULES.....c..vueveeeecireeecrreeeeet ettt e sese st sese s sesesse s sessessesensessesenac 193

25.10 TEANSTOIIIIS «...ceoverreeerreeeeetreeeeetreee st ese et sese st seae s sese s se st se st sese st sesensessesensssesnnc 195
25.11 Tools VisSibility TOZELES......c.cuevmirrieercrrieeeneireiceetreieietreeeesensenensessesessesseseesesseseesessesensessesensessesenses 196
25.12 Converting VIEWS......cccuiiiiiiiiiiiiiiiss st sssasans 197
25.13 Displaying Sample Datacccveeeeverreeeeeereeeeenrereeerreeeeensesenessesessessesessessesessessesessessesessessesesses 198
25.14 Creating a Custom Device Definitioncccocuveeeecrreeeererneeemerreeneireeeereeenesseseeesseseeensesennes 199
25.15 Changing the Current DEVICe........ccuueuerreueererreeeererrieeeernenemessesenessesessessesessessesessessesessessesenses 199
25.16 Layout Validationceveueeeecireeemerreeenenreienenneeeesetseaeesessesensessesessessessssessesessessesessessesessessesesses 200
25.17 SUIIMATY c.viiiiiiicii bbb bbb bbb bbb bbb 201
26. A Guide to the Android ConstraintLayoULt.........cccceeivirreerinsinrecnininsiseninnninisesssceesessesessessessesee 203

26.1 How ConstraintLayout Works
26.1.1 Constraints
26.1.2 Margins........cceeevvvecrererenenennnes
26.1.3 Opposing Constraints..............

26.1.4 Constraint Biascccocverunnee.

26.1.5 Chains......c.ccoecucuceccenreencnneanes

26.1.6 Chain SEYLES....c.eueiieeieireiricireieieirei ettt sttt bttt bt
26.2 Baseline AIGNIMENL ..ot sae s
26.3 Configuring Widget DIMENSIONS..........ccucucucecucueeicieeiinieeeiissisesesessssesse s s sssssesssssesssssns 207
26.4 GUIAELINE HELPETvuvuiivieireecicireieietretetetseeetet ettt seaetse st se bbbt s st ses st sesesncs 208
26.5 GIOUP HEIPETcuvreiiiieiireeeicircietct ettt seee e ses et b ettt st s s et ses st sesennes 208
26.6 BaITIier HEIPETuvcviiieeicirceccirciccrceetetrceetet ettt sese ettt sttt ses et nesenncs 208
26.7 FLOW HEIPET ..ottt sesetse sttt ses et s ettt sttt nes st nesesacs 210
26.8 RALIOS «.evivvttttiiete st 211
26.9 ConstraintLayout AdVANTAZESc.cceueureuceemeeeieiaeiieieeeeesssesessse e ssessessesssssesssssns 211
26.10 ConstraintLayout AVAIlADILILY.......ccocreueueereeeereireieieireeeieireeeeeireee et sesesetseseesetsesessessesenaes 212
26.11 SUIMMATY ..ottt e 212

27. A Guide to Using ConstraintLayout in Android Studiocevvevineiveisnrneninnisnnnnenincsnnnenenennes 213

27.1 Design and Layout Views
27.2 Autoconnect Mode

vii

Table of Contents

27.3 Inference MOde.........coiuiiiiiiiiiii s s
27.4 Manipulating Constraints Manually..........cccceenureerirecniincieereeeeeeeneeeeeseseesesesees
27.5 Adding Constraints in the Inspector...........cccou..
27.6 Viewing Constraints in the Attributes Window....
27.7 Deleting Constraints........coceeeeereurecererseemsersecerenene
27.8 Adjusting Constraint Bias
27.9 Understanding ConstraintLayout Marglns
27.10 The Importance of Opposing Constraints and Bias
27.11 Configuring Widget DIMeNSIONS.ceveeerreerirreerirreeenieeenseeeesessessesesessssessessssessessssesesees
27.12 Design Time ToOlS POSItIONINGccvueeerirrieerirriecrirreeenieseeneeeeseseasesessasssesssssssesesssseseses
27.13 AAdINg GUIELNESccueveermieeciieecetieeieie e ese s ese s s sssssnsesssassaennsanes
27.14 AAQING BATTIETS ..ottt ese s esesssasesesasasnsesasanes
27.15 AAdING @ GIOUP.c..cuveeeirriecrneirieeierreeeettseesets e sessesesssasese s ese s sse s s st sassssssnsesasasesesnssnes
27.16 Working with the FIOW HelPer........cccovuieiiirierniiricirecireceeeeneaseeesseeeseseseesesesesseseees
27.17 Widget Group Alignment and Distribution..........cceeeeciereccirecnnecrnieeceeeeeeneees
27.18 Converting other Layouts to ConstraintLayouLt...........ecceueeeueereerniurecrnieeeeneeenseresseeneees
27.19 SUIMIMATY oottt bbb bbb bbb

28. Working with ConstraintLayout Chains and Ratios in Android Studioccccverveveiveivenencnennnne 233

29. An Android Studio Layout Editor ConstraintLayout Tutorial

28.1 Creating a Chain..........cccocuveuvcuvcuccecieerinenennenn.
28.2 Changing the Chain Stylecccccccoeevinininn.
28.3 Spread Inside Chain Style........ccoceuvevreveereereuennce
28.4 Packed Chain Style......cccoeveuviveireneneereceneireennes
28.5 Packed Chain Style with Bias
28.6 Weighted CRaiN ..o sees
28.7 Working With RatiOSc.cueuiucuicicieiicieiiiiiicsisese e sse s saes
28.8 SUIMMIATY ..ttt bbbt n s

29.1 An Android Studio Layout Editor Tool EXampleccccvvureceuiurecrniunecrnieneeneeneeneneeeneees
29.2 Preparing the Layout Editor ENVIrONmentc..cecceuveeeniureeniereerneereeneeseeneeensesesseseneses
29.3 Adding the Widgets to the User INterface.........ccouvveeeureceniureccrirrecrniurecrnieeeenseeeeeseseseneeens
29.4 Adding the Constraintsc.coveeeeverreeeererrerennes
29.5 Testing the Layout........ccocveeeverreeeencrreecmrerrenennes
29.6 Using the Layout InSpectorccocveeeererreuennes
29.7 SUMMATY .ot

30. Manual XML Layout Design in Android Studiococceveeveciininneinininncninennecnenenncneneencsesnenes

30.1 Manually Creating an XML LayOuLc.cccccuiuiniuniireinieseieiscsc e nsessessesssssesssesssesesssssessssses
30.2 Manual XML vs. Visual Layout DeSign.........ccceuuiuriuiiuriiniircriicineieeenseciniseeisesesasesssesesssesesssenes
30.3 SUIMIMATY ..ottt bbbt

31. Managing Constraints using Constraint Sets........c.cccivvienieniiniiniincicniennnecrceese e

viii

31.1 Kotlin Code vs. XML Layout Files..........coveureuemnerrieenerrieerreieeernereierneeenenseseeensesessessesensessenes
31.2 Creating VIEWS.....cociiiiiiiiiiciics s s
31.3 VIEW ALTIDULES.....cuvreeeeereeceereecictreieenreeeeset et sese s sese s s s s s ssessesessessesessessesessesnenen
31.4 ConStraint SEtS.....cuimimiiiiiiiiiiic s
31.4.1 Establishing Connections..........c.ecccveueuee.
31.4.2 Applying Constraints to a Layout
31.4.3 Parent Constraint Connections.................
31.4.4 Sizing Constraintsccceevvivviiccnenenas

Table of Contents

31.4.5 Constraint Biasococuvvieriiiiciiictictect s 255
31.4.6 Alignment CONSLIAINESccvuererirrrcrirerereeerereeere e esessessesessessesessessesessessessssessesens 255
31.4.7 Copying and Applying Constraint Sets.........cccciiiriiinininini s 255

31.4.8 ConstraintLayout Chainscccceveecrieeencrnieecreeeeeee s ssesessessesens 255
31.4.9 GUIAEINES ... e 256
31.4.10 Removing Constraints........ccoviiiiiriiiiiiiiiic s 256
31.4.11 SCALNG .ottt e s e 256
31.4.12 ROTATION ...uevettt ittt b 257
315 SUMMATY ..ot 257
32. An Android ConstraintSet Tutorial...........cceeueerineninininiiinienienencece e eesenes 259
32.1 Creating the Example Project in Android Studioccceeueiuiuniinienerncincincinciciccciecsceinennes 259
32.2 Adding VIEws t0 @n ACHVILYccuiuiuiuriiiirciscicie et sse s sssessaes 259
32.3 Setting VIew AttrIDULES.........cooiuiuiiiiiircccccc e 260
32.4 Creating VIeW IDS.....ccviiiiiiics s 261
32.5 Configuring the CONStraint Set ..ot sse s saesessaes 262
32.6 Adding the EdItText VIEWccoiuiiuriiiiniiiincicicieieicieceeeeeiseisise et ssssssssssssssnns 263
32.7 Converting Density Independent Pixels (dp) to Pixels (PX).....c.cocveureereuseerernrucisieerenninennns 264
32.8 SUMMATY ..ottt bbb 265
33. A Guide to Using Apply Changes in Android Studio.......ccevvervenveninniseisnsnininnisnnnsenencsnenenenes 267
33.1 Introducing APpLy Changes...........ccreeeureeeenerreeeenerreeeernenenesseseeessesensessesessessesessessessssessesesses 267
33.2 Understanding Apply Changes OPLiONScvceererreeeererrevemerreremersenemsessesensesseseesesseseesessesenses 267
33.3 USINg APPLY CRANGES.......ccereeeeiirieeicirereeeireeeeetreeeesetseae s ssesessessesessessesessessesessessesessessesesses 268
33.4 Configuring Apply Changes Fallback Settings...........cccveureuererreremcireeemrerreeerersereesersereesersenennes 269
33.5 An Apply Changes TULOTIal........c.oceeeureererrieeeineeeireeeneeeeerene et nsese e sesensessesensessesenses 269
33.6 Using Apply Code Changesccccureeeeerreeeenerreeeeerreeeeensenenessesenessesemsessesessessesesessesessessesesses 269
33.7 Using Apply Changes and Restart ACtIVILYcceveureeeererrerenrerreremerneeenenreneeensesenesseseesensesennes 270
33.8 USING RUN APD .ottt
33.9 SUMMATY ..ot
34. A Guide to Gradle Version Catalogs.......
34.1 Library and Plugin Dependencies
34.2 Project Gradle Build File....................
34.3 Module Gradle Build Files.............
34.4 Version Catalog File............ccc........
34.5 Adding DePendenciesccuuiuriuiureueinernceeneeeieisesiessssassssssessssse e s ssesssssesssssns
34.6 LIDIary UPAALesc.euueureeeeneereeeieirieeieireseietsesetetsesetsetsesessessesessessesessessesesssssesesasssesessessesessessesesncs
34.7 SUIMIMATY ..ottt
35. An Overview and Example of Android Event Handlingcccooevevuivuisnsneninnisensnnencncsnnsessenenes 275
35.1 Understanding Android EVENtS.........c..cceueeeecineeencrreeceenneeeireeeeetseeensensesenessesensessesessessesenses
35.2 Using the android:0onClick RESOUICE.........c.vueviuieeecrrieeieireeeeirerenetreeeeensenenessesenesseseesensesenses
35.3 Event Listeners and Callback Methods ...
35.4 An Event Handling EXAMPIec.ceeveureiriiriemeinieetreeieneeeetseneeetsesessessesessessesensessesensessesenses
35.5 Designing the User INEIfaceccveueuercrreeeneireececrrieeiennereeesseseesetsesessessesensessesensessesessessesenses
35.6 The Event Listener and Callback Method..........ccccciiiiiiniiniccicics
35.7 Consuming Events

35.8 SUMMATY ...
36. Android Touch and Multi-touch Event Handling

ix

Table of Contents

36.1 Intercepting TOUCh EVENLSc.cevviiiuererreieecireecirecieteeeeneeeeeneseesessese s ssesensessesensessenes
36.2 The MOtIONEVENt ODBJECtvucviueirieeeerreieeeireeeeeireieeetreseeenseseesesseseesessesessessesessessesessessesessessenes
36.3 Understanding Touch Actions.........c.ccecveueuee.

36.4 Handling Multiple Touches
36.5 An Example Multi-Touch Application............
36.6 Designing the Activity User Interface
36.7 Implementing the Touch Event Listener
36.8 Running the Example APPLICAtiON.......c.oceveureueecrreeeereirieeeerrereeetrereeensesensenseseesessesessessesensessenes
36.9 SUIMIMATY ..ot bbb bbb

37. Detecting Common Gestures Using the Android Gesture Detector Class.........ccccevurvuceerrersuccnersunnnes 287

37.1 Implementing Common Gesture DeteCtion............cuuueuiurcuiucenceeieiecieimeeisiseeesesssesesssesesseenes 287
37.2 Creating an Example Gesture Detection Projectoucvcvcivcicecinineneninesieseseisenneenes 288
37.3 Implementing the Listener Class.........cccocuuiiiniiiinenienciescise e ssesseiseessssesssesssesesssssesssenes 288
37.4 Creating the GestureDetector INSTANCE.......c.ccvuuiuiuririiniiseieicie e sessaseseenes 290
37.5 Implementing the onTouchEvent() Method..........c.cocvcininiincincincineicinieenceenessesesseseneenes 290
37.6 Testing the APPLICAtION.......c.ccuiuiiciciciciciciccicist st 291
37.7 SUIMIMATY ..ottt bbbt b bbbt 291

38. Implementing Custom Gesture and Pinch Recognition on Androidcccevevvevuiruirnsensenncsncsnnennes 293

38.1 The Android Gesture Builder Application
38.2 The GestureOverlayView Class..........cccveuneuee.

38.3 Detecting GESUIEScuoviiiiiiciciiic bbb s
38.4 Identifying SpPecific GESTULIEScvvuevcrreeeecrreeeeerreeenetrere e s s esessesessessesessessesessesenes
38.5 Installing and Running the Gesture Builder Application
38.6 Creating @ GeStUIes File ..ottt nsese s ssesessessesensesenes
38.7 Creating the EXample PrOJECt......cvveverreeeecrreeeeeireeceeineeeeenreneeessesensessesensesseseesessesessessesessessenes
38.8 Extracting the Gestures File from the SD Cardc.coeveureeeenerrercinerneeenerneeceenrereesennesenennenes
38.9 Adding the Gestures File to the Projectcccveerienerneeeenerneecieineeeenneeesenseneesensesenensenes
38.10 Designing the User INTErfaceceeureueecrrereeerreeeeeineeeneneeeeesseseeensesensesseseesessesessessesessessenes
38.11 Loading the Gestures Fileccrecineeeiineeeieeeeeeeeenseseeessesenessesensessesessessesesessenes
38.12 Registering the EVent LIStENeTccocvueerreeeecrrieeeerreeeeeneeeeerseseesesseseesessesensessesessessesessessenes
38.13 Implementing the onGesturePerformed Method.................

38.14 Testing the Application........coceeeeerervercrrerrenene
38.15 Configuring the GestureOverlayView
38.16 Intercepting Gestures..........ccocoveveveiriiiriricncnnn.

38.17 Detecting Pinch Gestures..........cccoocveeeurereneen.

38.18 A Pinch Gesture Example Project..................

38.19 SUMMATY .. bbb s

39. An Introduction to Android Fragments...........ccccevrrcnininnecnininnecninennncsenescsesessceesssssssseses 303

39.1 What is @ Fragment?c.ccuiiiiiiciiciciiiciesisese s sse s ssssase s sssesassaes 303
39.2 Creating a Fragment ... 303
39.3 Adding a Fragment to an Activity using the Layout XML File.......ccccccceouurininininenincncens 304
39.4 Adding and Managing Fragments in Codecceuuriuiuncuniincencincrneecinieencnesesesssesessseseseenes
39.5 Handling Fragment EVENTSccoccuiiiiniiiirenise e ssessessssssssssesssesessesesssnes
39.6 Implementing Fragment COMMUNICAtION.......cuiuiuiurimiirereiceeieieesesieeseeisesesesesssesesseseseeaes
39.7 SUIMIMATY ..ottt bbbt

40. Using Fragments in Android Studio - An Example
40.1 About the Example Fragment Application

Table of Contents

40.2 Creating the EXample PrOJECtouciuriciiireeriinicireeeetreeeneieeenessesesessesessssesesssessesseasesens 311
40.3 Creating the First Fragment LaYOUL........ccouuvveuiureemiureceiereerieeeeneeseenessesessseesessesessessessesens 311
40.4 Migrating a Fragment to View Bindingccccccoevininiininiccccccnns 313
40.5 Adding the Second Fragment...........c.ccvceueureerienecrniireerineesneeseeeneeeeeneseesessseesesssessesessesens 314
40.6 Adding the Fragments t0 the ACHVILYccocvverirrecrriericeierecneeneiseeeeeesenseeese e s sesensens 315
40.7 Making the Toolbar Fragment Talk to the ACtiVItyc.ccoovvivriiiincincicicicie, 316
40.8 Making the Activity Talk to the Text Fragmentccccooovuviviirncnnncinciiiiicccnns 319
40.9 Testing the APPLICALION......covueeeiureeriericeireeetree et ese st ese s s sasesens 320
40.10 SUIMIMATY wocuiuiiiiiiiiiiiis s b bbb bbb bbbt 320
41. Modern Android App Architecture with JetpacK......cccoeurvueirerrirrinrinncninnnncneninncnenecscnessecscseens 321
41.1 What is Android JEtPack?c.cveureeeuniirieiiirieieireieiciseietet ettt sses e sss s ssesaens 321
41.2 The “Old” ArChItECTUIE.cuiuiiiiciiicicicic e 321
41.3 Modern Android ArchiteCture ...t sssasessaees 321
41.4 The ViewModel Component
41.5 The LiveData COMPONENT....c.vuiuirrirceierieereireeeseeseseteesesessesesessesesessssssaessessssesssssssesssssssessesessess
41.6 ViewModel Saved State...........ccviuiuiiririincicicicicieiecicecicisse e sssaens
41.7 LiveData and Data BINdiNg...........cocvcuiniiniicicicicieiieicsesse e sse s ssesssssessens
41.8 Android Lifecyclescocovuueuveurennnnee
41.9 Repository Modules...........cocereueene.
41,10 SUIMIMATY «.cuiiiiiiieiiitee ettt s bbb besne
42. An Android ViewModel Tutorial
42.1 ADOUL the PIOJECT c..eueeeeiieceeicecicteceeieeeteee it ssa s sae s ss s sasasasnscns
42.2 Creating the ViewModel EXample PrOject.........coccuiurecenierecrniunecrieneeneeeeenseeeeenesensesessesens 327
42.3 Removing Unwanted Project EIeMents..........ccovveeueurecrierecrnirnecrieneeneeeeenseeesensesensessessesens 327
42.4 Designing the Fragment LayOul.......c.cocceureerirreeriereeriereeneeseeeseeseenessssesssessessesessesessesens 328
42.5 Implementing the VIEW MOdel........ccuveuirieriinieriinicirecneieeeneeeeeneseesesssessesssessesessesens 329
42.6 Associating the Fragment with the View Model..........ccouvcnireccrniinecrninecrniercneeenenneeeenns 330
42.7 Modifying the Fragmentcccveirieriireertinieneieeeetesesesssseeesessssessessssessssssessssssesessssens 331
42.8 Accessing the VIEWMOdel Data........c.cveeeireerienecrienieeiereeneeeeseesesesessssessssssesssssssesessssens 331
42.9 TeStING the PIOJECT. ..ottt sae e s ssa s ssae s nsens 332
42,10 SUIMNIMATY w.oouitiiiiiiiiiiis st b bbb bbb bbbt 332
43. An Android Jetpack LiveData Tutorial........ccccovevvervininsirncniinnininninnecnininecneniescsisecscsessesscseens 333
43.1 LiveData - A RECAP ..coviiiiiiciciiciicccc et 333
43.2 Adding LiveData to the VIEWMOdel........cccocuiiiiririiiniincirceccee s sseeaseseeaens 333
43.3 Implementing the ODSEIVET..........cociiiiicicicicicieiccse e ssesasasaees 335
434 SUINIMATY ..ottt et b bbbt 336
44. An Overview of Android Jetpack Data Binding..........cocevveuiruirenrnininrisinninenisnsnenessisninseenens 337
44.1 An Overview of Data Binldingccceeveeueureemniineeriirierireenneeeeeneesesenessesesssessesssessesessesens
44.2 The Key Components of Data BINdINGcccvvureemirrecenierecrniinecreineeneeeeenseeeeenesenseseeensens
44.2.1 The Project Build Configurationcccveeeeecererrercenernencenerneseenernecnserseensessesessessesessessescens
44.2.2 The Data Binding Layout File........ccccvvcinierencinirreneeneinieeneeneiecnensesensessesensessesessessescens
44.2.3 The Layout File Data EIEMENtccccvceererreerercrnerreernerreenrerneenensenenessesessessesessessessaessescens
44.2.4 The Binding ClaSSeSccoeureurererrirreerrirreeirerneetereeeesessesesessesessessesessessesessessesessessessasessescens
44.2.5 Data Binding Variable Configuration
44.2.6 Binding Expressions (One-Way).........ccceeunee
44.2.7 Binding Expressions (Two-Way)...
44.2.8 Event and Listener Bindings........cccocveevrernenee

xi

Table of Contents

44.3 SUIMIMATY «ooniiiiiiiiiiii bbb bbb bbb bbb 343

45. An Android Jetpack Data Binding Tutorial........c.cccevevvininneisinsnncninninncninninnncnennencniseeseseeeene
45.1 Removing the Redundant Code...........ccccuriiiiiininininccceceiecessesessesesese s
45.2 Enabling Data Bindingccccccceeuecvininiunn.
45.3 Adding the Layout Element..........cccccccoeuunuuncen.
45.4 Adding the Data Element to Layout File
45.5 Working with the Binding Classcccceiriirinininiincieceeieieceieesessesesesssssessssse s
45.6 Assigning the ViewModel Instance to the Data Binding Variableccccccocoveninincncincnnces 349
45.7 Adding Binding EXPIeSSIONScccccueuimiunimniuiiiineiieseseesese e ssessssesssssesssssssssesssssessssesses 350
45.8 Adding the Conversion Method ... sees 350
45.9 Adding a Listener Bindingccccccuouiiiiininiinicicciscie e ssssesees 351
45.10 TeStING the APP....criuieriiiireiecie e 351
45,11 SUINIMATY c.oviiiiiiiccceee ettt sttt s s st 351

46. An Android ViewModel Saved State Tutorial..........cccouvueueiniineiiniiiiicictcitcnscecceeescnseenns
46.1 Understanding ViewModel State SAVING.........cceeureeuiereeriuricnieneeneeeesereeeeesesensesessesenesnes 353
46.2 Implementing ViewModel State SAVINGc.oveueureerierecrirreenerieneeeesesseseeesessesessessesensesnes 353
46.3 Saving and ReStOIINgG StALe.........cccuevreeuiurierirrecrtireeeeeereeesteseeenseesesessasesesssasssesssssssesssasesesneses 354
46.4 Adding Saved State Support to the ViewModelDemo Project........c..ceeeceveurecuneurecrneerecnenne 355
46.5 SUMIMATY w.oouiiiiiiiii bbb bbb bbb bbb 356

47. Working with Android Lifecycle-Aware COmMPONENLS........cccceeererruesenrerscsensiessessenseessessesseessessessacsne
47.1 LIECYCIE AWATEIIESSecvuvreeinerieeineereeeeseiseietee st teisese et sese sttt ssiees 357
47.2 LHECYCIE OWIIELS ...ceuvreeiaiieeincereietetseeeteiseee ettt sb sttt s snsees 357
47.3 LIECYCLE ODSEIVETScuueuieeinirieeieireeeentiseietee st teisese s sese st a e sssees 358
47.4 Lifecycle States and EVENLS......c.oceveureueuiirieeinienieineiseietneiseseteesesesessese s sssssesesssssesessssssesnsses 358
47.5 SUIMMATY ..ttt e bbbttt se st 359

48. An Android Jetpack Lifecycle Awareness Tutorialcocevevuivuiseirnrnininisnnnininisnnnencninsenes

48.1 Creating the Example Lifecycle Project
48.2 Creating a Lifecycle Observer...........cceeureuenee
48.3 Adding the Observer
48.4 Testing the Observer
48.5 Creating a Lifecycle Owner..........ccocoveeeverrencnnee

48.6 Testing the Custom Lifecycle OWNETccvuieriuricenienecriereeneeeeneieeereeeeeeseseesesesssseseees
48.7 SUIMIMATY w.uiiiiiiiii bbb bbb bbbt

49. An Overview of the Navigation Architecture COmMpPONeNt.........c.coeueeverrerrccensinsecisesseescssenseesessessecne

49.1 Understanding Naviation........cc.ccucucueerimriunimniuniuieseiieseseesese e sssssssssssesssssssssessssesssssessees
49.2 Declaring a Navigation HOSt........cc.ccuruiriiininiiinincricicsce e saes
49.3 The Navigation GIaph ... sees
49.4 Accessing the Navigation Controller...........coonininiincinieicieieieeeeeesescsssssessese s
49.5 Triggering a Navigation ACtiON ...t
49.6 Passing ATZUIMENLS.........cocuiuiiiiiiiiiii s saas
49.7 SUIMIMATY ..ttt e bbbt bbbt s st

50. An Android Jetpack Navigation Component Tutorial

50.1 Creating the NavigationDemo Project.........ccccvvurvcrneurecunennee
50.2 Adding Navigation to the Build Configuration..
50.3 Creating the Navigation Graph Resource File.........ccccveereenerneeincrniceneneeenenneeeennenensennenes
50.4 Declaring @ Navigation HOSE......c.ccvveverriecineeecireceineeeneeeeereseeenseseesessesessessesessessesensessenes

xii

Table of Contents

50.5 Adding Navigation Destinations..........ccecureueereureurercurerreemrerreeesersesessessesessessesessesseseasessesessessesenns 376
50.6 Designing the Destination Fragment LayOuts..........cececureurercrrerrercmnerrenemnerneennerneensessesensersesenne 378
50.7 Adding an Action to the Navigation Graph........ccoceecnvercnernencrnernencnnernenenneneensesseenserseenne 380

50.8 Implement the OnFragmentInteractionLiStenercccoceeecureurercrrerrercrrerneennerseensenseensersenenne 381
50.9 Adding View Binding Support to the Destination Fragments..........ccccoceeeeunervercererrcrcurerneenne
50.10 Triggering the ACHONc.oceueureeeecrreeeeerreeceetrereeetreee e esesseseesessesennes

50.11 Passing Data Using Safeargs
50.12 SUMMATY ..ottt

51. An Introduction to MotionLayouUL........cccueieciiirinininnennininneinininesesessiessisessssssessesssessessssssessesses

51.1 An Overview Of MOtONLAYOULccvevreiirerriciretrercireiseeiseiseetsessese et st ssessesessesseanns
51.2 MOtIONLAYOUL ...ttt
51.3 MOtIONSCENE ..ottt
51.4 Configuring CONSLIAINESEEScuucuucuuieiuiiieriaiieieiseise e sse s sse s sssasenes
51.5 CUSLOM AtIIDULES ..ottt
51.6 Triggering an ANimation.........ccoeuiiiiiiinniiini s
51.7 AXC MOIOM ...ttt
51.8 KEYITAINIES. ... cveuireeeencireteecireteee sttt sttt sttt st ettt b

51.8.1 Attribute Keyframes.................

51.8.2 Position Keyframes...................
51.9 Time Linearityccccccevrirenccunee.
51.10 KeyTrigger.....cocovvumervinimeurencncnnennas
51.11 Cycle and Time Cycle Keyframes
51.12 Starting an Animation from Code..........c.ccceuiinininininincnee e
51,13 SUMMATY c..ouiiiiiiiiiiii ettt

52. An Android MotionLayout Editor Tutorial...........ccccecvvvrinireisnsnnininisnsnnenininninnenescnsnseenene

52.1 Creating the MotionLayoutDemo Projectcccrencnernencenernenennerneennenneensessesensersesenne
52.2 ConstraintLayout to MotionLayout Conversion
52.3 Configuring Start and End CONStraintsc.ccecveeeeeeunerrercenernercrnernesennereeensessesensessesensessesenne
52.4 Previewing the MotionLayout ANimation..........ccccveueereurerrercenerneremnernesenrereeensessesensessesensessesenne
52.5 Adding an ONCHCK GESLUTEc.ccocureurereurerreenrerrecirereeeasesseseese e sseseesesseseesessessesessesesessessesenns
52.6 Adding an Attribute Keyframe to the Transition
52.7 Adding a CustomAttribute to a Transition...........
52.8 Adding Position Keyframes
52.9 Summary ...

53. A MotionLayout KeyCycle Tutorialccecceverrurvucencrnnas

53.1 An Overview Of Cycle KeYIramescocvureveuriurereiniineneineinecineineeiseiseetnessesessessesessessesessesscsenns
53.2 Using the Cycle EItOr.........ociuiiiiiicicieiieiecieicisise e sse s ssessesssssssssses
53.3 Creating the KeyCycleDemo Project........ccociiriniininiireiiineseiseseiensesessessesesssssssssssesens
53.4 Configuring the Start and End Constraints...........cceceereniurcuniencrneinerscieeseieneieceessesesssssesens
53.5 Creating the CYCles ...t sa s
53.6 Previewing the ANIMation ..o sse s ssesaseses
53.7 Adding the KeyFrameSet to the MOtiONSCene...........cciuimiiririineincicrciceeiececieececsnecisesesesenn
53.8 SUMIMATIY c.ucuiuiiiiiiiieriri ettt

54. Working with the Floating Action Button and Snackbar

54.1 The Material Design..........ccccveuueeee.
54.2 The Design Libraryccccccovuvinnunce.
54.3 The Floating Action Button (FAB) ...

xiii

Table of Contents

54.4 The SNACKDAT ...
54.5 Creating the EXample PrOJECT.......cvveuerreeeeerreeeecirieceeineeeeenreeeeesseseesessesessessesessessesessessesensessenes
54.6 Reviewing the Project........cccveuveeeunervcrcerernennnne
54.7 Removing Navigation Features............cccccc......
54.8 Changing the Floating Action Button
54.9 Adding an Action to the Snackbar...................
54.10 SUMMATY ..o

55. Creating a Tabbed Interface using the TabLayout Componentcecceveeersucsenrerscncnsecsncssesseenes 431

56. Working with the RecyclerView and CardView Widgets

55.1 An Introduction to the VIEWPAGer?2c.ccoouiiniiniiriiniincieicicieieieciseeisesesesesssesesssesessenas
55.2 An Overview of the TabLayout COMPONENLc.ceeveureveieerereereerereieerereeeesesesseesesessessesesseesenes
55.3 Creating the TabLayoutDemo ProjJect.........cciiiuniiniincineincineieieiecieineeesesesesesssesessseseseenes
55.4 Creating the First Fragment.......c.ccoccuiiiiiiniinisesese e ssessessessssssssesssesessssesssses
55.5 Duplicating the Fragments............ccocucuucriinimniiniiineieseessese e sssssesssssesssesssesesssssesssses
55.6 Adding the TabLayout and VIEWPAGEr2.........cccoeuuiuiiuriiniinerneincineieieieceiieesesssesesssesesssssessnnes
55.7 Creating the Pager AdApLer............cocuiiininiiiircsse et
55.8 Performing the Initialization Tasks........c.cccccririririiiiininiincecsc e
55.9 Testing the APPLICAtION.......c.ccucuiiciciciciciiciecisesi et
55.10 Customizing the TabLayout
55.11 SUMMATY c.oviiiiiiiiciciicceee et

56.1 An Overview of the ReCYCIeIVIEWc.cuevcrieeeiireecieinieeetreeeeeeseeensese e esessesessessesensessenes
56.2 An Overview Of the CardVIEW ..ot ssessesessessesensessenes
56.3 SUIMIMATY ..ot

57. An Android RecyclerView and CardView Tutorial........c.coeccvevirnuininsinnucninnensecncnnenncncnsecsscsesnenes

57.1 Creating the CardDemo PrOJECt.........ccccuwriiriuniuniiniirinieseieicee e ssessessesssssesasesssssessesesssnes
57.2 Modifying the Basic Views ACtiVity PrOJECtcocviuriuniineiniincincicieiccriieeecsesisessesesseseseenes
57.3 Designing the CardVIew LayOULtc.ccccccuiiniiniiniincniiseieiscise e ssessessessssssssesssesesssssessenes
57.4 Adding the ReCYClerVIEW........ccucuiiiiiiciciiiiciiesies e
57.5 Adding the Image Files........ccccccocovuririnininnnn.
57.6 Creating the RecyclerView Adapter.................
57.7 Initializing the RecyclerView Component
57.8 Testing the Application.........cccccoceovuueeuriuriurenen.
57.9 Responding to Card Selections.........cc.cccceunee.
57.10 SUMMATY c..onieiiiiiiii ettt

58. Working with the AppBar and Collapsing Toolbar Layouts...........cccevcereruerersensesisncsecsessessesessessesenses 453

59. An Overview of Android Intentscccccuueeeen..

Xiv

58.1 The Anatomy Of AN APPBAT ..ot sesessessesenseaenes
58.2 The EXAMPLE PLOJECTcucviuerrieecicireiceetreieietreeeecteeenetsese s ssesessessesessessesssessesessessesessesenes
58.3 Coordinating the RecyclerView and Toolbar
58.4 Introducing the Collapsing TooIbar LayOuLcccccureeemerreeeererrereeerrereeenrenenenseseesessesensensenee
58.5 Changing the Title and Scrim ColOr ..o eeseseeenseseesessesensessenes
58.0 SUIMIMATY ..ottt

59.1 An Overview of Intents..........ccccceveereriurennenn.
59.2 EXplicit INtents........coeeeeveurerrecererneeenerneeenernenenne
59.3 Returning Data from an Activityc.ccec......
59.4 TMPIICIE INTEIIES ..vovevrieireireeeieireecteiretetet ettt ses et sese et sebe et seb et b et seb et seb et sebebaetsesesasanenes

Table of Contents

59.5 USING INtENt FILETS......cveverieecieieecieieeetreireereieseiensesease e ssess s seese s ssesssesesensesscsens
59.6 Automatic Link Verification
59.7 Manually Enabling Links
59.8 Checking Intent Availability
59.9 SUMMATY c.cviiiiiiiiicii bbb

60. Android Explicit Intents — A Worked EXample........ccccooevirinrerninrinnininninncninnennncsenesnscseneessesennes 471

60.1 Creating the Explicit Intent Example Application.........ccccceeuviuneuniencrncircrscenceeieccieeseeeenenns
60.2 Designing the User Interface Layout for MainACtiVItyccecveuviererncenciscencmneiceeieeeinenenns
60.3 Creating the Second ACtiVIty CLass........c.ccvcucuvcucueicirinieniiriiisesese e sse s
60.4 Designing the User Interface Layout for SecondACtivityocoeveuvceveuveencenciciciecnininennns
60.5 Reviewing the Application Manifest Fileccccocirininininininincncsccceieceiececeenens
60.6 Creating the INTENT..........cccceiiiiiiirecsee e sa e
60.7 Extracting Intent Data..........cooiiiiiiiiiic s
60.8 Launching SecondActivity as @ Sub-ACtiVItY.......cccccueiriririniinininercrecceieeeiececieeiee
60.9 Returning Data from a SUb-ACHVILY......c.ccvcucucuueieieininerieciscese e
60.10 Testing the APPLCAtION.......c..ccuiuiuiiiiiciirciscice et
60.11 SUIMMATY ..ottt

61. Android Implicit Intents - A Worked Example

61.1 Creating the Android Studio Implicit Intent Example Project
61.2 Designing the User INterfaceccovuvveuniurecrirrecrnirneernieneeneesesenseeeesessesensens

61.3 Creating the IMPlicit INTENTcoveevcrreeeieireeeireeectreeereeeetresenetsese s sesessessesensessesennes
61.4 Adding a Second Matching ACHVILYccccveueurerreueererreemerrenenerrerenetseneesessesensessesensessesessessesenses
61.5 Adding the Web View t0 the Ul......cc.oceiieiinircirieereeerereeetreneeensesenessesenessesessessesenses
61.6 Obtaining the Intent URL.......ccccooeeirieiinieiniineeeineeeenneeenessesensessesessessesessessesessessesessessesesses
61.7 Modifying the MyWebView Project Manifest Filecocoeereeniinecencrreeenenecenerneeeenenneeennes
61.8 Installing the MyWebView Package on @ DevViCe.........ccouuruercrreemncireeeenerreeenennenenesseneesensenennes
61.9 Testing the APPLICAtION.ccvuevcrrieereireecetrecctreeeeet et sese et sese s s e ssesenaes
61.10 Manually Enabling the LinkKcccccveeirieniinenciriecneeereeeectreeenesseeeeessesensessesensessesenses
61.11 Automatic LinK VerifiCationcccecureeeeeureeeenerneeceerrieenenneeenetsesensesseseesessesensessesensessesessessesenses
61,12 SUIMMATY ..ottt bbb bbb bbb bbb

62. Android Broadcast Intents and Broadcast Receivers

62.1 An Overview of Broadcast Intents............cocoecuveucence
62.2 An Overview of Broadcast Receivers ..
62.3 Obtaining Results from a Broadcast...........ccccuvcuvcueicicininininineniseseiseeeesessessessessessesassans
62.4 Sticky Broadcast INTENLSc.oc.eueereeeeeereeeieireieeeisesetetseeeesessesessetsesessetsesessessesessessesessessesessessesesnes
62.5 The Broadcast Intent EXamPLe......c.ccoereueureureeeineireeeencirieeieineeeieisesesetsesessessesessessesessessesessessesesne
62.6 Creating the Example APPLICAtion..........c.ccuvcucucicueiiiaeiniiiiiiisesise e saesssssesasenens
62.7 Creating and Sending the Broadcast INteNt.........c.ccccueiriuririniineinienenciseieeeieieneiaesesenesesenns
62.8 Creating the Broadcast RECEIVET ...
62.9 Registering the Broadcast RECEIVET ..o
62.10 Testing the Broadcast EXamPILec.ccucucicicicieicieiieeercciseeese e ssessesse s
62.11 Listening for System BroadCasts...........c.ccucuvuvcunueicieinineiniisessise e ssessessessessesessss
62.12 SUIMIMATY ..ottt e

63. An Introduction to Kotlin Coroutines....

63.1 What are Coroutines?.....................
63.2 Threads vs. Coroutines...................
63.3 Coroutine SCope.....c.coevveveevrerenen

XV

Table of Contents

63.4 SUSPENA FUNCLIONS ...ttt stses sttt ettt esaes
63.5 COroutine DISPAtCRErsS. ...c.c.euiuciiiieireeieirecie ettt stsese sttt sttt eses
63.6 Coroutine Builders
63.7 Jobs
63.8 Coroutines - Suspending and Resuming

63.9 Returning Results from a Coroutine...............

63.10 Using WithContextc..ceeeeurerreemrerrecererrennne

63.11 Coroutine Channel CommuNICation ..o
63.12 SUMMATY ..ttt bbb bbb

64. An Android Kotlin Coroutines Tutorial...........cccceevuvueenieerinesineiinieinnteeninesissesnssessseesssessssesssseseens

64.1 Creating the Coroutine Example AppliCation.........c.ccvcuviuvcuiincenciveieicieieerinesisenssesesssesenseenes 507
64.2 Designing the User INterface ..o 507
64.3 Implementing the SEEKBar ...t 508
64.4 Adding the Suspend FUNCHOMN ...ttt 509
64.5 Implementing the launchCoroutines Method...........ccocviviiincincivcincicinincsnesicesceenes 510
64.6 TESHING the APP....cuimiiiiiiiiicic et

64.7 SUIMIMATY ..ottt bbbttt bbbt

65. An Overview of Android Services

65.1 Intent Serviceoovvuerveereericrernccecerecnnens
65.2 Bound Service
65.3 The ANAtomy Of @ SEIVICE c..ccueuiriireeererreeeeetreeeereee ettt ssese s sese e sesessessesensesenes
65.4 Controlling Destroyed Service Restart OPtions.........c..ceeureeeererreeeererrereenenreremsersesemsessesensensenee 514
65.5 Declaring a Service in the Manifest File.........cccocveeinieneinienerniccneceneeenseeeensenenennenes 514
65.6 Starting a Service Running on System Startup.........ccovniiinnccccen 515
05.7 SUIMIMATY ..ottt b bbbt 516

66. Android Local Bound Services - A Worked EXample.........c.ccovceernueninrinncninninnncninnecscninseesessessecne
66.1 Understanding Bound SErvices...........c.cciinininiincninciescie e isessseseessssesssesssesesssssessssnes
66.2 Bound Service Interaction OPLONSc.eueureveeeerereeeerererseeresesetsesetessesessessesesessesessessesessesseses
66.3 A Local Bound Service Example.........ccccou.....
66.4 Adding a Bound Service to the Project
66.5 Implementing the Bindercccccecvuviunennce.
66.6 Binding the Client to the Service.....................
66.7 Completing the Example........ccccccoeuvivirininnn.
66.8 Testing the APPLICAtION.......c.ccuiuiicicicicicicic st
66.9 SUIMIMATY ..ottt

67. Android Remote Bound Services — A Worked Exampleccccccervueeiinirnricnninncincnninscnscnnenscsscesenns
67.1 Client to Remote Service COMMUNICAtION......cccueuevrerrivemerrireeerrererenrereeetseseeenseseeessesensensenes 525
67.2 Creating the Example ApplICation........c.oceueureueecrreeeenernieeeenreeeeenreneeensesenessesensessesessessesesessenes 525
67.3 Designing the USer INTErfacec.oveuverreeeercrreeeeerreecieineeeneneeeeessesesessesessessesessessesessessesessessenes 525
67.4 Implementing the Remote Bound SErvice........cocveurernerreeeenerneecencrneeeeeinenenenseseesensesensensenes 525
67.5 Configuring a Remote Service in the Manifest File........ccocvveereenerneenenecnenecncneenennenee 527
67.6 Launching and Binding to the Remote Service........cccveureenerrereenerneeeeneinecenenreeesenresenennenee 527
67.7 Sending a Message to the RemOote SEIVICEcocuueviirieeeerreeeenerreecienreeeereseeenseeeeensesenenenes 529
07.8 SUIMIMATY ..ot 529

68. An Introduction to KOtlin FIOWcuciiieinieiniciiceiceincintcitceteseiesssnssssnsssssssessssessssesssesenss
68.1 Understanding FLOWS..........c.ccvuiucinciciiiciciiiiiiesisese e ssesssssssssessssse s sssesssses 531

Xvi

Table of Contents

71. An Android SQLite Database Tutorial

68.2 Creating the SAmMPle PrOJECTcvvuevevrieeeeirieeeirecctreeeeeeeeetsesensetsese s ssessesensessesensessesenses 531
68.3 Adding the Kotlin Lifecycle LIDIaryocccccvencrreeenerneemnerneemeireeenensesensessesensessesessessesenses 532
68.4 Declaring @ FLOW.......ccuveeeeieeiniiniecienreecieireieeetseseese st ssese s ssessessssessessssessesessessesessessesesnes 532
68.5 EMitting FLOW Data.....c.cccveureeiiireeeieirieeieireeeeeneeeeetseeeesesseseesessesessessesessessesessessesessessesessessesesses 533
68.6 Collecting FIOW Diatac.cccueeeecrreeceeireecierreieeenseeeesesseaeesessesessessesessessesessessessssessesessessesessessesesses 533
68.7 AddIng a FIOW BUFETc.overeeeeiciccircccrcccteect ettt sese s sesessessessnsessesennes 535
68.8 Transforming Data with Intermediariescoceveureeererreerrerreemneineeerreeeerserenesserensessesennes 536
68.9 Terminal FIOW OPeratorsccc.eeeeueureueueureeurireueteinesetstsesetsetaetseesesstaesessesesessessssssenesesescssssesesees 538
68.10 FLOW FIAtteNINGceovurreercreeeincrreeeietrereeetreseesesseaeeset s esessese s ssesessessesessessesessessesessessesensessesenses 538
68.11 Combining MUltiple FIOWSc..ccvcurieeeerreuerneiniieeerrieeeerseeenenseseeessesessessesensessesensessesensessesenses 540
68.12 Hot and Cold FIOWS ... sssssssssssssans 541
68.13 SAtEFIOW ...t 541
68.14 SharedFIOW ... 542
68.15 SUIMMATY ..ottt bbb bbb bbb 544
69. An Android SharedFlow TUtorialceeuerevieieiniiientieniieintcintcnnteeteetsessesessesssesssaesessssesnesens
69.1 ADOUL the PIOJECL ..eueuiieicireeeicireieieireeetcisetetet ettt see et sese et sese bbbt ses st ses st sesesacs 545
69.2 Creating the SharedFIOWDEMO PIOJEC.......c.ccuccuueiiiuiiniriiiiiiseeise e 545
69.3 Adding the Lifecycle LiDraries..........oovvvnnciieiiieinieerissiseseesesseisesesessessessessesssssesssssns 545
69.4 Designing the User Interface Layoutcccccuecucuciocirininiiniiineseiseeiseseeese s 546
69.5 Adding the List ROW LayOULc.ccuiuiiriiiiriicicieieiciiecieieeicisise s ssesssssssssnns 546
69.6 Adding the RecyclerView Adapter...........ccvcuvcuueiiieinieniiiniineseise e ssessessesssssesssssns 547
69.7 Adding the VIEWMOMELccoiuimiiiiiiiciiscicicicicici s sasassaes 547
69.8 Configuring the VieWMOdeIPIOVIAErccocueuueiiiinieiiiiiseeisecise e 548
69.9 Collecting the FIOW VAlUeS.........cc.ocriuiuriiiinciciciieicieceieeeicassise e sssssessssssssssns 549
69.10 Testing the SharedFIOWDEMO APc.ccuiuicicieiciiirieeiicisesese e ssessesssssesassaes 550
69.11 Handling Flows in the Back@round...........cccucuueiiininininiincnisecieiceese s 551
69.12 SUIMIMATY ..ottt e 553
70. An Overview of Android SQLite Databasescccceeevereereeeerreeersereiseeeesseeesssesessesesssseesssssessssesssesens

70.1 Understanding Database Tablesc.ccocvurrciniurencinineneneneereneeneiseeneseeensessesensessesesessesenne 555
70.2 Introducing Database SChema ..o seesenne 555
70.3 Columns and Data TYPES ...c.ccccureueereurereererrerrerenrenneeaersesessessesessessesessessesesessessasessesessessesessessesenns 555
70.4 Database ROWS ... s sss s sasasssas 556
70.5 Introducing Primary KeYSc.oceecurerencinernencineineeinerneennenneessessesessessesessessesessessesessessesessessesenns 556
70.6 What is SQLILE?vuerereecirereectreieeeireteeetrereee s s s ese s seesessessessasesesssescsnns 556
70.7 Structured Query Language (SQL)ccocvurereurerrercirerneneereineenrerneensensesessessesessessesessessesessessesenne 556
70.8 Trying SQLite on an Android Virtual Device (AVD)ccccvuvercmnerrenemnerrenemnenneeenenseensersenenne 557
70.9 ANAroid SQLItE ClaSSES......cocuvveeverireeeieeererieeeteereseeeteseereseesesessesestessssesesessesensssessssssesesssesensesensans 558

70.9.1 CULSOT ..ttt et st 559

70.9.2 SQLIEDALADASE ...ttt ettt ss s e sene et ae s s e eneneereneans 559

70.9.3 SQLItEOPENHEIPETeuruiinieiricieirecieirecieireeie sttt st eae st sae s neas 559

70.9.4 CONLENTVALUES.ouiviiieiiiiiiici s s ss s 560
70.10 The Android Room Persistence LIDrary..........cccvecenirencenerrencnnernenennerneensesseensessesensessesenne 560
70.11 SUMMATY .ottt 560

71.1 About the Database EXAmPLe........ccveureueireureueineireeeineirieeieireeeieisesetetsesessessesessessesessessesessessesesaes
71.2 Creating the SQLDemo Project
71.3 Designing the User interface

71.4 Creating the Data MOdel.........ccooiiiiiniiiiniiicieiciceceeeccise et sae s

..

xvii

Table of Contents

71.5 Implementing the Data Handlerc.ocoeecinieniineeenneceieeeieireeeeenseeeeenseseeensesensennenes
71.6 The Add Handler Method.........c.ccocueeeerrieeecineceeirieeicineeeenreeeeenseseeensesessessesessessesessessesensessenes
71.7 The Query Handler Method..........cccccoceeunennnce.
71.8 The Delete Handler Method..........ccccoceeunennee.
71.9 Implementing the Activity Event Methods
71.10 Testing the Application........c.ceeeeevevvercurerrenecne
7111 SUMMATY cooiiiiiiiiiir bbb bbb

72. Understanding Android Content Providers.........cocovceevcnrinrecninsinsucninsenscninensecsessessscsesseesscsessseses

72.1 What is @ CONtent PrOVIAEI?.......coccuiieiiieiiececieteeee ettt bbb se s sesene 569

72.2 The CONtent PIOVIAETcvovviereeecieieieteieiiecciee ettt bbb b s s s sene
72.2.1 ONICTEATE() cvveveeeeererereretieeeererereteseeesesesesessasesesesesesesessasesesesebessasasesesesesessasasasesesesessasasesesesesenens
72.2.2 QUETY() wvuereremeerereemeeresseaeesesstaetsesetaesses st seb sttt bttt et bt bttt bbbttt eeae
72.2.3 INSEIE() cvverererereriieeerereteteeeeeserereteset et et e st seseses et ese st s ssesesetessasassesesesessnsasaseseteteasasaseseresesenens
7224 UPAALE() cevvrevinrrerincireerecireistetses ettt ettt et e bbbt
72.2.5 AELELE() cuvvrereueeiieeeeeretetee ettt ettt ettt ettt ettt et s bt teae st s st eteasanesesereretenens
72.2.6 GELTYPE() wevereurruririeiriireieise e ss et s et

72.3 The Content URL.......cccoeueviiiieeiereietessieeess ettt st e sessssssassssssesesesessssssssssssssssesene

72.4 The Content ReSOIVErccevveerererererrrrrnnnens

72.5 The <provider> Manifest Element

72.6 SUIMMATY ..ottt bbbttt b bbb ns

73. An Android Content Provider TUtorialcoceevuirernrnsinisisisnnninininienesineniseessssssee
73.1 Copying the SQLDEMO PIOJECt......ceuerreueecrrereeerreeeeeireeeeeneeeeenseseeesseseesenseseesessesessessesensessenes 573
73.2 Adding the Content Provider Packagecccocuveueererreeeenerreeeenernereeennereeensesenessesessessesenessenes 573
73.3 Creating the Content Provider CLass.........c.cveeureueenerreeemnerrereerennereeenserenensesensessesessessesensessenes 574
73.4 Constructing the Authority and Content URIccccoeeireeenerrereinerneeennenneneeenrereesensesensensenee 575
73.5 Implementing URI Matching in the Content Provider..........ccccoceveureeeeneineeenernecencrneenrennenee 576
73.6 Implementing the Content Provider onCreate() Methodccoveveeeenernecenernecencenenennennenee 577
73.7 Implementing the Content Provider insert() Methodcccocveeverneeenenecenernecenerreennennenee
73.8 Implementing the Content Provider query() Methodccccveeveuneeenenecencrnecenerneenrennenee

73.9 Implementing the Content Provider update() Method
73.10 Implementing the Content Provider delete() Method
73.11 Declaring the Content Provider in the Manifest File...........
73.12 Modifying the Database Handler
73.13 SUMMATY ..o

74. An Android Content Provider Client Tutorial........ccoeeeeeinrniieenenintiieneintnisieesessseessssesssseennes
74.1 Creating the SQLDemOCHENt PLOJECTouuiuiuiiiiiircicircieicie e 585
74.2 Designing the USer iNterface ..o sseciessesssssesesesssesesssssessenes 585
74.3 Accessing the Content ProOVIder ... 585
74.4 Adding the QUETry PermiSSion.........ccccucuciiuiniuniiniiiiireriseeee e 586
74.5 TeStiNg the PrOJECt.......cciuiiiiiiiiciccicciicicicie st 587
74.6 SUIMMATY ..ottt et b bbb 587

75. The Android Room Persistence LIDIary ...
75.1 Revisiting Modern App ArChiteCtUreccuvueeeureeeererreeeeeireeeeereseeerseeeeeeseseesensesessessesensensenes

75.2 Key Elements of Room Database Persistence
75.2.1 Repository
75.2.2 Room Database
75.2.3 Data Access Object (DAO)cccocevvcrreunnce

Xviii

Table of Contents

7524 ENHHES oo
75.2.5 SQLILE DALADASE ...voveveeeereeeteeeteetete ettt ettt ettt r s e ene et eneans
75.3 Understanding Entities
75.4 Data Access Objects......coceurereeeen.
75.5 The Room Database..........ccooeuneee.
75.6 The Repository........coceeeuveecercreenne
75.7 In-Memory Databases....................
75.8 Database INSPECLOTccueuriuiueuereeeiriacieiseeietseae et tsteae sttt s sseseae st sseae bt s ssesesetasaes
75.9 SUIMIMATY ..ottt bbb

76. An Android TableLayout and TableROW TUtorialccccecceverrerruinrinsecscnsensucninsenscsessessscsenseessesesnes

76.1 The TableLayout and TableROW Layout VIEWS.........coeeeureureveeeerereencerereieereseseeseseeessesesessesennes
76.2 Creating the Room Database PrOJEctc.ccucuueicicininiiiniineineiseseisesesesessessesse s
76.3 Converting to a LIN€arLayoul..........cococvviiiiiiiinicic s
76.4 Adding the TableLayout to the User Interface.........ccccoeuueiuriuniininiinerncincisceciciciciecececneons
76.5 Configuring the TabIEROWSc.ccviuiiiiiincicicic e
76.6 Adding the Button Bar to the LayOout ..ot
76.7 Adding the ReCyClerVIEW........cc.vuiuiiiiniiiicicicicieiciciseiei st sae s
76.8 Adjusting the Layout Margins
76.9 SUMMATY ..ot

77. An Android Room Database and Repository Tutorial....

77.1 About the ROOMDEMO PrOJECt......c.cviueeiiiicireiecieieeirereetreee e nseseeaenns
77.2 Modifying the Build CONfiGUIAtion........c.ocueeeeueureceriirecireirecirereeeeseiseeneseeseneseeseaessesessessesenne
77.3 BUilding the ENTIEYc.c.ecireeeciiciceeerereeeeeienseeeeisee e seese e seesssesesensessesnns
77.4 Creating the Data Access ODJECt ... seesenne
77.5 Adding the ROOM Database........c.cocueueercurerreneireiecineireenneeesesseensessesesesseseaesseseaessesessessesenns
77.6 AddIing the RePOSILOLYcvvuvcriericrreieeetrerreeireieeierseeasessese e ssessese e ssesessessessssessesensessesenns
77.7 Adding the VIEWMOMELc.cccuiuriciiiicireiniceiecieieeeenesee e ssesessessesessesscsnns
77.8 Creating the Product Item LayOuLccvcueevcureurercinirneerneireeireireennenseeneseeenessesenessesensessesenne
77.9 Adding the RecyclerVIew Adapter.........c.veecureurercireinenceneineeineineensenseeseseesensessesessessesessessesenne
77.10 Preparing the Main ACHVILYc.ccocureurererrerrereireineciereereseeresseessessese e ssessesessesesessessesenns
77.11 Adding the Button Listeners........

77.12 Adding LiveData Observers

77.13 Initializing the RecyclerView.......

77.14 Testing the RoomDemo App.......

77.15 Using the Database Inspector
77.16 SUMMATY ...,

78. Video Playback on Android using the VideoView and MediaController Classes.........ccecerveruireruennes 623
78.1 Introducing the Android VideoView Classccccueuriiriniiniinienernciserseeeneiesenmesisssesesens 623
78.2 Introducing the Android MediaController CLassccceeiuriuniurerncinerseeneeciciciensiasienens 624
78.3 Creating the Video Playback EXamplec.ccccuiueiiirininininiineineisescsciciesessessesaessssnesanenns 624
78.4 Designing the VideoPlayer Layout ... sciseseesesessessessessssssssseses 624
78.5 Downloading the Video File..........cocviiiinininciniciiiiccciseee e 625
78.6 Configuring the VIdEOVIEWc.ccviuiuiiiiniincicieieicicecieicsise e sse s ssesassaes 625
78.7 Adding the MediaController to the Video VIeW.........ccccouririniiniiniincrncineiscicicicieiesiecneeenenns 627
78.8 Setting up the onPreparedLiStENETccvcuuvcucuciciieinieiiiicise e saessesse s ssesaseses 627
78.9 SUIMMATY ..ottt 628
79. Android Picture-in-Picture MOde..........ccoeuiiniiisiiiiniiiniiitieiieicnscnssessesssesssesssesessesssseseans 629

Table of Contents

79.1 Picture-in-Picture FEatUIEs........coveviiiueviicteictete st
79.2 Enabling Picture-in-Picture Mode..........cocecureueeiireeeeneinieemerreeeeenereeennesenenseseesessesessessesensessenes
79.3 Configuring Picture-in-Picture Parameters ...
79.4 Entering Picture-in-Picture Mode..........cccoouue.c..
79.5 Detecting Picture-in-Picture Mode Changes......
79.6 Adding Picture-in-Picture Actions........ccccvvueece.
79.7 SUIMIMATY ..ottt

80. An Android Picture-in-Picture TutOrial........ccccecorveereeirrieeeeeiireeeeeisreereesssseeeesssssseeesssssseessssssssessssssssens

80.1 Adding Picture-in-Picture Support to the Manifest...........cccocuvcuveueicioricenininisinessseneenes 633
80.2 Adding a Picture-in-Picture BUtONcccociiiniiniineiniinciescie e csecieseescsesesesssesessesessenes 633
80.3 Entering Picture-in-Picture Mode ... esecieeseeisesesesesssesesssesessenes 634
80.4 Detecting Picture-in-Picture Mode Changes.............cocecuvcuiuncincinceeicininenenessessesesssesenseenes 635
80.5 Adding a Broadcast RECEIVET ..ot 635
80.6 Adding the PiP ACHON.......ccoiuiiiiciciciciciciccicecet e 636
80.7 Testing the Picture-in-Picture ACHONcccocueiuriuriuiiirciniinereicee e sesseseseeaes 639
80.8 SUIMMATY ..ottt bbb 639

81. Making Runtime Permission Requests in Android..........ccocevevuireireisnsninisnnsnnneninncsnsenencncnsen

81.1 Understanding Normal and Dangerous Permissions...........ccceeuveeeereureeeererrereeserreveesersevensensenee 641
81.2 Creating the Permissions Example Project
81.3 Checking for a Permission..........cccoveeeeeeurercnecn.

81.4 Requesting Permission at RUNtIME.........ccoviiiiiiiiiiiiiiii s
81.5 Providing a Rationale for the Permission Request
81.6 Testing the PermiSsions APP.......cccveeeerreeeeerrereenerrereeerreremessesessessesessessesessessesessessesessesseseressenes
8L.7 SUMMATY ..ottt

82. Android Audio Recording and Playback using MediaPlayer and MediaRecordercccoueuveuene.

82.1 Playing AUGIO «....uccuuimieiiiiiiiicicicic s 649
82.2 Recording Audio and Video using the MediaRecorder Class..........ccccoeueeurimrininiirerncenerncenes 650
82.3 About the EXamPle PrOJECTcciueueineirieeieireeeieireieieireseietsetetetsesetessesesessesessessesesessesessssseses
82.4 Creating the AudioApp Project........ccccecueunee.

82.5 Designing the User Interface
82.6 Checking for Microphone Availability............
82.7 Initializing the ACtivity......ccccccovevviriririninnenn.
82.8 Implementing the recordAudio() Method
82.9 Implementing the stopAudio() Method..........ccoiiuiiniiniinciniinciniciecieieeeeesesse e
82.10 Implementing the playAudio() method........cccocviiiiriiiinininciscccceeececeseeenes
82.11 Configuring and Requesting Permissions
82.12 Testing the APPLICAtION.......cviuiuciciciciciciiiiciest et
82.13 SUMMATY ...ttt bbb

83. An Android Notifications TULOIIALceeeevceeeeerirreeeierrrneeesersrseeesssssneessssssneesssssssessssssssessssssssssssssssassss

83.1 An Overview of NotifIcations.........ccccuiiiiinii i
83.2 Creating the NotifyDemo Project........c.oecurueecrreeeeneinieemerreeeeerrereeenneseeesseseesessesessessesesensenes
83.3 Designing the USer INTErfacecvueveureeeeerrieeenerreeeieineeeeeneeeeesseseesessesessesseseesessesessessesessessenes
83.4 Creating the SEcOnd ACHVIYcovveuererreeeeerreeerreeeeetrere e seseesessesessessesessessesensessenes
83.5 Creating a Notification Channel......................
83.6 Requesting Notification Permission................
83.7 Creating and Issuing a Notification.................
83.8 Launching an Activity from a Notification

Table of Contents

83.9 Adding Actions t0 @ NOtHICAIONcureuvereeereireeeeetreeeerreee et sesensessesessessesenses 670
83.10 Bundled NOtIfICAtioNS.........cevuiviiiiiiiiiii s ssssssassses 670
83,11 SUIMMATY ..ttt bbb bbb bbb bbb 672
84. An Android Direct Reply Notification Tutorialceceeevverrerninsinsnscnsennininnenncnensenscseseessesenee 673
84.1 Creating the DirectReply Projectocvivuvcicicieiciinieeiircsciseese e 673
84.2 Designing the User INTerface ..o 673
84.3 Requesting Notification PermiSSioncccccucucecieinimneurinieneisiesesseisesesessessessessesssssesssssns 674
84.4 Creating the Notification Channel............cccccucuiiinirinininininccceese e 675
84.5 Building the RemoteInput ODJectccucuveuieiciciciiniiriciseese e 676
84.6 Creating the PendingInNtent. ..ot sae s ssesassnes 677
84.7 Creating the Reply ACHON.......cccuuiiiiiiiciiciciciceiiie et sse s saesassaes 678
84.8 Receiving Direct Reply INPUL.........coiuiuiiiincinciciciciciinieccise e sae s 679
84.9 Updating the NOtHICAONcuvuiiiiiircicisciceic et sae s 680
84.10 SUIMMATY ..ottt bbb 681
85. Working with the Google Maps Android API in Android Studiocccevvvevivuirensnrenenncsncsensensennes 683

85.1 The Elements of the Google Maps Android API
85.2 Creating the Google Maps Project.........cccccoueunene.
85.3 Creating a Google Cloud Billing Account............
85.4 Creating a New Google Cloud Project...................
85.5 Enabling the Google Maps SDK.........cccccovvurvcrnnee
85.6 Generating a Google Maps APT KeY......c.ccvueiireeenerrieenerneeneirereneineseeensesensessesessessesessessesenses
85.7 Adding the API Key to the Android Studio Project.........cccreeeverreeenerrecencrneecenerreeeenerreeennes 688
85.8 Testing the APPLICAtION.cvevcireeererreeceireecereeeet et sese st sese st sesensessesennes 688
85.9 Understanding Geocoding and Reverse GEOCOINGvewevrevemerrereecrreeemerrereeenserensensenennes 688
85.10 Adding a Map t0 an APPLCALIONc.cueveveeeeerreeeeerreeeeenreeeeetresenetseeeesessesensessesensessesensessesenses
85.11 Requesting Current Location Permission.........ccccvviiiiininiccccnen,
85.12 Displaying the User’s Current LOCAtIONcveueveureueecrreeemerrerenetrenenenserenenseseesesseseeessesenses
85.13 Changing the Map TYPEccrreeerrcrreeeeeerieeeerneieeetseeeesessesensessesessesseseesessesessessesessessesessessesesss
85.14 Displaying Map Controls t0 the USETccocvueererreeeeerreeemerreremetrenenenseaensessesensessesessessesenses
85.15 Handling Map Gesture INteraction.........coueueureueecrreeemrerreremersenenessesensessesenessesensessesensessesenses

85.15.1 Map Zooming Gestures...........cccceveeueuricurunee

85.15.2 Map Scrolling/Panning Gestures...................

85.15.3 Map Tilt Gestures.......coccvecuevrereererecurerercenenee

85.15.4 Map Rotation Gestures..........
85.16 Creating Map Markers..................

85.17 Controlling the Map Camera
85.18 SUMMATY ..ttt bbb bbb

86. Printing with the Android Printing Framework

86.1 The Android Printing Archit@CtUurecocuocuvcucueeciuciniereiininessese e
86.2 The Print Service PIUGINSccovuiiiiiniiiicicicicieie et sse s ssssssnes
86.3 GOOGle ClOUd PriNt.......cuuiuiiiiiiiiiiiicicseic et
86.4 Printing to GOOGle DIIVe. ..o sassse s ssesassses
86.55aVE @S PDIF ...t
86.6 Printing from Android DEVICESocueurucencucueiciinieeeiisisesese e ssessssessssses
86.7 Options for Building Print Support into Android Apps.........ccceceveevevveencincenceneicieieeeieenennas 702

86.7.1 Image Printing ...

86.7.2 Creating and Printing HTML Content

86.7.3 Printing @ Web Page..........cccouiiiniiiiniiniciccieieciecicci e ssesse s s

XXi

Table of Contents

86.7.4 Printing a Custom DOCUMENt ...t
86.8 SUMMATY ...t

87. An Android HTML and Web Content Printing Example

87.1 Creating the HTML Printing Example Application................

87.2 Printing Dynamic HTML Content.........ccccocoueuviviirinicinincnnnne

87.3 Creating the Web Page Printing EXample..........ccceuviuriuniunerneincincieieicinieesesesesenssesesssesesseenes
87.4 Removing the Floating Action BUttOncccceuiiiiininiincineicisccieieceieescsesesesssesessseseseenes
87.5 Removing Navigation FEAtUTES............covuviiiuiveieicieieiciiicee s
87.6 Designing the User Interface LayOuLccccueiuiuriuiiirciniircieicise e iecsiseeicsesesesssesesssesessenes
87.7 Accessing the WebView from the Main ACHVILYocvevcuiincincincieicieieeneeisesseseresiseneenes
87.8 Loading the Web Page into the WebView.........c.cccocviniiniiniincinciscccinccececscssscseeenes
87.9 Adding the Print Menut OPtion ... ssessessesssssesssesssesesssssessssses
87.10 SUMMATY ...onieiiiiit et bbb

88. A Guide to Android Custom Document PrNting........ccocevvvinisuisisnsninisnsnnnessscsnenesensssenes

88.1 An Overview of Android Custom Document Printing
88.1.1 Custom Print Adapters.......coccoveceeeneeurinceerneneeenenenernenennnnes

88.2 Preparing the Custom Document Printing Project................

88.3 Designing the Ul........ccocveireceniinecenireenieneeneeeeeneeensenesns

88.4 Creating the Custom Print Adapter........cccoocveeunvurecrnerrevcrnenene

88.5 Implementing the onLayout() Callback Method.....................

88.6 Implementing the onWrite() Callback Methodc.oceveveeeencrneecinerniceirecerreceenreeeeenenee

88.7 Checking a Page 15 in RANGEccccuvueeerreueecrreeeireeeieneeeeeneeeeenseseesensesessessesessessesessessesessesenes

88.8 Drawing the Content on the Page Canvasc..ccvereeeererreeenernereesennereesenseseesessesessessesessessenes

88.9 Starting the Print JOD ... sese et sesensesenes

88.10 Testing the APPLICAtION.....cccueueeirreeeeerreieeetreeeeetreee s ssese e ssese e sesessessesensessenes

88.11 SUMMATIY ..viiiciiiiiiii bbb s

89. An Introduction to Android APP Links.......ccccevereninneinininnininsinncncnninncsinissscsinsesesiseessesessene 731

89.1 An Overview of ANdroid APP LINKS ..c..ceeereeeeneireeeineinieeieireeeieinereieiseseseeseseesessesessessesesessenes 731
89.2 App Link Intent Filterscccoveureeurernercrrernennnn.

89.3 Handling App Link Intents
89.4 Associating the App with a Website
89.5 SUMMATY ..ot

90. An Android Studio App Links Tutorial

90.1 About the EXAMPLe APD ...cuoveueiriiueirereieirieieiseeistseeistseetstseseiseeaetseesesstese s sessesessssescsesseassssnes
90.2 The Database SChemIac.covueuceiirieeeeireeeireeeireie e ssese e ssesessessesessessesensessenes
90.3 Loading and RUnning the Projectccecirieeneinieenerrecenneeeienneeeeeiseseeensesesessesensensenes
90.4 Adding the URL Mapping........ccceeureueeerreueeerreeememreseeessesemessesessessessssessesessessesessessesessessesessesseses
90.5 Adding the INtent Filter ...t nsese e sseseesessesensessenes
90.6 Adding Intent Handling Code.........ccveureuierrieeniirieeineirieeeireieeenreeeeenseseeeeseseesessesessessesensessenes
90.7 TeStING the APP..cevcreeeeerreeeeeireicieireieeetreeeesetseee et seseesessesessessesessessesessessesessessesessessesessessesessessenes
90.8 Creating the Digital Asset Links File........ccocveerrierneireenernieeerneneiennereneinesenenseseesessesenensenes
90.9 Testing the APP LiNK.....coceeireeineirieeerreeeeireeeeetreeeeetereeenseseesesseseesessesensessesessessesessessesessesseses
90.10 SUMMATY ..viiiiiiiiii bbb bbb bbb

91. An Android Biometric Authentication Tutorial.......ccccceeeeerruunnnennene

91.1 An Overview of Biometric Authentication.....
91.2 Creating the Biometric Authentication Project

xxii

Table of Contents

91.3 Configuring Device Fingerprint Authenticationcceeecreeenerreeenerreennerreeesersereesersenennes 746
91.4 Adding the Biometric Permission to the Manifest File........c.coceveureenernenerneeencnecenenreennes 746
91.5 Designing the User INterfaceccovuvveuurecrierecrnirneennieneenieseseneseesessesensens

91.6 Adding a Toast Convenience Method....................

91.7 Checking the Security Settings..........coeeuveeevecrreneee

91.8 Configuring the Authentication Callbacks
91.9 Adding the CancellationSignal..........cccccvvurvcrnneee

91.10 Starting the Biometric PrOMPTccvvevevrieeencirieceerreieierneeeeirereeetseseesessesensessesensessesensessesennes
91.11 Testing the PTOJECt.....c.veveirieecirieeeireecerreiceereeeeetreae e ssese et sese s sese s ssesessessesensessesenses
91,12 SUIMMATY ..ttt

92. Creating, Testing, and Uploading an Android App Bundle............ccoeueviivirveninrenrisiisinienenenniseisennenne 753

92.1 The Release Preparation PrOCess.........eeieereeeineireeeineireeeieisesesetsesessessesessessesesessesessessesesnes
92.2 ANdroid AP BUNAIES......ccueueiiiriieicireeeicircieicincieiet ettt sese et sesetse st sese st ses st sesenae
92.3 Register for a Google Play Developer Console ACCOUNL...........ocvieevcercuscecreieicieeeirineienennns
92.4 Configuring the App in the COnsole ...
92.5 Enabling Google Play App SIgNINg........cccvcuvcuveueueicmminieniiiiiisessesessessese e ssessessesssssesssssns
92.6 Creating a Keystore File ..o ssesse s
92.7 Creating the Android App Bundle....
92.8 Generating Test APK FIles........ccoouiiiniininiinciciciciceece s
92.9 Uploading the App Bundle to the Google Play Developer Console
92.10 Exploring the App Bundle

92.11 Managing Testerscccccovuvuuueen
92.12 Rolling the App Out for Testing
92.13 Uploading New App Bundle ReVISIONS...........cc.ccueueuuirirniniiniineiiiseseiseiseeesesseseeinesssssesessons
92.14 Analyzing the App Bundle Filecocociiiiiiiiiiicccsecee s
92,15 SUIMIMATY ..ottt ettt
93. An Overview of Android In-App Billingccceuevuirerrninisrisinnininininiinincinenecms. 767
93.1 Preparing a Project for In-App Purchasingcccveveureencrreeeneineenenneennenneceresseneesensesennes 767
93.2 Creating In-App Products and SubScriptionsccveuveeeerreemnerreeeenerreeenernereeserseneesensenennes 767
93.3 Billing Client InitialiZation.........coceeeureeeeerreeeenerneieieireeeneeenesseseeessesensessesensessesessessesensessesenses 768
93.4 Connecting to the Google Play Billing Library.........ccccecveeeureeeneireeenerneeenenrereeserseneeensenennes 769
93.5 Querying Available PrOAUCLS..........ccocureeuiireeeeerreeeeerreeereeeereseeetsese e nsessesensessesensessesenses 769
93.6 Starting the PUrchase PTrOCESS........coocurueecireeeeneineiceeireeeiernereeetseseeesseseesessesessessesessessesensessesenses 770
93.7 Completing the PUICRASEc.cccuieeicicccircceccteceree et sese et s s ssesennes 771
93.8 Querying Previous PUIChaSes.........cccuveueeeuieeeerniecietreeeierneeeeisesensetseseesessesessessesensessesensessesenses 772
93.9 SUMMATY ..ottt 772
94. An Android In-App Purchasing Tutorialc.cceevevinreininiinnieninsinnnniniincnininncisesneneeencnens 773
94.1 About the In-App Purchasing Example Project.........cccceiinininerncinerseeneneiecenesseneenenns 773
94.2 Creating the INAPPPUIchase PrOjectcocucuucicirinieiiiiiscseseeecsese s 773
94.3 Adding Libraries to the PrOject ... 773
94.4 Designing the User INTerfacecocviuuincincincicieiciiniseieciseese e 774
94.5 Adding the App to the Google Play StOre..........c.ccccuocuirimniuniniineiniesesciseiseeneieseiaessesnesenenns 775
94.6 Creating an IN-App Product..........cccoiuncincinciieicieinisecsisessese e ssessessessessesesssns
94.7 ENabling LiCense TESTEIScuuiuiuriuiuiiiircicieieaseiaeia st sse s s ssssssens
94.8 Initializing the Billing CHENTc.ociiiiiiiiciicicicicice e
94.9 Querying the Product....................
94.10 Launching the Purchase Flow
94.11 Handling Purchase UPdatescovuincincincicieiciinieneicsisesese s ssesssssesssssesssssns

Xxiii

Table of Contents

94.12 Consuming the PrOQUCLcceueeeireecireccieceteeeeteeeeeneseesessese s ssesessessesensesenes
94.13 Restoring a Previous Purchase
94.14 Testing the APp.....cvceeevcrreerercrrerreerrerreeerensenenne
94.15 Troubleshooting
94,16 SUMMATY ..ot bbb

95. Accessing Cloud Storage using the Android Storage Access Framework...........ccocceveevucnensecscnensucnne 785

95.1 The Storage Access FrameworK ...
95.2 Working with the Storage Access Framework...........cococvcuveuvcincincineicininenieisessisessesenseenes
95.3 Filtering Picker File LIStINGSccecueuiciiiiiiiniesiseseseetcse e ssessssesssssssssesssesessasessenes
95.4 Handling Intent ReSUILS.........cocuiiciiiciiciciiiccicicsse et
95.5 Reading the Content 0f @ FIlec.ccucuiiiiiiniincieescie e sessesessenas
95.6 Writing Content t0 a FIle ...t
95.7 Dieleting @ Fle.......c.ouuiuimiiiiiircicicccic ettt
95.8 Gaining Persistent Access t0 a File........ccccuuiiininiininincccic e
95.9 SUIMIMATY ..ottt bbbttt bbb

96. An Android Storage Access Framework Example...........ccoecucnnene.

96.1 About the Storage Access Framework Example
96.2 Creating the Storage Access Framework Example
96.3 Designing the User Interfacecccevveeeuneerevcrneerecrneeeecnnenns
96.4 Adding the Activity Launchers
96.5 Creating a New Storage File.......cocv e esessesessessesensessenes
96.6 Saving t0 a StOrage File ...ttt saeaenen
96.7 Opening and Reading a Storage Filecccveeneinieneinecnenecereeeenneeeenseseeensesenensenes
96.8 Testing the Storage Access APPLICALIONc.euevcrreeererreeererreieeerrereeerreeeeeeseseeessesessensesensensenes
96.9 SUIMIMATY ..ottt

97. An Android Studio Primary/Detail FIow Tutorialccceeevirrernuenensenncsinninnecnsinncncnsinsensessessecne

97.1 The Primary/Detail FLOW........ocociiiiiiciciiicissiressese st ssssesssssssasesssasessesesseaes
97.2 Creating a Primary/Detail FLOW ACHVILYcccovuiuriuiiiriiiircccisecieicceieicsesisessesesseseseenes
97.3 Adding the Primary/Detail Flow Activity...........
97.4 Modifying the Primary/Detail Flow Template...
97.5 Changing the Content Model..........cccccccecruunuuneen.
97.6 Changing the Detail Panecccccoeevivruniunnen.
97.7 Modifying the ItemDetailFragment Class......
97.8 Modifying the ItemListFragment ClLass...........cceeuriuiuriuniircmneincineiereieieieeesesesesesssesesssesesseenes
97.9 Adding Manifest PErMISSIONS.c.ccucuuumrimimrimiiriiieseissese s ssessssesssssesssesssesessssessssses
97.10 Running the ApPliCAtionc.c.cucuciiciriiriiirisisese e
97.11 SUMIMATY ..ottt bbb bbb

98. Working with Material Design 3 Themingcocvevuireirinnisisnisensnininisinneneninsseensssssee

98.1 Material Design 2 vs. Material Design 3ccocreeereurereenerreeemnernereeennesenensesenenseseesessesenessenee
98.2 Understanding Material Design Themingcoeveureeernerreeeenerneeeenerneeeeenreseesenseseesessesensensenee
98.3 Material Design 3 TREIMUNEc.ccveueueeerreeeeeireeeeeierenersereeenseeeeessesessessesensessesessessesessessesessessenes
98.4 Building @ CUStOM theIIecuueuieieeeieireeceetreeeetreeeeeteee s sese st sesessessesensesenes
98.5 SUMMATY ..ot

99. A Material Design 3 Theming and Dynamic Color Tutorial

99.1 Creating the ThemeDemo Project
99.2 Designing the User INterface ..o ssecseseeisssesesesssesesssesesseaes

XXiv

Table of Contents

99.3 Building @ NeW theIMEc.ccueueiiiriieecircceireceeeeeet et sese s sesessessesensessesennes
99.4 Adding the Theme t0 the PrOJECtc.oceeureeencireeencirieeireeereeeeetreeenesseaeeessesensessesensessesenses
99.5 Enabling Dynamic Color Support....
99.6 SUMMATY ..o

100. An Overview of Gradle in Android Studio

100.1 An Overview of Gradle ... saees
100.2 Gradle and Android StUAIO ...
100.2.1 Sensible Defaultsceiiiiiiinciiccciccec e
100.2.2 DEPENAEIICIES «..cuveeuiirerenireireneireieeneisesseetsessese st tses st b sttt sttt becaens
100.2.3 BUIld VATTANLS «.....coeveieieiiiiiiciecie e sse s
100.2.4 Manifest ENLIIESccoiuiuiuiiiiiicicicieicieienieiie s s ssessssesssaes
100.2.5 APK SigNING ...ouvuiiiiiiiiiici s
100.2.6 PrOGUATA SUPPOTLt..cuceeveeirierirciriirincireiseeireiseaeisessesetsessesessessesessessesesessesessessesessessessssesscaeens
100.3 The Property and Settings Gradle Build File.........ccccooeiiiiinininiinincicicicciceceeececes
100.4 The Top-level Gradle Build Filecocceureueiniiriciniiniciiirieineisecieiseseeseesesessessesesessesessesssaens
100.5 Module Level Gradle Build Files..........ccccucuuiciiniiriiiiseciee e ssesisssesessssaens
100.6 Configuring Signing Settings in the Build Fileccccooounininininincincccceceeecnces
100.7 Running Gradle Tasks from the Command Line ..
100.8 Summary....

XXV

Chapter 1

1. Introduction

This book, fully updated for Android Studio Ladybug and the new UI, teaches you how to develop Android-
based applications using the Kotlin programming language.

Beginning with the basics, the book outlines how to set up an Android development and testing environment,
followed by an introduction to programming in Kotlin, including data types, control flow, functions, lambdas,
and object-oriented programming. Asynchronous programming using Kotlin coroutines and flow is also
covered in detail.

Chapters also cover the Android Architecture Components, including view models, lifecycle management,
Room database access, content providers, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the
ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers,
and direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App Links, Gradle build configuration, in-app
billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.payloadbooks.com/product/ladybugkotlin/
The steps to load a project from the code samples into Android Studio are as follows:
1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at info@payloadbooks.com.

https://www.payloadbooks.com/product/ladybugkotlin/

Introduction

1.3 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.payloadbooks.com/ladybugkotlin

If you find an error not listed in the errata, please let us know by emailing our technical support team at info@
payloadbooks.com. They are there to help you and will work to resolve any problems you may encounter.

https://www.payloadbooks.com/ladybugkotlin

Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have explained how to configure an environment suitable for developing
Android applications using the Android Studio IDE. Before moving on to slightly more advanced topics, now
is a good time to validate that all required development packages are installed and functioning correctly. The
best way to achieve this goal is to create an Android application and compile and run it. This chapter will cover
creating an Android application project using Android Studio. Once the project has been created, a later chapter
will explore using the Android emulator environment to perform a test run of the application.

3.1 About the Project

The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also use one of the most basic Android Studio project templates. This simplicity allows us to introduce some key
aspects of Android app development without overwhelming the beginner by introducing too many concepts,
such as the recommended app architecture and Android architecture components, at once. When following
the tutorial in this chapter, rest assured that the techniques and code used in this initial example project will be
covered in much greater detail later.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

13

Creating an Example Android App in Android Studio

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity

The next step is to define the type of initial activity to be created for the application. Options are available to
create projects for Phone and Tablet, Wear OS, Television, or Automotive. A range of different activity types is
available when developing Android applications, many of which will be covered extensively in later chapters.
For this example, however, select the Phone and Tablet option from the Templates panel, followed by the option
to create an Empty Views Activity. The Empty Views Activity option creates a template user interface consisting
of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name uniquely identifies the application within the Android application ecosystem. Although this
can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your
domain name followed by the application’s name. For example, if your domain is www.mycompany.com, and the
application has been named AndroidSample, then the package name might be specified as follows:

com.mycompany.androidsample

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your

home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This minimum SDK will be used in most projects
created in this book unless a necessary feature is only available in a more recent version. The objective here is to

14

Creating an Example Android App in Android Studio

build an app using the latest Android SDK while retaining compatibility with devices running older versions of
Android (in this case, as far back as Android 8.0). The text beneath the Minimum SDXK setting will outline the
percentage of Android devices currently in use on which the app will run. Click on the Help me choose button
(highlighted in Figure 3-3) to see a full breakdown of the various Android versions still in use:

Figure 3-3
Finally, change the Language menu to Kotlin and select Kotlin DSL (build.gradle.kts) as the build configuration
language before clicking Finish to create the project.
3.5 Modifying the Example Application

Once the project has been created, the main window will appear containing our AndroidSample project, as
illustrated in Figure 3-4 below:

Figure 3-4

The newly created project and references to associated files are listed in the Project tool window on the left side
of the main project window. The Project tool window has several modes in which information can be displayed.
By default, this panel should be in Android mode. This setting is controlled by the menu at the top of the panel
as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the menu to switch mode:

15

Creating an Example Android App in Android Studio

Figure 3-5
3.6 Moditying the User Interface

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the Project tool window file hierarchy. Once located in the Project tool window,
double-click on the file to load it into the user interface Layout Editor tool, which will appear in the center panel
of the Android Studio main window:

Figure 3-6

In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A range of other

16

Creating an Example Android App in Android Studio

device options are available by clicking on this menu.

Use the System UI Mode button () to turn Night mode on and off for the device screen layout. To change
the orientation of the device representation between landscape and portrait, use the drop-down menu showing

the icon.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user
interface components that may be used to construct a user interface, such as buttons, labels, and text fields.
However, it should be noted that not all user interface components are visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel, which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-7:

Figure 3-7

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
called main and a TextView child object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to ensure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by
a U-shaped icon. When disabled, the icon appears with a diagonal line through it (Figure 3-8). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-8
The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns, with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-9, for example, the Button view is currently selected within the Buttons category:

17

Creating an Example Android App in Android Studio

Figure 3-9

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-10

The next step is to change the text currently displayed by the Button component. The panel located to the right
of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected
component in the layout. Within this panel, locate the text property in the Common Attributes section and
change the current value from “Button” to “Convert’, as shown in Figure 3-11:

18

Creating an Example Android App in Android Studio

Figure 3-11

The second text property with a wrench next to it allows a text property to be set, which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing how a visual component and the layout
will behave with different settings without running the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer Constraints
button (Figure 3-12) to add any missing constraints to the layout:

Figure 3-12

It is important to explain the warning button in the top right-hand corner of the Layout Editor tool, as indicated
in Figure 3-13. This warning indicates potential problems with the layout. For details on any problems, click on
the button:

Figure 3-13
When clicked, the Problems tool window (Figure 3-14) will appear, describing the nature of the problems:

Figure 3-14

This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected
19

Creating an Example Android App in Android Studio

within the layout file. In our example, only the following problem is listed:

button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:

Hardcoded string "Convert", should use @string resource

The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This 118N message informs us that a potential issue exists concerning the future internationalization of the
project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an “N”
and has 18 letters in between). The warning reminds us that attributes and values such as text strings should be
stored as resources wherever possible when developing Android applications. Doing so enables changes to the
appearance of the application to be made by modifying resource files instead of changing the application source
code. This can be especially valuable when translating a user interface to a different spoken language. If all of the
text in a user interface is contained in a single resource file, for example, that file can be given to a translator, who
will then perform the translation work and return the translated file for inclusion in the application. This enables
multiple languages to be targeted without the necessity for any source code changes to be made. In this instance,
we are going to create a new resource named convert_string and assign to it the string “Convert”.

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-15:

Figure 3-15

After selecting this option, the Extract Resource panel (Figure 3-16) will appear. Within this panel, change the
resource name field to convert_string and leave the resource value set to Convert before clicking on the OK
button:

Figure 3-16

20

Chapter 12

12. Kotlin Data Types, Variables, and
Nullability

Both this and the following few chapters are intended to introduce the basics of the Kotlin programming
language. This chapter will focus on the various data types available for use within Kotlin code. This will also
include an explanation of constants, variables, typecasting, and Kotlin's handling of null values.

As outlined in the previous chapter, entitled “An Introduction to Kotlin” a useful way to experiment with the
language is to use the Kotlin online playground environment. Before starting this chapter, therefore, open a
browser window, navigate to https://play.kotlinlang.org and use the playground to try out the code in both this
and the other Kotlin introductory chapters that follow.

12.1 Kotlin Data Types

When we look at the different types of software that run on computer systems and mobile devices, from financial
applications to graphics-intensive games, it is easy to forget that computers are really just binary machines.
Binary systems work in terms of 0 and 1, true or false, set and unset. All the data sitting in RAM, stored on disk
drives, and flowing through circuit boards and buses are nothing more than sequences of 1s and 0s. Each 1 or 0
is referred to as a bit and bits are grouped together in blocks of 8, each group being referred to as a byte. When
people talk about 32-bit and 64-bit computer systems they are talking about the number of bits that can be
handled simultaneously by the CPU bus. A 64-bit CPU, for example, can handle data in 64-bit blocks, resulting
in faster performance than a 32-bit based system.

Humans, of course, don't think in binary. We work with decimal numbers, letters, and words. For a human
to easily (‘easily’ being a relative term in this context) program a computer, some middle ground between
human and computer thinking is needed. This is where programming languages such as Kotlin come into
play. Programming languages allow humans to express instructions to a computer in terms and structures we
understand and then compile that down to a format that can be executed by a CPU.

One of the fundamentals of any program involves data, and programming languages such as Kotlin define a set
of data types that allow us to work with data in a format we understand when programming. For example, if we
want to store a number in a Kotlin program we could do so with syntax similar to the following:

val mynumber = 10

In the above example, we have created a variable named mynumber and then assigned to it the value of 10. When
we compile the source code down to the machine code used by the CPU, the number 10 is seen by the computer
in binary as:

1010

Similarly, we can express a letter, the visual representation of a digit (‘0’ through to ‘9’), or punctuation mark
(referred to in computer terminology as characters) using the following syntax:

val myletter = 'c'

Once again, this is understandable by a human programmer but gets compiled down to a binary sequence for

the CPU to understand. In this case, the letter ‘¢’ is represented by the decimal number 99 using the ASCII
table (an internationally recognized standard that assigns numeric values to human-readable characters). When

91

https://play.kotlinlang.org/

Kotlin Data Types, Variables, and Nullability

converted to binary, it is stored as:
10101100011

Now that we have a basic understanding of the concept of data types and why they are necessary we can take a
closer look at some of the more commonly used data types supported by Kotlin.

12.1.1 Integer Data Types

Kotlin integer data types are used to store whole numbers (in other words a number with no decimal places). All
integers in Kotlin are signed (in other words capable of storing positive, negative, and zero values).

Kotlin provides support for 8, 16, 32, and 64-bit integers (represented by the Byte, Short, Int, and Long types
respectively).

12.1.2 Floating-Point Data Types

The Kotlin floating-point data types can store values containing decimal places. For example, 4353.1223 would
be stored in a floating-point data type. Kotlin provides two floating-point data types in the form of Float and
Double. Which type to use depends on the size of value to be stored and the level of precision required. The
Double type can be used to store up to 64-bit floating-point numbers. The Float data type, on the other hand, is
limited to 32-bit floating-point numbers.

12.1.3 Boolean Data Type

Kotlin, like other languages, includes a data type to handle true or false (1 or 0) conditions. Two Boolean constant
values (true and false) are provided by Kotlin specifically for working with Boolean data types.

12.1.4 Character Data Type

The Kotlin Char data type is used to store a single character of rendered text such as a letter, numerical digit,
punctuation mark, or symbol. Internally characters in Kotlin are stored in the form of 16-bit Unicode grapheme
clusters. A grapheme cluster is made of two or more Unicode code points that are combined to represent a single
visible character.

The following lines assign a variety of different characters to Character type variables:
val myCharl = 'f'

val myChar?2
val myChar3 = 'X'

Characters may also be referenced using Unicode code points. The following example assigns the X’ character
to a variable using Unicode:

val myChar4 = '\u0058"'

Note the use of single quotes when assigning a character to a variable. This indicates to Kotlin that this is a Char
data type as opposed to double quotes which indicate a String data type.

12.1.5 String Data Type

The String data type is a sequence of characters that typically make up a word or sentence. In addition to providing
a storage mechanism, the String data type also includes a range of string manipulation features allowing strings
to be searched, matched, concatenated, and modified. Double quotes are used to surround single-line strings
during an assignment, for example:

val message = "You have 10 new messages."

Alternatively, a multi-line string may be declared using triple quotes

val message = """You have 10 new messages,

92

Kotlin Data Types, Variables, and Nullability

5 old messages
and 6 spam messages."""
The leading spaces on each line of a multi-line string can be removed by making a call to the trimMargin()
function of the String data type:
val message = """You have 10 new messages,
5 old messages

and 6 spam messages.""".trimMargin ()

Strings can also be constructed using combinations of strings, variables, constants, expressions, and function
calls using a concept referred to as string interpolation. For example, the following code creates a new string
from a variety of different sources using string interpolation before outputting it to the console:

val username = "John"

val inboxCount = 25

val maxcount = 100

val message = "S$Susername has $inboxCount messages. Message capacity remaining is
${maxcount - inboxCount} messages"
println (message)

When executed, the code will output the following message:

John has 25 messages. Message capacity remaining is 75 messages.

12.1.6 Escape Sequences

In addition to the standard set of characters outlined above, there is also a range of special characters (also
referred to as escape characters) available for specifying items such as a new line, tab, or a specific Unicode value
within a string. These special characters are identified by prefixing the character with a backslash (a concept
referred to as escaping). For example, the following assigns a new line to the variable named newline:

var newline = '\n'

In essence, any character that is preceded by a backslash is considered to be a special character and is treated
accordingly. This raises the question as to what to do if you actually want a backslash character. This is achieved
by escaping the backslash itself:

var backslash = "\\'

The complete list of special characters supported by Kotlin is as follows:

« \n - Newline

« \r - Carriage return

« \t - Horizontal tab

o \\ - Backslash

« \” - Double quote (used when placing a double quote into a string declaration)

« \’ - Single quote (used when placing a single quote into a string declaration)

« \$ - Used when a character sequence containing a $ is misinterpreted as a variable in a string template.

« \unnnn - Double byte Unicode scalar where nnnn is replaced by four hexadecimal digits representing the
Unicode character.

93

Kotlin Data Types, Variables, and Nullability
12.2 Mutable Variables

Variables are essentially locations in computer memory reserved for storing the data used by an application.
Each variable is given a name by the programmer and assigned a value. The name assigned to the variable
may then be used in the Kotlin code to access the value assigned to that variable. This access can involve either
reading the value of the variable or, in the case of mutable variables, changing the value.

12.3 Immutable Variables

Often referred to as a constant, an immutable variable is similar to a mutable variable in that it provides a named
location in memory to store a data value. Immutable variables differ in one significant way in that once a value
has been assigned it cannot subsequently be changed.

Immutable variables are particularly useful if there is a value that is used repeatedly throughout the application
code. Rather than use the value each time, it makes the code easier to read if the value is first assigned to a
constant which is then referenced in the code. For example, it might not be clear to someone reading your Kotlin
code why you used the value 5 in an expression. If, instead of the value 5, you use an immutable variable named
interestRate the purpose of the value becomes much clearer. Immutable values also have the advantage that if the
programmer needs to change a widely used value, it only needs to be changed once in the constant declaration
and not each time it is referenced.

12.4 Declaring Mutable and Immutable Variables

Mutable variables are declared using the var keyword and may be initialized with a value at creation time. For
example:

var userCount = 10
If the variable is declared without an initial value, the type of the variable must also be declared (a topic that will

be covered in more detail in the next section of this chapter). The following, for example, is a typical declaration
where the variable is initialized after it has been declared:

var userCount: Int

userCount = 42

Immutable variables are declared using the val keyword.

val maxUserCount = 20

As with mutable variables, the type must also be specified when declaring the variable without initializing it:

val maxUserCount: Int

maxUserCount = 20

When writing Kotlin code, immutable variables should always be used in preference to mutable variables
whenever possible.

12.5 Data Types are Objects

All of the above data types are objects, each of which provides a range of functions and properties that may
be used to perform a variety of different type-specific tasks. These functions and properties are accessed using
so-called dot notation. Dot notation involves accessing a function or property of an object by specifying the
variable name followed by a dot followed in turn by the name of the property to be accessed or function to be
called.

A string variable, for example, can be converted to uppercase via a call to the toUpperCase() function of the
String class:

val myString = "The quick brown fox"

94

Kotlin Data Types, Variables, and Nullability
val uppercase = myString.toUpperCase ()

Similarly, the length of a string is available by accessing the length property:
val length = myString.length

Functions are also available within the String class to perform tasks such as comparisons and checking for the
presence of a specific word. The following code, for example, will return a true Boolean value since the word
“fox” appears within the string assigned to the myString variable:

val result = myString.contains ("fox")

All of the number data types include functions for performing tasks such as converting from one data type to
another such as converting an Int to a Float:

val myInt = 10

val myFloat = myInt.toFloat()

A detailed overview of all of the properties and functions provided by the Kotlin data type classes is beyond the
scope of this book (there are hundreds). An exhaustive list for all data types can, however, be found within the
Kotlin reference documentation available online at:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/
12.6 Type Annotations and Type Inference

Kotlin is categorized as a statically typed programming language. This essentially means that once the data
type of a variable has been identified, that variable cannot subsequently be used to store data of any other type
without inducing a compilation error. This contrasts to loosely typed programming languages where a variable,
once declared, can subsequently be used to store other data types.

There are two ways in which the type of a variable will be identified. One approach is to use a type annotation at
the point the variable is declared in the code. This is achieved by placing a colon after the variable name followed
by the type declaration. The following line of code, for example, declares a variable named userCount as being
of type Int:

val userCount: Int = 10
In the absence of a type annotation in a declaration, the Kotlin compiler uses a technique referred to as type
inference to identify the type of the variable. When relying on type inference, the compiler looks to see what type

of value is being assigned to the variable at the point that it is initialized and uses that as the type. Consider, for
example, the following variable declarations:

var signalStrength = 2.231

val companyName = "My Company"

During compilation of the above lines of code, Kotlin will infer that the signalStrength variable is of type Double
(type inference in Kotlin defaults to Double for all floating-point numbers) and that the companyName constant
is of type String.

When a constant is declared without a type annotation it must be assigned a value at the point of declaration:
val bookTitle = "Android Studio Development Essentials"

If a type annotation is used when the constant is declared, however, the value can be assigned later in the code.
For example:

val iosBookType = false

val bookTitle: String

95

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

Kotlin Data Types, Variables, and Nullability

if (iosBookType) {

bookTitle = "i0S App Development Essentials"
} else {

bookTitle = "Android Studio Development Essentials"
}
12.7 Nullable Type

Kotlin nullable types are a concept that does not exist in most other programming languages (except for the
optional type in Swift). The purpose of nullable types is to provide a safe and consistent approach to handling
situations where a variable may have a null value assigned to it. In other words, the objective is to avoid the
common problem of code crashing with the null pointer exception errors that occur when code encounters a
null value where one was not expected.

By default, a variable in Kotlin cannot have a null value assigned to it. Consider, for example, the following code:

val username: String = null

An attempt to compile the above code will result in a compilation error similar to the following:

Error: Null cannot be a value of a non-null string type String

If a variable is required to be able to store a null value, it must be specifically declared as a nullable type by
placing a question mark (?) after the type declaration:

val username: String? = null

The username variable can now have a null value assigned to it without triggering a compiler error. Once a
variable has been declared as nullable, a range of restrictions is then imposed on that variable by the compiler

to prevent it from being used in situations where it might cause a null pointer exception to occur. A nullable
variable, cannot, for example, be assigned to a variable of non-null type as is the case in the following code:

val username: String? = null

val firstname: String = username

The above code will elicit the following error when encountered by the compiler:

Error: Type mismatch: inferred type is String? but String was expected

The only way that the assignment will be permitted is if some code is added to check that the value assigned to
the nullable variable is non-null:

val username: String? = null
if (username != null) {
val firstname: String = username

}

In the above case, the assignment will only take place if the username variable references a non-null value.

12.8 The Safe Call Operator

A nullable variable also cannot be used to call a function or to access a property in the usual way. Earlier in this
chapter, the toUpperCase() function was called on a String object. Given the possibility that this could cause a
function to be called on a null reference, the following code will be disallowed by the compiler:

val username: String? = null

val uppercase = username.toUpperCase ()

The exact error message generated by the compiler in this situation reads as follows:

96

Kotlin Data Types, Variables, and Nullability

Error: (Only safe (?.) or non-null asserted (!!.) calls are allowed on a nullable
receiver of type String?

In this instance, the compiler is essentially refusing to allow the function call to be made because no attempt
has been made to verify that the variable is non-null. One way around this is to add some code to verify that
something other than null value has been assigned to the variable before making the function call:
if (username != null) {

val uppercase = username.toUpperCase ()
}
A much more efficient way to achieve this same verification, however, is to call the function using the safe call
operator (represented by ?.) as follows:

val uppercase = username?.toUpperCase ()

In the above example, if the username variable is null, the toUpperCase() function will not be called and execution
will proceed at the next line of code. If, on the other hand, a non-null value is assigned the toUpperCase()
function will be called and the result assigned to the uppercase variable.

In addition to function calls, the safe call operator may also be used when accessing properties:

val uppercase = username?.length

12.9 Not-Null Assertion

The not-null assertion removes all of the compiler restrictions from a nullable type, allowing it to be used in
the same ways as a non-null type, even if it has been assigned a null value. This assertion is implemented using
double exclamation marks after the variable name, for example:

val username: String? = null

val length = username!!.length

The above code will now compile, but will crash with the following exception at runtime since an attempt is
being made to call a function on a nonexistent object:

Exception in thread "main" kotlin.KotlinNullPointerException

Clearly, this causes the very issue that nullable types are designed to avoid. Use of the not-null assertion is
generally discouraged and should only be used in situations where you are certain that the value will not be null.

12.10 Nullable Types and the let Function

Earlier in this chapter, we looked at how the safe call operator can be used when making a call to a function
belonging to a nullable type. This technique makes it easier to check if a value is null without having to write
an if statement every time the variable is accessed. A similar problem occurs when passing a nullable type as an
argument to a function that is expecting a non-null parameter. As an example, consider the times() function of
the Int data type. When called on an Int object and passed another integer value as an argument, the function
multiplies the two values and returns the result. When the following code is executed, for example, the value of
200 will be displayed within the console:

val firstNumber = 10

val secondNumber = 20

val result = firstNumber.times (secondNumber)

print (result)

The above example works because the secondNumber variable is a non-null type. A problem, however, occurs if
the secondNumber variable is declared as being of nullable type:

97

Kotlin Data Types, Variables, and Nullability

val firstNumber = 10

val secondNumber: Int? = 20

val result = firstNumber.times (secondNumber)

print (result)
Now the compilation will fail with the following error message because a nullable type is being passed to a
function that is expecting a non-null parameter:

Error: Type mismatch: inferred type is Int? but Int was expected

A possible solution to this problem is to write an if statement to verify that the value assigned to the variable is
non-null before making the call to the function:

val firstNumber = 10

val secondNumber: Int? = 20

if (secondNumber !'= null) {
val result = firstNumber.times (secondNumber)
print (result)

}

A more convenient approach to addressing the issue, however, involves the use of the let function. When called
on a nullable type object, the let function converts the nullable type to a non-null variable named it which may
then be referenced within a lambda statement.
secondNumber?.let {

val result = firstNumber.times (it)

print (result)

}

Note the use of the safe call operator when calling the let function on secondVariable in the above example. This
ensures that the function is only called when the variable is assigned a non-null value.

12.11 Late Initialization (lateinit)

As previously outlined, non-null types need to be initialized when they are declared. This can be inconvenient
if the value to be assigned to the non-null variable will not be known until later in the code execution. One way
around this is to declare the variable using the lateinit modifier. This modifier designates that a value will be
initialized with a value later. This has the advantage that a non-null type can be declared before it is initialized,
with the disadvantage that the programmer is responsible for ensuring that the initialization has been performed
before attempting to access the variable. Consider the following variable declaration:

var myName: String
Clearly, this is invalid since the variable is a non-null type but has not been assigned a value. Suppose, however,

that the value to be assigned to the variable will not be known until later in the program execution. In this case,
the lateinit modifier can be used as follows:

lateinit var myName: String

With the variable declared in this way, the value can be assigned later, for example:

myName = "John Smith"

print ("My Name is " + myName)

Of course, if the variable is accessed before it is initialized, the code will fail with an exception:

98

Kotlin Data Types, Variables, and Nullability

lateinit var myName: String
print ("My Name is " + myName)

Exception in thread "main" kotlin.UninitializedPropertyAccessException: lateinit
property myName has not been initialized

To verify whether a lateinit variable has been initialized, check the isInitialized property on the variable. To do
this, we need to access the properties of the variable by prefixing the name with the “:” operator:
if (::myName.isInitialized) {

print ("My Name is " + myName)

)
12.12 The Elvis Operator

The Kotlin Elvis operator can be used in conjunction with nullable types to define a default value that is to be
returned if a value or expression result is null. The Elvis operator (?:) is used to separate two expressions. If the
expression on the left does not resolve to a null value that value is returned, otherwise the result of the rightmost
expression is returned. This can be thought of as a quick alternative to writing an if-else statement to check for
a null value. Consider the following code:
if (myString != null) {

return myString
} else {

return "String is null"

}

The same result can be achieved with less coding using the Elvis operator as follows:

return myString ?: "String is null"

12.13 Type Casting and Type Checking

When compiling Kotlin code, the compiler can typically infer the type of an object. Situations will occur,
however, where the compiler is unable to identify the specific type. This is often the case when a value type is
ambiguous or an unspecified object is returned from a function call. In this situation, it may be necessary to let
the compiler know the type of object that your code is expecting or to write code that checks whether the object
is of a particular type.

Letting the compiler know the type of object that is expected is known as type casting and is achieved within
Kotlin code using the as cast operator. The following code, for example, lets the compiler know that the result
returned from the getSystemService() method needs to be treated as a KeyguardManager object:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as KeyguardManager
The Kotlin language includes both safe and unsafe cast operators. The above cast is unsafe and will cause the app

to throw an exception if the cast cannot be performed. A safe cast, on the other hand, uses the as? operator and
returns null if the cast cannot be performed:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as? KeyguardManager
A type check can be performed to verify that an object conforms to a specific type using the is operator, for
example:
if (keyMgr is KeyguardManager) {
// It is a KeyguardManager object

99

Kotlin Data Types, Variables, and Nullability

12.14 Summary

This chapter has begun the introduction to Kotlin by exploring data types together with an overview of how to
declare variables. The chapter has also introduced concepts such as nullable types, typecasting and type checking,
and the Elvis operator, each of which is an integral part of Kotlin programming and designed specifically to
make code writing less prone to error.

100

Chapter 25

25. A Guide to the Android Studio
Layout Editor Tool

It is challenging to think of an Android application concept that does not require some form of user interface.
Most Android devices come equipped with a touch screen and keyboard (either virtual or physical), and taps
and swipes are the primary interaction between the user and the application. Invariably these interactions take
place through the application’s user interface.

A well-designed and implemented user interface, an essential factor in creating a successful and popular Android
application, can vary from simple to highly complex, depending on the design requirements of the individual
application. Regardless of the level of complexity, the Android Studio Layout Editor tool significantly simplifies
the task of designing and implementing Android user interfaces.

25.1 Basic vs. Empty Views Activity Templates

As outlined in the chapter entitled “The Anatomy of an Android App”, Android applications comprise one or
more activities. An activity is a standalone module of application functionality that usually correlates directly to
a single user interface screen. As such, when working with the Android Studio Layout Editor, we are invariably
work on the layout for an activity.

When creating a new Android Studio project, several templates are available to be used as the starting point for
the user interface of the main activity. The most basic templates are the Basic Views Activity and Empty Views
Activity templates. Although these seem similar at first glance, there are considerable differences between the
two options. To see these differences within the layout editor, use the View Options menu to enable Show System
UL, as shown in Figure 25-1 below:

Figure 25-1

The Empty Views Activity template creates a single layout file consisting of a ConstraintLayout manager instance
containing a TextView object, as shown in Figure 25-2:

185

A Guide to the Android Studio Layout Editor Tool

Figure 25-2

The Basic Views Activity, on the other hand, consists of multiple layout files. The top-level layout file has a
CoordinatorLayout as the root view, a configurable app bar (which contains a toolbar) that appears across the
top of the device screen (marked A in Figure 25-3), and a floating action button (the email button marked B).
In addition to these items, the activity_main.xml layout file contains a reference to a second file named content_
main.xml containing the content layout (marked C):

Figure 25-3

The Basic Views Activity contains layouts for two screens containing a button and a text view. This template
aims to demonstrate how to implement navigation between multiple screens within an app. If an unmodified
app using the Basic Views Activity template were to be run, the first of these two screens would appear (marked
A in Figure 25-4). Pressing the Next button would navigate to the second screen (B), which, in turn, contains a
button to return to the first screen:

186

A Guide to the Android Studio Layout Editor Tool

Figure 25-4

This app behavior uses of two Android features referred to as fragments and navigation, which will be covered
starting with the chapters entitled “An Introduction to Android Fragments” and “An Overview of the Navigation
Architecture Component” respectively.

The content_main.xml file contains a special fragment, known as a Navigation Host Fragment which allows
different content to be switched in and out of view depending on the settings configured in the res -> layout
-> nav_graph.xml file. In the case of the Basic Views Activity template, the nav_graph.xml file is configured to
switch between the user interface layouts defined in the fragment_first.xml and fragment_second.xml files based
on the Next and Previous button selections made by the user.

The Empty Views Activity template is helpful if you need neither a floating action button nor a menu in your
activity and do not need the special app bar behavior provided by the CoordinatorLayout, such as options to
make the app bar and toolbar collapse from view during certain scrolling operations (a topic covered in the
chapter entitled “Working with the AppBar and Collapsing Toolbar Layouts”). However, the Basic Views Activity
is helpful because it provides these elements by default. In fact, it is often quicker to create a new activity using
the Basic Views Activity template and delete the elements you do not require than to use the Empty Views
Activity template and manually implement behavior such as collapsing toolbars, a menu, or a floating action
button.

Since not all of the examples in this book require the features of the Basic Views Activity template, however,
most of the examples in this chapter will use the Empty Views Activity template unless the example requires one
or other of the features provided by the Basic Views Activity template.

For future reference, if you need a menu but not a floating action button, use the Basic Views Activity and follow
these steps to delete the floating action button:

1. Double-click on the main activity_main.xml layout file in the Project tool window under app -> res ->
layout to load it into the Layout Editor. With the layout loaded into the Layout Editor tool, select the floating
action button and tap the keyboard Delete key to remove the object from the layout.

2. Locate and edit the Kotlin code for the activity (located under app -> kotlin+java -> <package name> ->
<activity class name> and remove the floating action button code from the onCreate method as follows:

187

A Guide to the Android Studio Layout Editor Tool

override fun onCreate (savedInstanceState: Bundle?) {

super.onCreate (savedInstanceState)

binding = ActivityMainBinding.inflate (layoutInflater)

setContentView (binding.root)
setSupportActionBar (binding.toolbar)

val navController = findNavController (R.id.nav_host fragment content main)

appBarConfiguration = AppBarConfiguration (navController.graph)

setupActionBarWithNavController (navController, appBarConfiguration)

If you need a floating action button but no menu, use the Basic Views Activity template and follow these steps:
1. Edit the main activity class file and delete the onCreateOptionsMenu and onOptionsItemSelected methods.

2. Select the res -> menu item in the Project tool window and tap the keyboard Delete key to remove the folder
and corresponding menu resource files from the project.

If you need to use the Basic Views Activity template but need neither the navigation features nor the second
content fragment, follow these steps:

1. Within the Project tool window, navigate to and double-click on the app -> res -> navigation -> nav_graph.
xml file to load it into the navigation editor.

2. Within the editor, select the SecondFragment entry in the graph panel and tap the keyboard delete key to
remove it from the graph.

3. Locate and delete the SecondFragment.kt (app -> kotlin+java -> <package name> -> SecondFragment) and
fragment_second.xml (app -> res -> layout -> fragment_second.xml) files.

4. 'The final task is to remove some code from the FirstFragment class so that the Button view no longer
navigates to the now non-existent second fragment when clicked. Locate the FirstFragment.kt file, double-
click on it to load it into the editor, and remove the code from the onViewCreated() method so that it reads
as follows:

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

super.onViewCreated (view, savedInstanceState)

188

A Guide to the Android Studio Layout Editor Tool
25.2 The Android Studio Layout Editor

As demonstrated in previous chapters, the Layout Editor tool provides a “what you see is what you get”
(WYSIWYG) environment in which views can be selected from a palette and then placed onto a canvas
representing the display of an Android device. Once a view has been placed on the canvas, it can be moved,
deleted, and resized (subject to the constraints of the parent view). Moreover, various properties relating to the
selected view may be modified using the Attributes tool window.

Under the surface, the Layout Editor tool constructs an XML resource file containing the definition of the user
interface that is being designed. As such, the Layout Editor tool operates in three distinct modes: Design, Code,
and Split.

25.3 Design Mode

In design mode, the user interface can be visually manipulated by directly working with the view palette and the
graphical representation of the layout. Figure 25-5 highlights the key areas of the Android Studio Layout Editor
tool in design mode:

Figure 25-5

A - Palette — The palette provides access to the range of view components the Android SDK provides. These are
grouped into categories for easy navigation. Items may be added to the layout by dragging a view component
from the palette and dropping it at the desired position on the layout.

B - Device Screen - The device screen provides a visual “what you see is what you get” representation of the
user interface layout as it is being designed. This layout allows direct design manipulation by allowing views to
be selected, deleted, moved, and resized. The device model represented by the layout can be changed anytime
using a menu in the toolbar.

C - Component Tree - As outlined in the previous chapter (“Understanding Android Views, View Groups and
Layouts”), user interfaces are constructed using a hierarchical structure. The component tree provides a visual

189

A Guide to the Android Studio Layout Editor Tool

overview of the hierarchy of the user interface design. Selecting an element from the component tree will cause
the corresponding view in the layout to be selected. Similarly, selecting a view from the device screen layout will
select that view in the component tree hierarchy.

D - Attributes — All of the component views listed in the palette have associated with them a set of attributes
that can be used to adjust the behavior and appearance of that view. The Layout Editor’s attributes panel provides
access to the attributes of the currently selected view in the layout allowing changes to be made.

E - Toolbar - The Layout Editor toolbar provides quick access to a wide range of options, including, amongst
other options, the ability to zoom in and out of the device screen layout, change the device model currently
displayed, rotate the layout between portrait and landscape and switch to a different Android SDK API level.
The toolbar also has a set of context-sensitive buttons which will appear when relevant view types are selected
in the device screen layout.

F - Mode Switching Controls — These three buttons provide a way to switch back and forth between the Layout
Editor tool’s Design, Code, and Split modes.

G - Zoom and Pan Controls - This control panel allows you to zoom in and out of the design canvas, grab the
canvas, and pan around to find obscured areas when zoomed in.

25.4 The Palette

The Layout Editor palette is organized into two panels designed to make it easy to locate and preview view
components for addition to a layout design. The category panel (marked A in Figure 25-6) lists the different
categories of view components supported by the Android SDK. When a category is selected from the list, the
second panel (B) updates to display a list of the components that fall into that category:

Figure 25-6

To add a component from the palette onto the layout canvas, select the item from the component list or the
preview panel, drag it to the desired location on the canvas, and drop it into place.

A search for a specific component within the selected category may be initiated by clicking the search button
(marked C in Figure 25-6 above) in the palette toolbar and typing in the component name. As characters are
typed, matching results will appear in the component list panel. If you are unsure of the component’s category,
select the All Results category before or during the search operation.

190

A Guide to the Android Studio Layout Editor Tool

25.5 Design Mode and Layout Views

The layout editor will appear in Design mode by default, as shown in Figure 25-5 above. This mode provides a
visual representation of the user interface. Design mode can be selected by clicking on the button marked C in
Figure 25-7:

Figure 25-7

When the Layout Editor tool is in Design mode, the layout can be viewed in two ways. The view shown in Figure
25-5 above is the Design view and shows the layout and widgets as they will appear in the running app. A second
mode, the Blueprint view, can be shown instead of or concurrently with the Design view. The toolbar menu in
Figure 25-8 provides options to display the Design, Blueprint, or both views. Settings are also available to adjust
for color blindness. A fifth option, Force Refresh Layout, causes the layout to rebuild and redraw. This can be
useful when the layout enters an unexpected state or is not accurately reflecting the current design settings:

Figure 25-8

Whether to display the layout view, design view, or both is a matter of personal preference. A good approach is
to begin with both displayed as shown in Figure 25-9:

191

A Guide to the Android Studio Layout Editor Tool

Figure 25-9
25.6 Night Mode

To view the layout in night mode during the design work, select the menu shown in Figure 25-10 below and
change the setting to Night:

Figure 25-10

The mode menu also includes options for testing dynamic colors, a topic covered in the chapter “A Material
Design 3 Theming and Dynamic Color Tutorial”.

25.7 Code Mode

It is important to remember when using the Android Studio Layout Editor tool that all it is doing is providing a
user-friendly approach to creating XML layout resource files. The underlying XML can be viewed and directly
edited during the design process by selecting the button marked A in Figure 25-7 above.

Figure 25-11 shows the Android Studio Layout Editor tool in Code mode, allowing changes to be made to the
user interface declaration by modifying the XML:

192

A Guide to the Android Studio Layout Editor Tool

Figure 25-11
25.8 Split Mode

In Split mode, the editor shows the Design and Code views side-by-side, allowing the user interface to be
modified visually using the design canvas and making changes directly to the XML declarations. Split mode is
selected using the button marked B Figure 25-7 above.

Any changes to the XML are automatically reflected in the design canvas and vice versa. Figure 25-12 shows the
editor in Split mode:

Figure 25-12
25.9 Setting Attributes

The Attributes panel provides access to all available settings for the currently selected component. Figure 25-13,
for example, shows some of the attributes for the TextView widget:

193

A Guide to the Android Studio Layout Editor Tool

Figure 25-13

The Attributes tool window is divided into the following different sections.

o id - Contains the id property, which defines the name by which the currently selected object will be referenced
in the app’s source code.

+ Declared Attributes - Contains all of the properties already assigned a value.

o Layout - The settings that define how the currently selected view object is positioned and sized relative to the
screen and other objects in the layout.

« Transforms - Contains controls allowing the currently selected object to be rotated, scaled, and offset.

o Common Attributes - A list of attributes that commonly need to be changed for the class of view object
currently selected.

« All Attributes - A complete list of all the attributes available for the currently selected object.

A search for a specific attribute may also be performed by selecting the search button in the toolbar of the
attributes tool window and typing in the attribute name.

Some attributes contain a narrow button to the right of the value field. This indicates that the Resources dialog is
available to assist in selecting a suitable property value. To display the dialog, click on the button. The appearance
of this button changes to reflect whether or not the corresponding property value is stored in a resource file or
hard-coded. If the value is stored in a resource file, the button to the right of the text property field will be filled
in to indicate that the value is not hard-coded, as highlighted in Figure 25-14 below:

194

A Guide to the Android Studio Layout Editor Tool

Figure 25-14

Attributes for which a finite number of valid options are available will present a drop-down menu (Figure 25-15)
from which a selection may be made.

Figure 25-15

A dropper icon can be clicked to display the color selection palette. Similarly, when a flag icon appears, it can
be clicked to display a list of options available for the attribute, while an image icon opens the resource manager
panel allowing images and other resource types to be selected for the attribute.

25.10 Transforms

The transforms panel within the Attributes tool window (Figure 25-16) provides a set of controls and properties
that control visual aspects of the currently selected object in terms of rotation, alpha (used to fade a view in and
out), scale (size), and translation (offset from current position):

Figure 25-16

The panel contains a visual representation of the view, which updates as properties are changed. These changes
are also reflected in the view within the layout canvas.

195

A Guide to the Android Studio Layout Editor Tool

25.11 Tools Visibility Toggles

When reviewing the content of an Android Studio XML layout file in Code mode, you will notice that many
attributes that define how a view appears and behaves begin with the android: prefix. This indicates that the
attributes are set within the android namespace and will take effect when the app is run. The following excerpt
from a layout file, for example, sets a variety of attributes on a Button view:
<Button

android:id="@+id/button"

android:layout width="wrap content"

android:layout height="wrap content"

android:text="Button"

In addition to the android namespace, Android Studio also provides a tools namespace. When attributes are
set within this namespace, they only take effect within the layout editor preview. While designing a layout, you
might find it helpful for an EditText view to display some text but require the view to be blank when the app
runs. To achieve this, you would set the text property of the view using the tools namespace as follows:
<EditText

android:id="@+id/editTextTextPersonName"

android:layout width="wrap content"

android:layout height="wrap content"

android:ems="10"

android:inputType="textPersonName"

tools:text="Sample Text"

A tool attribute of this type is set in the Attributes tool window by entering the value into the property fields
marked by the wrench icon, as shown in Figure 25-17:

Figure 25-17

Tools attributes are particularly useful for changing the visibility of a view during the design process. A layout
may contain a view that is programmatically displayed and hidden when the app runs, depending on user actions.
To simulate the hiding of the view, the following tools attribute could be added to the view XML declaration:

tools:visibility="invisible"
Although the view will no longer be visible when using the invisible setting, it is still present in the layout and

occupies the same space it did when it was visible. To make the layout behave as though the view no longer
exists, the visibility attribute should be set to gone as follows:

tools:visibility="gone"

In both examples above, the visibility settings only apply within the layout editor and will have no effect in the
running app. To control visibility in both the layout editor and running app, the same attribute would be set
using the android namespace:

196

A Guide to the Android Studio Layout Editor Tool
android:visibility="gone"

While these visibility tools attributes are useful, having to manually edit the XML layout file is a cumbersome
process. To make it easier to change these settings, Android Studio provides a set of toggles within the layout
editor Component Tree panel. To access these controls, click in the margin to the right of the corresponding
view in the panel. Figure 25-18, for example, shows the tools visibility toggle controls for a Button view named
myButton:

Figure 25-18

These toggles control the visibility of the corresponding view for both the android and tools namespaces and
provide not set, visible, invisible and gone options. When conflicting attributes are set (for example, an android
namespace toggle is set to visible while the tools value is set to invisible), the tools namespace takes precedence
within the layout preview. When a toggle selection is made, Android Studio automatically adds the appropriate
attribute to the XML view element in the layout file.

In addition to the visibility toggles in the Component Tree panel, the layout editor also includes the tools visibility
and position toggle button shown highlighted in Figure 25-19 below:

Figure 25-19

This button toggles the current tools visibility settings. If the Button view shown above currently has the tools
visibility attribute set to gone, for example, toggling this button will make it visible. This makes it easy to quickly
check the layout behavior as the view is added to and removed from the layout. This toggle is also useful for
checking that the views in the layout are correctly constrained, a topic covered in the chapter entitled A Guide
to Using ConstraintLayout in Android Studio”.

25.12 Converting Views

Changing a view in a layout from one type to another (such as converting a TextView to an EditText) can be
performed easily within the Android Studio layout editor by right-clicking on the view either within the screen
layout or Component tree window and selecting the Convert view... menu option (Figure 25-20):

197

A Guide to the Android Studio Layout Editor Tool

Figure 25-20

Once selected, a dialog containing a list of compatible view types to which the selected object is eligible for
conversion will appear. Figure 25-21, for example, shows the types to which an existing TextView view may be
converted:

Figure 25-21

This technique is also helpful in converting layouts from one type to another (for example, converting a
ConstraintLayout to a LinearLayout).

25.13 Displaying Sample Data

When designing layouts in Android Studio, situations will arise where the content to be displayed within the
user interface will not be available until the app is completed and running. This can sometimes make it difficult
to assess how the layout will appear at app runtime from within the layout editor. To address this issue, the
layout editor allows sample data to be specified, which will populate views within the layout editor with sample
images and data. This sample data only appears within the layout editor and is not displayed when the app runs.
Sample data may be configured either by directly editing the XML for the layout or visually using the design-
time helper by right-clicking on the widget in the design area and selecting the Set Sample Data menu option.
The design-time helper panel will display a range of preconfigured options for sample data to be displayed on
the selected view item, including combinations of text and images in various configurations. Figure 25-22, for
example, shows the sample data options displayed when selecting sample data to appear in a RecyclerView list:

198

A Guide to the Android Studio Layout Editor Tool

Figure 25-22

Alternatively, custom text and images may be provided for display during the layout design process. Since sample
data is implemented as a tools attribute, the visibility of the data within the preview can be controlled using the
toggle button highlighted in Figure 25-19 above.

25.14 Creating a Custom Device Definition

The device menu in the Layout Editor toolbar (Figure 25-23) provides a list of pre-configured device types,
which, when selected, will appear as the device screen canvas. In addition to the pre-configured device types,
any AVD instances previously configured within the Android Studio environment will also be listed within the
menu. To add additional device configurations, display the device menu, select the Add Device Definition option
and follow the steps outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android
Studio”.

Figure 25-23
25.15 Changing the Current Device

As an alternative to the device selection menu, the current device format may be changed by selecting the
Custom option from the device menu, clicking on the resize handle located next to the bottom right-hand corner
of the device screen (Figure 25-24), and dragging to select an alternate device display format. As the screen
resizes, markers will appear indicating the various size options and orientations available for selection:

199

A Guide to the Android Studio Layout Editor Tool

Figure 25-24
25.16 Layout Validation

The layout validation option allows the user interface layout to be previewed simultaneously on a range of Pixel-
sized screens. To access the layout validation tool window, select the View -> Tool Windows -> Layout Validation
menu option. Once loaded, the panel will appear as shown in Figure 25-25, with the layout rendered on multiple
device screen configurations:

Figure 25-25

200

A Guide to the Android Studio Layout Editor Tool

25.17 Summary

A key part of developing Android applications involves the creation of the user interface. This is performed
within the Android Studio environment using the Layout Editor tool, which operates in three modes. In Design
mode, view components are selected from a palette, positioned on a layout representing an Android device
screen, and configured using a list of attributes. The underlying XML representing the user interface layout can
be directly edited in Code mode. Split mode, on the other hand, allows the layout to be created and modified
both visually and via direct XML editing. These modes combine to provide an extensive and intuitive user
interface design environment.

The layout validation panel allows user interface layouts to be quickly previewed on various device screen sizes.

201

Chapter 41

41. Modern Android App
Architecture with Jetpack

For many years, Google did not recommend a specific approach to building Android apps other than to provide
tools and development kits while letting developers decide what worked best for a particular project or individual
programming style. That changed in 2017 with the introduction of the Android Architecture Components,
which, in turn, became part of Android Jetpack when it was released in 2018.

This chapter provides an overview of the concepts of Jetpack, Android app architecture recommendations, and
some key architecture components. Once the basics have been covered, these topics will be covered in more
detail and demonstrated through practical examples in later chapters.

41.1 What is Android Jetpack?

Android Jetpack consists of Android Studio, the Android Architecture Components, the Android Support
Library, and a set of guidelines recommending how an Android App should be structured. The Android
Architecture Components are designed to make it quicker and easier to perform common tasks when developing
Android apps while also conforming to the key principle of the architectural guidelines.

While all Android Architecture Components will be covered in this book, this chapter will focus on the key
architectural guidelines and the ViewModel, LiveData, and Lifecycle components while introducing Data
Binding and Repositories.

Before moving on, it is important to understand that the Jetpack approach to app development is optional.
While highlighting some of the shortcomings of other techniques that have gained popularity over the years,
Google stopped short of completely condemning those approaches to app development. Google is taking the
position that while there is no right or wrong way to develop an app, there is a reccommended way.

41.2 The “Old” Architecture

In the chapter entitled “Creating an Example Android App in Android Studio”, an Android project was created
consisting of a single activity that contained all of the code for presenting and managing the user interface
together with the back-end logic of the app. Until the introduction of Jetpack, the most common architecture
followed this paradigm with apps consisting of multiple activities (one for each screen within the app), with each
activity class to some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example, an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

41.3 Modern Android Architecture

At the most basic level, Google now advocates single-activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept referred to as “separation of concerns”). One of the keys to this approach

321

Modern Android App Architecture with Jetpack

is the ViewModel component.

41.4 The ViewModel Component

The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the
code responsible for displaying and managing the user interface and interacting with the operating system.
When designed this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data those controllers need.

The ViewModel only knows about the data model and corresponding logic. It knows nothing about the user
interface and does not attempt to directly access or respond to events relating to views within the user interface.
When a Ul controller needs data to display, it asks the ViewModel to provide it. Similarly, when the user enters
data into a view within the user interface, the UI controller passes it to the ViewModel for handling.

This separation of responsibility addresses the issues relating to the lifecycle of UI controllers. Regardless of how
often the UT controller is recreated during the lifecycle of an app, the ViewModel instances remain in memory,
thereby maintaining data consistency. For example, a ViewModel used by an activity will remain in memory
until the activity finishes, which, in the single activity app, is not until the app exits.

Figure 41-1
41.5 The LiveData Component

Consider an app that displays real-time data, such as the current price of a financial stock. The app could
use a stock price web service to continuously update the data model within the ViewModel with the latest
information. This real-time data is of use only if it is displayed to the user promptly. There are only two ways that
the UI controller can ensure that the latest data is displayed in the user interface. One option is for the controller
to continuously check with the ViewModel to determine if the data has changed since it was last displayed.
However, the problem with this approach is that it could be more efficient. To maintain the real-time nature of
the data feed, the UI controller would have to run on a loop, continuously checking for the data to change.

A better solution would be for the UI controller to receive a notification when a specific data item within a
ViewModel changes. This is made possible by using the LiveData component. LiveData is a data holder that
allows a value to become observable. In basic terms, an observable object can notify other objects when changes
to its data occur, thereby solving the problem of ensuring that the user interface always matches the data within
the ViewModel.

This means, for example, that a UI controller interested in a ViewModel value can set up an observer, which will,
in turn, be notified when that value changes. In our hypothetical application, for example, the stock price would

322

Modern Android App Architecture with Jetpack

be wrapped in a LiveData object within the ViewModel, and the UI controller would assign an observer to the
value, declaring a method to be called when the value changes. When triggered by data change, this method will
read the updated value from the ViewModel and use it to update the user interface.

Figure 41-2

A LiveData instance may also be declared as mutable, allowing the observing entity to update the underlying
value held within the LiveData object. The user might, for example, enter a value in the user interface that needs
to overwrite the value stored in the ViewModel.

Another of the key advantages of using LiveData is that it is aware of the lifecycle state of its observers. If,
for example, an activity contains a LiveData observer, the corresponding LiveData object will know when the
activity’s lifecycle state changes and respond accordingly. If the activity is paused (perhaps the app is put into the
background), the LiveData object will stop sending events to the observer. Suppose the activity has just started
or resumes after being paused. In that case, the LiveData object will send a LiveData event to the observer so
that the activity has the most up-to-date value. Similarly, the LiveData instance will know when the activity is
destroyed and remove the observer to free up resources.

So far, we've only talked about UI controllers using observers. In practice, however, an observer can be used
within any object that conforms to the Jetpack approach to lifecycle management.

41.6 ViewModel Saved State

Android allows the user to place an active app in the background and return to it after performing other tasks
on the device (including running other apps). When a device runs low on resources, the operating system will
rectify this by terminating background app processes, starting with the least recently used app. However, when
the user returns to the terminated background app, it should appear in the same state as when it was placed in
the background, regardless of whether it was terminated. In terms of the data associated with a ViewModel, this
can be implemented using the ViewModel Saved State module. This module allows values to be stored in the
app’s saved state and restored in case of system-initiated process termination. This topic will be covered later in
the “An Android ViewModel Saved State Tutorial” chapter.

41.7 LiveData and Data Binding

Android Jetpack includes the Data Binding Library, which allows data in a ViewModel to be mapped directly to
specific views within the XML user interface layout file. In the AndroidSample project created earlier, code had
to be written to obtain references to the EditText and TextView views and to set and get the text properties to

323

Modern Android App Architecture with Jetpack

reflect data changes. Data binding allows the LiveData value stored in the ViewModel to be referenced directly
within the XML layout file avoiding the need to write code to keep the layout views updated.

Figure 41-3

Data binding will be covered in greater detail, starting with the chapter “An Overview of Android Jetpack Data
Binding”.

41.8 Android Lifecycles

The duration from when an Android component is created to the point that it is destroyed is called the lifecycle.
During this lifecycle, the component will change between different lifecycle states, usually under the operating
systemy’s control and in response to user actions. An activity, for example, will begin in the initialized state before
transitioning to the created state. Once the activity runs, it will switch to the started state, from which it will cycle
through various states, including created, started, resumed, and destroyed.

Many Android Framework classes and components allow other objects to access their current state. Lifecycle
observers may also be used so that an object receives a notification when the lifecycle state of another object
changes. The ViewModel component uses this technique behind the scenes to identify when an observer
has restarted or been destroyed. This functionality is not limited to Android framework and architecture
components. It may also be built into any other classes using a set of lifecycle components included with the
architecture components.

Objects that can detect and react to lifecycle state changes in other objects are said to be lifecycle-aware. In
contrast, objects that provide access to their lifecycle state are called lifecycle owners. The chapter entitled
“Working with Android Lifecycle-Aware Components” will cover Lifecycles in greater detail.

41.9 Repository Modules

If a ViewModel obtains data from one or more external sources (such as databases or web services, it is important
to separate the code involved in handling those data sources from the ViewModel class. Failure to do this would,
after all, violate the separation of concerns guidelines. To avoid mixing this functionality with the ViewModel,
Google’s architecture guidelines recommend placing this code in a separate Repository module.

A repository is not an Android architecture component but a Kotlin class created by the app developer that is
responsible for interfacing with the various data sources. The class then provides an interface to the ViewModel,
allowing that data to be stored in the model.

324

Modern Android App Architecture with Jetpack

Figure 41-4
41.10 Summary

Until recently, Google has tended not to recommend any particular approach to structuring an Android app.
That has now changed with the introduction of Android Jetpack, consisting of tools, components, libraries, and
architecture guidelines. Google now recommends that an app project be divided into separate modules, each
responsible for a particular area of functionality, otherwise known as “separation of concerns”.

In particular, the guidelines recommend separating the view data model of an app from the code responsible
for handling the user interface. In addition, the code responsible for gathering data from data sources such as
web services or databases should be built into a separate repository module instead of being bundled with the
view model.

Android Jetpack includes the Android Architecture Components, designed to make developing apps that
conform to the recommended guidelines easier. This chapter has introduced the ViewModel, LiveData, and
Lifecycle components. These will be covered in more detail, starting with the next chapter. Other architecture
components not mentioned in this chapter will be covered later in the book.

325

Chapter 51

51. An Introduction to MotionLayout

The MotionLayout class provides an easy way to add animation effects to the views of a user interface layout.
This chapter will begin by providing an overview of MotionLayout and introduce the concepts of MotionScenes,
Transitions, and Keyframes. Once these basics have been covered, the next two chapters (entitled “An Android
MotionLayout Editor Tutorial” and “A MotionLayout KeyCycle Tutorial”) will provide additional detail and
examples of MotionLayout animation in action through the creation of example projects.

51.1 An Overview of MotionLayout

MotionLayout is a layout container, the primary purpose of which is to animate the transition of views within
a layout from one state to another. MotionLayout could, for example, animate the motion of an ImageView
instance from the top left-hand corner of the screen to the bottom right-hand corner over a specified time.
In addition to the position of a view, other attribute changes may also be animated, such as the color, size, or
rotation angle. These state changes can also be interpolated (such that a view moves, rotates, and changes size
throughout the animation).

The motion of a view using MotionLayout may be performed in a straight line between two points or
implemented to follow a path comprising intermediate points at different positions between the start and end
points. MotionLayout also supports using touches and swipes to initiate and control animation.

MotionLayout animations are declared entirely in XML and do not typically require writing code. These XML
declarations may be implemented manually in the Android Studio code editor, visually using the MotionLayout
editor, or combining both approaches.

51.2 MotionLayout

When implementing animation, the ConstraintLayout container typically used in a user interface must first be
converted to a MotionLayout instance (a task which can be achieved by right-clicking on the ConstraintLayout
in the layout editor and selecting the Convert to MotionLayout menu option). MotionLayout also requires at
least version 2.0.0 of the ConstraintLayout library.

Unsurprisingly since it is a subclass of ConstraintLayout, MotionLayout supports all of the layout features of the
ConstraintLayout. Therefore, a user interface layout can be similarly designed when using MotionLayout for
views that do not require animation.

For views that are to be animated, two ConstraintSets are declared, defining the appearance and location of the
view at the start and end of the animation. A transition declaration defines keyframes to apply additional effects
to the target view between these start and end states and click and swipe handlers used to start and control the
animation.

The start and end ConstraintSets and the transitions are declared within a MotionScene XML file.

51.3 MotionScene

As we have seen in earlier chapters, an XML layout file contains the information necessary to configure the
appearance and layout behavior of the static views presented to the user, and this is still the case when using
MotionLayout. For non-static views (in other words, the views that will be animated), those views are still
declared within the layout file, but the start, end, and transition declarations related to those views are stored
in a separate XML file referred to as the MotionScene file (so called because all of the declarations are defined

387

An Introduction to MotionLayout

within a MotionScene element). This file is imported into the layout XML file and contains the start and end
ConstraintSets and Transition declarations (a single file can contain multiple ConstraintSet pairs and Transition
declarations, allowing different animations to be targeted to specific views within the user interface layout).

The following listing shows a template for a MotionScene file:

<?xml version="1.0" encoding="utf-8"?>

<MotionScene
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:motion="http://schemas.android.com/apk/res-auto">

<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
</KeyFrameSet>

</Transition>

<ConstraintSet android:id="@+id/start">
</ConstraintSet>

<ConstraintSet android:id="@+id/end">
</ConstraintSet>

</MotionScene>

In the above XML, ConstraintSets named start and end (though any name can be used) have been declared,
which, at this point, are yet to contain any constraint elements. The Transition element defines that these
ConstraintSets represent the animation start and end points and contain an empty KeyFrameSet element ready
to be populated with additional animation keyframe entries. The Transition element also includes a millisecond
duration property to control the running time of the animation.

ConstraintSets do not have to imply the motion of a view. It is possible to have the start and end sets declare the
same location on the screen and then use the transition to animate other property changes, such as scale and
rotation angle.

ConstraintSets do not have to imply the motion of a view. It is possible, for example, to have the start and end
sets declare the same location on the screen and then use the transition to animate other property changes, such
as scale and rotation angle.

51.4 Configuring ConstraintSets

The ConstraintSets in the MotionScene file allow the full set of ConstraintLayout settings to be applied to a view
regarding positioning, sizing, and relation to the parent and other views. In addition, the following attributes
may also be included within the ConstraintSet declarations:

o alpha
« visibility
« elevation

« rotation
388

An Introduction to MotionLayout
e rotationX
o rotationY
« translationX

translationY

translationZ

« scaleX
o scaleY

For example, to rotate the view by 180° during the animation, the following could be declared within the start
and end constraints:
<ConstraintSet android:id="@+id/start">

<Constraint

motion:layout constraintStart toStartOf="parent"
android:rotation="0">
</Constraint>
</ConstraintSet>

<ConstraintSet android:id="Q@+id/end">

<Constraint

motion:layout constraintBottom toBottomOf="parent"
android:rotation="180">
</Constraint>
</ConstraintSet>

The above changes tell MotionLayout that the view is to start at 0° and then, during the animation, rotate a full
180° before coming to rest upside-down.

51.5 Custom Attributes

In addition to the standard attributes listed above, it is possible to specify a range of custom attributes (declared
using CustomAttribute). In fact, just about any property available on the view type can be specified as a
custom attribute for inclusion in an animation. To identify the attribute’s name, find the getter/setter name
from the documentation for the target view class, remove the get/set prefix, and lower the case of the first
remaining character. For example, to change the background color of a Button view in code, we might call the
setBackgroundColor() setter method as follows:

myButton.setBackgroundColor (Color.RED)

When setting this attribute in a constraint set or keyframe, the attribute name will be backgroundColor. In
addition to the attribute name, the value must also be declared using the appropriate type from the following
list of options:

« motion:customBoolean - Boolean attribute values.

389

An Introduction to MotionLayout

« motion:customColorValue - Color attribute values.

o motion:customDimension - Dimension attribute values.

« motion:customFloatValue - Floating point attribute values.
« motion:customIntegerValue - Integer attribute values.

» motion:customStringValue - String attribute values

For example, a color setting will need to be assigned using the customColorValue type :
<CustomAttribute
motion:attributeName="backgroundColor"

motion:customColorValue="#43CC76" />

The following excerpt from a MotionScene file, for example, declares start and end constraints for a view in
addition to changing the background color from green to red:

<ConstraintSet android:id="@+id/start">
<Constraint
android:layout width="wrap content"
android:layout height="wrap content"
motion:layout editor absoluteX="21dp"
android:id="@+id/button"
motion:layout constraintTop toTopOf="parent"
motion:layout constraintStart toStartOf="parent" >
<CustomAttribute
motion:attributeName="backgroundColor"
motion:customColorValue="#33CC33" />
</Constraint>
</ConstraintSet>

<ConstraintSet android:id="@+id/end">
<Constraint
android:layout width="wrap content"
android:layout height="wrap content"
motion:layout editor absolutey="21dp"
android:id="@+id/button"
motion:layout constraintEnd toEndOf="parent"
motion:layout constraintBottom toBottomOf="parent" >
<CustomAttribute
motion:attributeName="backgroundColor"
motion:customColorValue="#F80A1F" />
</Constraint>
</ConstraintSet>

390

An Introduction to MotionLayout

51.6 Triggering an Animation

Without some event to tell MotionLayout to start the animation, none of the settings in the MotionScene file will
affect the layout (except that the view will be positioned based on the setting in the start ConstraintSet).

The animation can be configured to start in response to either screen tap (OnClick) or swipe motion (OnSwipe)
gesture. The OnClick handler causes the animation to start and run until completion, while OnSwipe will
synchronize the animation to move back and forth along the timeline to match the touch motion. The OnSwipe
handler will also respond to “flinging” motions on the screen. The OnSwipe handler also provides options
to configure how the animation reacts to dragging in different directions and the side of the target view to
which the swipe is to be anchored. This allows, for example, left-ward dragging motions to move a view in the
corresponding direction while preventing an upward motion from causing a view to move sideways (unless, of
course, that is the required behavior).

The OnSwipe and OnClick declarations are contained within the Transition element of a MotionScene file.
In both cases, the view id must be specified. For example, to implement an OnSwipe handler responding to
downward drag motions anchored to the bottom edge of a view named button, the following XML would be
placed in the Transition element:

<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
</KeyFrameSet>
<OnSwipe
motion: touchAnchorId="@+id/button"
motion:dragDirection="dragDown"
motion:touchAnchorSide="bottom" />
</Transition>

Alternatively, to add an OnClick handler to the same button:
<OnClick motion:targetId="@id/button"

motion:clickAction="toggle" />

In the above example, the action has been set to foggle mode. This mode and the other available options can be
summarized as follows:

o toggle - Animates to the opposite state. For example, if the view is currently at the transition start point, it will
transition to the end point, and vice versa.

o jumpToStart - Changes immediately to the start state without animation.
« jumpToEnd - Changes immediately to the end state without animation.
« transitionToStart - Transitions with animation to the start state.

« transitionToEnd - Transitions with animation to the end state.

391

An Introduction to MotionLayout

51.7 Arc Motion

By default, a movement of view position will travel in a straight line between the start and end points. To change
the motion to an arc path, use the pathMotionArc attribute as follows within the start constraint, configured with
either a startHorizontal or startVertical setting to define whether the arc is to be concave or convex:
<ConstraintSet android:id="@+id/start">
<Constraint

android:layout width="wrap content"

android:layout height="wrap content"

motion:layout editor absoluteX="21ldp"

android:id="@+id/button"

motion:layout constraintTop toTopOf="parent"

motion:layout constraintStart toStartOf="parent"

motion:pathMotionArc="startVertical" >

Figure 51-1 illustrates startVertical and startHorizontal arcs in comparison to the default straight line motion:

Figure 51-1
51.8 Keyframes

All of the ConstraintSet attributes outlined so far only apply to the start and end points of the animation. In other
words, if the rotation property were set to 180° on the end point, the rotation would begin when the animation
starts and complete when the end point is reached. It is not, therefore, possible to configure the rotation to reach
the full 180° at a point 50% of the way through the animation and then rotate back to the original orientation by
the end. Fortunately, this type of effect is available using Keyframes.

Keyframes are used to define intermediate points during the animation at which state changes are to occur.
Keyframes could, for example, be declared such that the background color of a view is to have transitioned to
blue at a point 50% of the way through the animation, green at the 75% point, and then back to the original color
by the end of the animation. Keyframes are implemented within the Transition element of the MotionScene file
embedded into the KeyFrameSet element.

MotionLayout supports several types of Keyframe which can be summarized as follows:

51.8.1 Attribute Keyframes

Attribute Keyframes (declared using KeyAttribute) allow view attributes to be changed at intermediate points
in the animation timeline. KeyAttribute supports the attributes listed above for ConstraintSets combined with
the ability to specify where the change will take effect in the animation timeline. For example, the following

392

An Introduction to MotionLayout

Keyframe declaration will gradually cause the button view to double in size horizontally (scaleX) and vertically
(scaleY), reaching full size at 50% through the timeline. For the remainder of the timeline, the view will decrease
in size to its original dimensions:
<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
<KeyAttribute
motion:motionTarget="@+id/button"
motion: framePosition="50"
android:scaleX="2.0" />
<KeyAttribute
motion:motionTarget="@+id/button"
motion: framePosition="50"
android:scaley="2.0" />
</KeyFrameSet>

51.8.2 Position Keyframes

Position keyframes (KeyPosition) modify the path followed by a view as it moves between the start and
end locations. By placing key positions at different points on the timeline, a path of just about any level of
complexity can be applied to an animation. Positions are declared using x and y coordinates combined with
the corresponding points in the transition timeline. These coordinates must be declared relative to one of the
following coordinate systems:

o parentRelative - The x and y coordinates are relative to the parent container where the coordinates are
specified as a percentage (represented as a value between 0.0 and 1.0):

Figure 51-2
393

An Introduction to MotionLayout

o deltaRelative - Instead of relative to the parent, the x and y coordinates are relative to the start and end
positions. For example, the start point is (0, 0) the end point (1, 1). Keep in mind that the x and y coordinates
can be negative values):

Figure 51-3

« pathRelative - The x and y coordinates are relative to the path, where the straight line between the start and
end points serves as the graph’s X-axis. Once again, coordinates are represented as a percentage (0.0 to 1.0).
This is similar to the deltaRelative coordinate space but takes into consideration the angle of the path. Once
again coordinates may be negative:

Figure 51-4

394

Chapter 63

63. An Introduction to Kotlin
Coroutines

When an Android application is first started, the runtime system creates a single thread in which all components
will run by default. This thread is generally referred to as the main thread. The primary role of the main thread
is to handle the user interface in terms of event handling and interaction with views in the user interface. Any
additional components started within the application will, by default, also run on the main thread.

Any code within an application that performs a time-consuming task using the main thread will cause the
entire application to appear to lock up until the task is completed. This typically results in the operating system
displaying an “Application is not responding” warning to the user. This is far from the desired behavior for
any application. Fortunately, Kotlin provides a lightweight alternative in the form of Coroutines. This chapter
will introduce Coroutines, including terminology such as dispatchers, coroutine scope, suspend functions,
coroutine builders, and structured concurrency. The chapter will also explore channel-based communication
between coroutines.

63.1 What are Coroutines?

Coroutines are blocks of code that execute asynchronously without blocking the thread from which they
are launched. Coroutines can be implemented without worrying about building complex AsyncTask
implementations or directly managing multiple threads. Because of the way they are implemented, coroutines
are much more efficient and less resource intensive than using traditional multi-threading options. Coroutines
also make for code that is much easier to write, understand and maintain since it allows code to be written
sequentially without having to write callbacks to handle thread-related events and results.

Although a relatively recent addition to Kotlin, there is nothing new or innovative about coroutines. Coroutines,
in one form or another, have existed in programming languages since the 1960s and are based on a model
known as Communicating Sequential Processes (CSP). Though it does so efficiently, Kotlin still uses multi-
threading behind the scenes.

63.2 Threads vs. Coroutines

A problem with threads is that they are a finite resource and expensive in terms of CPU capabilities and system
overhead. In the background, much work is involved in creating, scheduling, and destroying a thread. Although
modern CPUs can run large numbers of threads, the actual number of threads that can be run in parallel at
any one time is limited by the number of CPU cores (though newer CPUs have 8 cores, most Android devices
contain CPUs with 4 cores). When more threads are required than there are CPU cores, the system has to
perform thread scheduling to decide how the execution of these threads is to be shared between the available
cores.

To avoid these overheads, instead of starting a new thread for each coroutine and destroying it when the
coroutine exits, Kotlin maintains a pool of active threads and manages how coroutines are assigned to those
threads. When an active coroutine is suspended, the Kotlin runtime saves it, and another coroutine resumes to
take its place. When the coroutine is resumed, it is restored to an existing unoccupied thread within the pool to
continue executing until it either completes or is suspended. Using this approach, a limited number of threads
are used efficiently to execute asynchronous tasks with the potential to perform large numbers of concurrent

499

An Introduction to Kotlin Coroutines

tasks without the inherent performance degeneration that would occur using standard multi-threading.

63.3 Coroutine Scope

All coroutines must run within a specific scope, allowing them to be managed as groups instead of as individual
ones. This is particularly important when canceling and cleaning up coroutines, for example, when a Fragment
or Activity is destroyed, and ensuring that coroutines do not “leak” (in other words, continue running in the
background when the app no longer needs them). By assigning coroutines to a scope, they can, for example, all
be canceled in bulk when they are no longer needed.

Kotlin and Android provide built-in scopes and the option to create custom scopes using the CoroutineScope
class. The built-in scopes can be summarized as follows:

+ GlobalScope - GlobalScope is used to launch top-level coroutines tied to the entire application lifecycle.
Since this has the potential for coroutines in this scope to continue running when not needed (for example,
when an Activity exits), use of this scope is not recommended for Android applications. Coroutines running
in GlobalScope are considered to be using unstructured concurrency.

» ViewModelScope - Provided specifically for ViewModel instances when using the Jetpack architecture
ViewModel component. Coroutines launched in this scope from within a ViewModel instance are automatically
canceled by the Kotlin runtime system when the corresponding ViewModel instance is destroyed.

o LifecycleScope - Every lifecycle owner has associated with it a LifecycleScope. This scope is canceled when
the corresponding lifecycle owner is destroyed, making it particularly useful for launching coroutines from
within activities and fragments.

For all other requirements, a custom scope will likely be used. The following code, for example, creates a custom
scope named myCoroutineScope:

private val myCoroutineScope = CoroutineScope (Dispatchers.Main)

The coroutineScope declares the dispatcher that will be used to run coroutines (though this can be overridden)

and must be referenced each time a coroutine is started if it is to be included within the scope. All of the running
coroutines in a scope can be canceled via a call to the cancel() method of the scope instance:

myCoroutineScope.cancel ()

63.4 Suspend Functions
A suspend function is a special type of Kotlin function that contains the code of a coroutine. It is declared
using the Kotlin suspend keyword, which indicates to Kotlin that the function can be paused and resumed later,
allowing long-running computations to execute without blocking the main thread.
The following is an example suspend function:
suspend fun mySlowTask() {
// Perform long-running tasks here
}
63.5 Coroutine Dispatchers
Kotlin maintains threads for different types of asynchronous activity, and when launching a coroutine, it will be
necessary to select the appropriate dispatcher from the following options:

« Dispatchers.Main - Runs the coroutine on the main thread and is suitable for coroutines that need to make
changes to the UT and as a general-purpose option for performing lightweight tasks.

« Dispatchers.IO - Recommended for coroutines that perform network, disk, or database operations.

500

An Introduction to Kotlin Coroutines

o Dispatchers.Default - Intended for CPU-intensive tasks such as sorting data or performing complex
calculations.

The dispatcher is responsible for assigning coroutines to appropriate threads and suspending and resuming the
coroutine during its lifecycle. In addition to the predefined dispatchers, it is also possible to create dispatchers
for your own custom thread pools.

63.6 Coroutine Builders

The coroutine builders bring together all of the components covered so far and launch the coroutines so that
they start executing. For this purpose, Kotlin provides the following six builders:

« launch - Starts a coroutine without blocking the current thread and does not return a result to the caller. Use
this builder when calling a suspend function from within a traditional function and when the results of the
coroutine do not need to be handled (sometimes referred to as “fire and forget” coroutines).

o async - Starts a coroutine and allows the caller to wait for a result using the await() function without blocking
the current thread. Use async when you have multiple coroutines that need to run in parallel. The async
builder can only be used from within another suspend function.

withContext — Allows a coroutine to be launched in a different context from that used by the parent coroutine.
Using this builder, a coroutine running using the Main context could launch a child coroutine in the Default
context. The withContext builder also provides a useful alternative to async when returning results from a
coroutine.

coroutineScope — The coroutineScope builder is ideal for situations where a suspend function launches
multiple coroutines that will run in parallel and where some action must occur only when all the coroutines
reach completion. If those coroutines are launched using the coroutineScope builder, the calling function will
not return until all child coroutines have completed. When using coroutineScope, a failure in any coroutine
will cancel all other coroutines.

supervisorScope — Similar to the coroutineScope outlined above, except that a failure in one child does not
result in the cancellation of the other coroutines.

runBlocking - Starts a coroutine and blocks the current thread until the coroutine reaches completion. This
is typically the exact opposite of what is wanted from coroutines but is useful for testing code and when
integrating legacy code and libraries. Otherwise to be avoided.

63.7 Jobs

Each call to a coroutine builder, such as launch or async, returns a Job instance which can, in turn, be used
to track and manage the lifecycle of the corresponding coroutine. Subsequent builder calls from within the
coroutine create new Job instances, which will become children of the immediate parent Job, forming a parent-
child relationship tree where canceling a parent Job will recursively cancel all its children. Canceling a child does
not, however, cancel the parent, though an uncaught exception within a child created using the launch builder
may result in the cancellation of the parent (this is not the case for children created using the async builder,
which encapsulates the exception in the result returned to the parent).

The status of a coroutine can be identified by accessing the isActive, isCompleted, and isCancelled properties of
the associated Job object. In addition to these properties, several methods are also available on a Job instance.
For example, a Job and all of its children may be canceled by calling the cancel() method of the Job object, while
a call to the cancelChildren() method will cancel all child coroutines.

The join() method can be called to suspend the coroutine associated with the job until all of its child jobs have
completed. To perform this task and cancel the Job once all child jobs have completed, call the cancelAndjoin()

501

An Introduction to Kotlin Coroutines
method.

This hierarchical Job structure, together with coroutine scopes, form the foundation of structured concurrency,
which aims to ensure that coroutines do not run longer than required without manually keeping references to
each coroutine.

63.8 Coroutines — Suspending and Resuming

It helps to see some coroutine examples in action to understand coroutine suspension better. To start with, let’s
assume a simple Android app containing a button that, when clicked, calls a function named startTask(). This
function calls a suspend function named performSlowTask() using the Main coroutine dispatcher. The code for
this might read as follows:

private val myCoroutineScope = CoroutineScope (Dispatchers.Main)

fun startTask (view: View) {
myCoroutineScope.launch (Dispatchers.Main) {

performSlowTask ()

}

In the above code, a custom scope is declared and referenced in the call to the launch builder, which, in turn,
calls the performSlowTask() suspend function. Since startTask() is not a suspend function, the coroutine must be
started using the launch builder instead of the async builder.

Next, we can declare the performSlowTask() suspend function as follows:
suspend fun performSlowTask () {
Log.1i(TAG, "performSlowTask before")
delay (5 000) // simulates long-running task
Log.1(TAG, "performSlowTask after")
}

As implemented, all the function does is output diagnostic messages before and after performing a 5-second
delay, simulating a long-running task. While the 5-second delay is in effect, the user interface will continue
to be responsive because the main thread is not being blocked. To understand why it helps to explore what is
happening behind the scenes.

First, the startTask() function is executed and launches the performSlowTask() suspend function as a coroutine.
This function then calls the Kotlin delay() function passing through a time value. The built-in Kotlin delay()
function is implemented as a suspend function, so it is also launched as a coroutine by the Kotlin runtime
environment. The code execution has now reached what is referred to as a suspend point which will cause the
performSlowTask() coroutine to be suspended while the delay coroutine is running. This frees up the thread on
which performSlowTask() was running and returns control to the main thread so that the Ul is unaffected.

Once the delay() function reaches completion, the suspended coroutine will be resumed and restored to a thread
from the pool where it can display the Log message and return to the startTask() function.

When working with coroutines in Android Studio suspend points within the code editor are marked as shown
in the figure below:

502

Chapter 70

70. An Overview of Android SQLite
Databases

Mobile applications that do not need to store at least some persistent data are few and far between. The use of
databases is an essential aspect of most applications, ranging from almost entirely data-driven applications to
those that need to store small amounts of data, such as the prevailing game score.

The importance of persistent data storage becomes even more evident when considering the transient lifecycle
of the typical Android application. With the ever-present risk that the Android runtime system will terminate
an application component to free up resources, a comprehensive data storage strategy to avoid data loss is a key
factor in designing and implementing any application development strategy.

This chapter will cover the SQLite database management system bundled with the Android operating system
and outline the Android SDK classes that facilitate persistent SQLite-based database storage within an Android
application. Before delving into the specifics of SQLite in the context of Android development, however, a brief
overview of databases and SQL will be covered.

70.1 Understanding Database Tables

Database Tables provide the most basic level of data structure in a database. Each database can contain multiple
tables, each designed to hold information of a specific type. For example, a database may contain a customer
table that contains the name, address, and telephone number of each of the customers of a particular business.
The same database may also include a products table used to store the product descriptions with associated
product codes for the items sold by the business.

Each table in a database is assigned a name that must be unique within that particular database. A table name,
once assigned to a table in one database, may not be used for another table except within the context of another
database.

70.2 Introducing Database Schema

Database Schemas define the characteristics of the data stored in a database table. For example, the table schema
for a customer database table might define the customer name as a string of no more than 20 characters long and
the customer phone number is a numerical data field of a certain format.

Schemas are also used to define the structure of entire databases and the relationship between the various tables
in each database.

70.3 Columns and Data Types

It is helpful at this stage to begin viewing a database table as similar to a spreadsheet where data is stored in rows
and columns.

Each column represents a data field in the corresponding table. For example, a table’s name, address, and
telephone data fields are all columns.

Each column, in turn, is defined to contain a certain type of data. Therefore, a column designed to store numbers
would be defined as containing numerical data.

555

An Overview of Android SQLite Databases
70.4 Database Rows

Each new record saved to a table is stored in a row. Each row, in turn, consists of the columns of data associated
with the saved record.

Once again, consider the spreadsheet analogy described earlier in this chapter. Each entry in a customer table
is equivalent to a row in a spreadsheet, and each column contains the data for each customer (name, address,
telephone, etc.). When a new customer is added to the table, a new row is created, and the data for that customer
is stored in the corresponding columns of the new row.

Rows are also sometimes referred to as records or entries, and these terms can generally be used interchangeably.

70.5 Introducing Primary Keys

Each database table should contain one or more columns that can be used to identify each row in the table
uniquely. This is known in database terminology as the Primary Key. For example, a table may use a bank
account number column as the primary key. Alternatively, a customer table may use the customer’s social
security number as the primary key.

Primary keys allow the database management system to uniquely identify a specific row in a table. Without
a primary key, retrieving or deleting a specific row in a table would not be possible because there can be no
certainty that the correct row has been selected. For example, suppose a table existed where the customer’s last
name had been defined as the primary key. Imagine the problem if more than one customer named “Smith” were
recorded in the database. Without some guaranteed way to identify a specific row uniquely, ensuring the correct
data was being accessed at any given time would be impossible.

Primary keys can comprise a single column or multiple columns in a table. To qualify as a single column primary
key, no two rows can contain matching primary key values. When using multiple columns to construct a primary
key, individual column values do not need to be unique, but all the columns’ values combined must be unique.

70.6 What is SQLite?

SQLite is an embedded, relational database management system (RDBMS). Most relational databases (Oracle,
SQL Server, and MySQL being prime examples) are standalone server processes that run independently and
cooperate with applications requiring database access. SQLite is referred to as embedded because it is provided in
the form of a library that is linked into applications. As such, there is no standalone database server running in
the background. All database operations are handled internally within the application through calls to functions
in the SQLite library.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

SQLite is written in the C programming language, so the Android SDK provides a Java-based “wrapper” around
the underlying database interface. This consists of classes that may be utilized within an application’s Java or
Kotlin code to create and manage SQLite-based databases.

For additional information about SQLite, refer to https://www.sqlite.org.

70.7 Structured Query Language (SQL)

Data is accessed in SQLite databases using a high-level language known as Structured Query Language. This is
usually abbreviated to SQL and pronounced sequel. SQL is a standard language used by most relational database
management systems. SQLite conforms mostly to the SQL-92 standard.

SQL is a straightforward and easy-to-use language designed specifically to enable the reading and writing of
database data. Because SQL contains a small set of keywords, it can be learned quickly. In addition, SQL syntax is

556

http://www.sqlite.org

An Overview of Android SQLite Databases

more or less identical between most DBMS implementations, so having learned SQL for one system, your skills
will likely transfer to other database management systems.

While some basic SQL statements will be used within this chapter, a detailed overview of SQL is beyond the
scope of this book. However, many other resources provide a far better overview of SQL than we could ever hope
to provide in a single chapter here.

70.8 Trying SQLite on an Android Virtual Device (AVD)

For readers unfamiliar with databases and SQLite, diving right into creating an Android application that
uses SQLite may seem intimidating. Fortunately, Android is shipped with SQLite pre-installed, including an
interactive environment for issuing SQL commands from within an adb shell session connected to a running
Android AVD emulator instance. This is a useful way to learn about SQLite and SQL and an invaluable tool for
identifying problems with databases created by applications running in an emulator.

To launch an interactive SQLite session, begin by running an AVD session. This can be achieved within Android
Studio by launching the Android Virtual Device Manager (Tools -> Device Manager), selecting a previously
configured AVD, and clicking on the start button.

Once the AVD is up and running, open a Terminal or Command-Prompt window and connect to the emulator
using the adb command-line tool as follows:

adb shell

Once connected, the shell environment will provide a command prompt at which commands may be entered.
Begin by obtaining superuser privileges using the su command:

Generic x86:/ su

root@android:/ #

If a message indicates that superuser privileges are not allowed, the AVD instance likely includes Google Play
support. To resolve this, create a new AVD and, on the “Choose a device definition” screen, select a device that
does not have a marker in the “Play Store” column.

The data in SQLite databases are stored in database files on the file system of the Android device on which the
application is running. By default, the file system path for these database files is as follows:

/data/data/<package name>/databases/<database filename>.db

For example, if an application with the package name com.example. MyDBApp creates a database named
mydatabase.db, the path to the file on the device would read as follows:
/data/data/com.example.MyDBApp/databases/mydatabase.db

For this exercise, therefore, change directory to /data/data within the adb shell and create a sub-directory
hierarchy suitable for some SQLite experimentation:

cd /data/data

mkdir com.example.dbexample

cd com.example.dbexample

mkdir databases

cd databases

With a suitable location created for the database file, launch the interactive SQLite tool as follows:
root@android:/data/data/databases # sglite3 ./mydatabase.db

sqlite3 ./mydatabase.db

SQLite version 3.8.10.2 2015-05-20 18:17:19

557

An Overview of Android SQLite Databases

Enter ".help" for usage hints.

sgqlite>

At the sqlite> prompt, commands may be entered to perform tasks such as creating tables and inserting and
retrieving data. For example, to create a new table in our database with fields to hold ID, name, address, and
phone number fields, the following statement is required:

create table contacts (_id integer primary key autoincrement, name text, address
text, phone text);

Note that each row in a table should have a primary key that is unique to that row. In the above example, we have
designated the ID field as the primary key, declared it as being of type integer, and asked SQLite to increment
the number automatically each time a row is added. This is a common way to ensure that each row has a unique
primary key. On most other platforms, the primary key’s name choice is arbitrary. In the case of Android,
however, the key must be named _id for the database to be fully accessible using all Android database-related
classes. The remaining fields are each declared as being of type text.

To list the tables in the currently selected database, use the .fables statement:
sgqlite> .tables

contacts

To insert records into the table:

sgqlite> insert into contacts (name, address, phone) wvalues ("Bill Smith", "123
Main Street, California", "123-555-2323");

sglite> insert into contacts (name, address, phone) values ("Mike Parks", "10
Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:

sgqlite> select * from contacts;

1|Bill Smith|123 Main Street, California|l1l23-555-2323

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:

sglite> select * from contacts where name="Mike Parks";
2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:

sglite> .exit

When running an Android application in the emulator environment, any database files will be created on the
emulator’s file system using the previously discussed path convention. This has the advantage that you can
connect with adb, navigate to the location of the database file, load it into the sqlite3 interactive tool, and perform
tasks on the data to identify possible problems occurring in the application code.

It is also important to note that while connecting with an adb shell to a physical Android device is possible, the
shell is not granted sufficient privileges by default to create and manage SQLite databases. Therefore, database
problem debugging is best performed using an AVD session.

70.9 Android SQLite Classes

As previously mentioned, SQLite is written in the C programming language, while Android applications are
primarily developed using Java or Kotlin. To bridge this “language gap’, the Android SDK includes a set of
classes that provide a programming layer on top of the SQLite database management system. The remainder of
this chapter will provide a basic overview of each of the major classes within this category.

558

An Overview of Android SQLite Databases

70.9.1 Cursor

A class provided specifically to access the results of a database query. For example, a SQL SELECT operation
performed on a database will potentially return multiple matching rows from the database. A Cursor instance
can be used to step through these results, which may then be accessed from within the application code using a
variety of methods. Some key methods of this class are as follows:

o close() — Releases all resources used by the cursor and closes it.

« getCount() - Returns the number of rows contained within the result set.

« moveToFirst() - Moves to the first row within the result set.

« moveToLast() - Moves to the last row in the result set.

« moveToNext() - Moves to the next row in the result set.

« move() - Moves by a specified offset from the current position in the result set.

o get<type>() - Returns the value of the specified <type> contained at the specified column index of the row at
the current cursor position (variations consist of getString(), getlnt(), getShort(), getFloat(), and getDouble()).

70.9.2 SQLiteDatabase

This class provides the primary interface between the application code and underlying SQLite databases
including the ability to create, delete, and perform SQL-based operations on databases. Some key methods of
this class are as follows:

« insert() — Inserts a new row into a database table.

delete() - Deletes rows from a database table.

query() — Performs a specified database query and returns matching results via a Cursor object.
« execSQL() - Executes a single SQL statement that does not return result data.

o rawQuery() - Executes a SQL query statement and returns matching results in the form of a Cursor object.

70.9.3 SQLiteOpenHelper

A helper class designed to make it easier to create and update databases. This class must be subclassed within
the code of the application seeking database access and the following callback methods implemented within
that subclass:

« onCreate() - Called when the database is created for the first time. This method is passed the SQLiteDatabase
object as an argument for the newly created database. This is the ideal location to initialize the database in
terms of creating a table and inserting any initial data rows.

« onUpgrade() — Called in the event that the application code contains a more recent database version number
reference. This is typically used when an application is updated on the device and requires that the database
schema also be updated to handle storage of additional data.

In addition to the above mandatory callback methods, the 0nOpen() method, called when the database is
opened, may also be implemented within the subclass.

The constructor for the subclass must also be implemented to call the super class, passing through the application
context, the name of the database and the database version.

559

An Overview of Android SQLite Databases
Notable methods of the SQLiteOpenHelper class include:

« getWritableDatabase() — Opens or creates a database for reading and writing. Returns a reference to the
database in the form of a SQLiteDatabase object.

« getReadableDatabase() — Creates or opens a database for reading only. Returns a reference to the database in
the form of a SQLiteDatabase object.

o close() - Closes the database.

70.9.4 ContentValues

ContentValues is a convenience class that allows key/value pairs to be declared consisting of table column
identifiers and the values to be stored in each column. This class is of particular use when inserting or updating
entries in a database table.

70.10 The Android Room Persistence Library

A limitation of the Android SDK SQLite classes is that they require moderate coding effort and don't take
advantage of the new architecture guidelines and features such as LiveData and lifecycle management. The
Android Jetpack Architecture Components include the Room persistent library to address these shortcomings.
This library provides a high-level interface on top of the SQLite database system, making it easy to store data
locally on Android devices with minimal coding while also conforming to the recommendations for modern
application architecture.

The following chapters will provide an overview and tutorial on SQLite database management using SQLite and
the Room persistence library.

70.11 Summary

SQLite is a lightweight, embedded relational database management system included in the Android framework
and provides a mechanism for implementing organized persistent data storage for Android applications. When
combined with the Room persistence library, Android provides a modern way to implement data storage from
within an Android app.

This chapter provided an overview of databases in general and SQLite in particular within the context of Android
application development.

560

Chapter 93

93. An Overview of Android In-App
Billing

n the early days of mobile applications for operating systems such as Android and iOS, the most common
method for earning revenue was to charge an upfront fee to download and install the application. Another
revenue opportunity was soon introduced by embedding advertising within applications. The most common
and lucrative option is to charge the user for purchasing items from within the application after installing it. This

typically takes the form of access to a higher level in a game, acquiring virtual goods or currency, or subscribing
to premium content in the digital edition of a magazine or newspaper.

Google supports integrating in-app purchasing through the Google Play In-App Billing API and the Play
Console. This chapter will provide an overview of in-app billing and outline how to integrate in-app billing into
your Android projects. Once these topics have been explored, the next chapter will walk you through creating
an example app that includes in-app purchasing features.

93.1 Preparing a Project for In-App Purchasing

Building in-app purchasing into an app will require a Google Play Developer Console account, details of which
were covered previously in the “Creating, Testing and Uploading an Android App Bundle” chapter. You must also
register a Google merchant account. These settings can be found by navigating to Setup -> Payments profile
in the Play Console. Note that merchant registration is not available in all countries. For details, refer to the
following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app must then be uploaded to the console and enabled for in-app purchasing. However, the console will
not activate in-app purchasing support for an app unless the Google Play Billing Library has been added to the
module-level build.gradle.kts file:

dependencies {

implementation(libs.billingclient.ktx)

}
Once the build file has been modified and the app bundle uploaded to the console, the next step is to add in-app
products or subscriptions for the user to purchase.

93.2 Creating In-App Products and Subscriptions

Products and subscriptions are created and managed using the options listed beneath the Monetize section of
the Play Console navigation panel, as highlighted in Figure 93-1 below:

767

https://support.google.com/googleplay/android-developer/answer/9306917

An Overview of Android In-App Billing

Figure 93-1
Each product or subscription needs an ID, title, description, and pricing information. Purchases fall into the
categories of consumable (the item must be purchased each time it is required by the user, such as virtual
currency in a game), non-consumable (only needs to be purchased once by the user, such as content access), and
subscription-based. Consumable and non-consumable products are collectively referred to as managed products.

Subscriptions are useful for selling an item that needs to be renewed regularly, such as access to news content
or the premium features of an app. When creating a subscription, a base plan specifies the price, renewal period
(monthly, annually, etc.), and whether the subscription auto-renews. Users can also be given discount offers and
the option of pre-purchasing a subscription.

93.3 Billing Client Initialization

Communication between your app and the Google Play Billing Library is handled by a BillingClient instance.
In addition, BillingClient includes a set of methods that can be called to perform both synchronous and
asynchronous billing-related activities. When the billing client is initialized, it will need to be provided with a
reference to a PurchasesUpdatedListener callback handler. The client will call this handler to notify your app
of the results of any purchasing activity. To avoid duplicate notifications, it is recommended to have only one
BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() method, passing through the current activity or
fragment context. The purchase update handler is then assigned to the client via the setListener() method:
private val purchasesUpdatedListener =
PurchasesUpdatedListener { billingResult, purchases ->
if (billingResult.responseCode ==
BillingClient.BillingResponseCode.OK
&& purchases != null

for (purchase in purchases) {
// Process the purchases

}
} else if (billingResult.responseCode ==
BillingClient.BillingResponseCode.USER CANCELED

// Purchase canceled by the user

} else {

768

An Overview of Android In-App Billing

// Handle errors here

billingClient = BillingClient.newBuilder (this)
.setlistener (purchasesUpdatedListener)
.enablePendingPurchases (
PendingPurchasesParams.newBuilder ()
.enableOneTimeProducts () .build()
)
.build()

93.4 Connecting to the Google Play Billing Library

After successfully creating the Billing Client, the next step is initializing a connection to the Google Play
Billing Library. A call must be made to the startConnection() method of the billing client instance to establish
this connection. Since the connection is performed asynchronously, a BillingClientStateListener must be
implemented to receive a callback indicating whether the connection was successful. Code should also be added
to override the onBillingServiceDisconnected() method. This is called if the connection to the Billing Library is
lost and can be used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the BillingClient instance will make a call to the
onBillingSetupFinished() method, which can be used to check that the client is ready:
billingClient.startConnection (object : BillingClientStateListener {
override fun onBillingSetupFinished (
billingResult: BillingResult

if (billingResult.responseCode ==

BillingClient.BillingResponseCode.OK

// Connection successful
} else {

// Connection failed

override fun onBillingServiceDisconnected() {

// Connection to billing service lost

)
93.5 Querying Available Products

Once the billing environment is initialized and ready to go, the next step is to request the details of the products
or subscriptions available for purchase. This is achieved by making a call to the queryProductDetailsAsync()
method of the BillingClient and passing through an appropriately configured QueryProductDetailsParams
instance containing the product ID and type (ProductType.SUBS for a subscription or ProductType.INAPP for
a managed product):

val queryProductDetailsParams = QueryProductDetailsParams.newBuilder ()

769

An Overview of Android In-App Billing
)
93.8 Querying Previous Purchases

When working with in-app billing, checking whether a user has already purchased a product or subscription is a
common requirement. A list of all the user’s previous purchases of a specific type can be generated by calling the
queryPurchasesAsync() method of the BillingClient instance and implementing a PurchaseResponseListener.
The following code, for example, obtains a list of all previously purchased items that have not yet been consumed:

val queryPurchasesParams = QueryPurchasesParams.newBuilder ()
.setProductType (BillingClient.ProductType.INAPP)
.build()

billingClient.queryPurchasesAsync (
queryPurchasesParams,

purchasesListener

private val purchasesListener =

PurchasesResponselistener { billingResult, purchases ->

if (!purchases.isEmpty()) {

// Access existing active purchases
} else {

// No

}
To obtain a list of active subscriptions, change the ProductType value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for each product, make a call to the BillingClient
queryPurchaseHistoryAsync() method:

val queryPurchaseHistoryParams = QueryPurchaseHistoryParams.newBuilder ()
.setProductType (BillingClient.ProductType.INAPP)
.build()

billingClient.queryPurchaseHistoryAsync (queryPurchaseHistoryParams) {
billingResult, historyList ->
// Process purchase history list

}
93.9 Summary

In-app purchases provide a way to generate revenue from within Android apps by selling virtual products and
subscriptions to users. This chapter explored managed products and subscriptions and explained the difference
between consumable and non-consumable products. In-app purchasing support is added to an app using the
Google Play In-app Billing Library. It involves creating and initializing a billing client on which methods are
called to perform tasks such as making purchases, listing available products, and consuming existing purchases.
The next chapter contains a tutorial demonstrating the addition of in-app purchases to an Android Studio
project.

772

Index

Symbols

2. 97

<application> 514
<fragment> 305
<fragment> element 305
<provider> 571
<receiver> 492
<service> 514, 520, 527
:: operator 99

.well-known folder 465, 488

A

AbsoluteLayout 182
ACCESS_COARSE_LOCATION permission 642
ACCESS_FINE_LOCATION permission 642
acknowledgePurchase() method 701
ACTION_DOWN 282
ACTION_MOVE 282
ACTION_POINTER_DOWN 282
ACTION_POINTER_UP 282
ACTION_UP 282
ACTION_VIEW 483
Active / Running state 158
Activity 83,161

adding views in code 259

class 161

creation 14

Entire Lifetime 165

Foreground Lifetime 165

lifecycle methods 163

lifecycles 155

returning data from 462

state change example 169

state changes 161

states 158

Visible Lifetime 165
Activity Lifecycle 157
Activity Manager 82
ActivityResultLauncher 463
Activity Stack 157
Actual screen pixels 250
adb

command-line tool 59

connection testing 65

device pairing 63

enabling on Android devices 59

Linux configuration 62

list devices 59

macOS configuration 60

overview 59

restart server 60

testing connection 65

WiFi debugging 63

Windows configuration 61

Wireless debugging 63

Wireless pairing 63
addCategory() method 491
addView() method 253
ADD_VOICEMAIL permission 642
android

exported 515

gestureColor 298

layout_behavior property 455

onClick 307

process 515, 527

uncertainGestureColor 298
Android

Activity 83

architecture 79

events 275

intents 84

onClick Resource 275

runtime 80

SDK Packages 5

829

Index

android.app 80

Android Architecture Components 321
android.content 80
android.content.Intent 461

android.database 80

Android Debug Bridge. See ADB
Android Development

System Requirements 3
Android Devices

designing for different 181
android.graphics 81
android.hardware 81
android.intent.action 497
android.intent.action.BOOT_COMPLETED 515
android.intent.action.MAIN 483
android.intent.category LAUNCHER 483
Android Libraries 80
android.media 81
Android Monitor tool window 32
Android Native Development Kit 81
android.net 81
android.opengl 81
android.os 81
android.permission.RECORD_AUDIO 651
android.print 81
Android Project

create new 13
android.provider 81
Android SDK Location

identifying 9
Android SDK Manager 7,9
Android SDK Packages

version requirements 7
Android SDK Tools

command-line access 8

Linux 10

macOS 10

Windows 7 9

Windows 8 9
Android Software Stack 79
Android Studio

changing theme 57

830

downloading 3

Editor Window 52

installation 4

Linux installation 5

macOS installation 4

Navigation Bar 51

Project tool window 52

Status Bar 52

Toolbar 51

Tool window bars 52

tool windows 52

updating 11

Welcome Screen 49

Windows installation 4
android.text 81
android.util 81
android.view 81
android.view.View 184

android.view.ViewGroup 181, 184

Android Virtual Device. See AVD
overview 27
Android Virtual Device Manager 27
android.webkit 81
android.widget 81
AndroidX libraries 730
APK analyzer 694
APK file 687
APK File
analyzing 694
APK Signing 730
APK Wizard dialog 686
App Architecture
modern 321
AppBar
anatomy of 453
appbar_scrolling_view_behavior 455
App Bundles 683
creating 687
overview 683
revisions 693
uploading 690
AppCompatActivity class 162

App Inspector 53
Application
stopping 32
Application Context 85
Application Framework 82
Application Manifest 85
Application Resources 85
App Link
Digital Asset Links file 465
App Links
auto verification 464
autoVerify 465
Apply Changes 267
Apply Changes and Restart Activity 267
Apply Code Changes 267
fallback settings 269
options 267
Run App 267
tutorial 269
applyToActivitiesIfAvailable() method 726
Architecture Components 321
ART 80
as 99
as? 99
asFlow() builder 533
assetlinks.json , 465
asSharedFlow() 542
asStateFlow() 541
async 501
Attribute Keyframes 392
Audio
supported formats 649
Audio Playback 649
Audio Recording 649
Auto Blocker 60
Autoconnect Mode 215
Automatic Link Verification 464, 487
autoVerify 465
AVD
Change posture 48
cold boot 44

command-line creation 27

Index
creation 27
device frame 35
Display mode 47
launch in tool window 35
overview 27
quickboot 44
Resizable 47
running an application 30
Snapshots 43
standalone 32
starting 29

Startup size and orientation 30

B

Background Process 156
Barriers 208
adding 227
constrained views 208
Baseline Alignment 207
beginTransaction() method 306
BillingClient 702
acknowledgePurchase() method 701
consumeAsync() method 701
getPurchaseState() method 701
initialization 698, 706
launchBillingFlow() method 700
queryProductDetailsAsync() method 699
queryPurchasesAsync() method 702
BillingResult 713
getDebugMessage() 713
Binding Expressions 341
one-way 341
two-way 342
BIND_JOB_SERVICE permission 515
bindService() method 513, 517, 521
Bitwise AND 105
Bitwise Inversion 104
Bitwise Left Shift 106
Bitwise OR 105
Bitwise Right Shift 106
Bitwise XOR 105
black activity 14

831

Index

Blank template 185 creation of 233
Blueprint view 213 Chain style
BODY_SENSORS permission 642 changing 235
Boolean 92 chain styles 206
Bound Service 513, 517 Char 92
adding to a project 518 CheckBox 181
Implementing the Binder 518 checkSelfPermission() method 646
Interaction options 517 Code completion 70
BoundService class 519 Code Editor
Broadcast Intent 491 basics 67
example 493 Code completion 70
overview 84,491 Code Generation 72
sending 494 Code Reformatting 75
Sticky 493 Document Tabs 68
Broadcast Receiver 491 Editing area 68
adding to manifest file 496 Gutter Area 68
creation 495 Live Templates 76
overview 84,492 Splitting 70
BroadcastReceiver class 492 Statement Completion 72
BroadcastReceiver superclass 495 Status Bar 69
buffer() operator 535 Code Generation 72
Build Variants , 54 Code Reformatting 75
tool window 54 code samples
Bundle class 178 download 1
Bundled Notifications 670 cold boot 44
Cold flows 541
C CollapsingToolbarLayout
Calendar permissions 642 example 456
CALL_PHONE permission 642 introduction 456
CAMERA permission 642 parallax mode 456
Camera permissions 642 pin mode 456
cancelAndJoin() 501 setting scrim color 459
cancelChildren() 501 setting title 459
CardView with image 456
layout file 443 collectLatest() operator 534
responding to selection of 451 combine() operator 540
CardView class 443 Common Gestures 287
C/C++ Libraries 81 detection 287
Chain bias 236 Communicating Sequential Processes 499
chain head 206 Companion Objects 129
chains 206 Component tree 17
Chains conflate() operator 535

832

Constraint Bias 205
adjusting 219
ConstraintLayout
advantages of 211
Availability 212
Barriers 208
Baseline Alignment 207
chain bias 236
chain head 206
chains 206
chain styles 206
Constraint Bias 205
Constraints 203
conversion to 231
convert to MotionLayout 399
deleting constraints 218
guidelines 225
Guidelines 208
manual constraint manipulation 215
Margins 204, 219
Opposing Constraints 204, 221
overview of 203
Packed chain 207, 236
ratios 211, 237
Spread chain 206
Spread inside 236
Spread inside chain 206
tutorial 241
using in Android Studio 213
Weighted chain 206, 236
Widget Dimensions 207, 223
Widget Group Alignment 229
ConstraintLayout chains
creation of 233
in layout editor 233
ConstraintLayout Chain style
changing 235
Constraints
deleting 218
ConstraintSet
addToHorizontalChain() method 256
addToVerticalChain() method 256

Index

alignment constraints 255
apply to layout 254
applyTo() method 254
centerHorizontally() method 255
centerVertically() method 255
chains 255
clear() method 256
clone() method 255
connect() method 254
connect to parent 254
constraint bias 255
copying constraints 255
create 254
create connection 254
createHorizontalChain() method 255
createVertical Chain() method 255
guidelines 256
removeFromHorizontalChain() method 256
removeFromVerticalChain() method 256
removing constraints 256
rotation 257
scaling 256
setGuidelineBegin() method 256
setGuidelineEnd() method 256
setGuidelinePercent() method 256
setHorizonalBias() method 255
setRotationX() method 257
setRotationY() method 257
setScaleX() method 256
setScaleY () method 256
setTransformPivot() method 257
setTransformPivotX() method 257
setTransformPivotY() method 257
setVerticalBias() method 255
sizing constraints 255
tutorial 259
view IDs 261

ConstraintSet class 253, 254

Constraint Sets 254

ConstraintSets
configuring 388

consumeAsync() method 701

833

Index

ConsumeParams 711
Contacts permissions 642
container view 181
Content Provider 82, 569, 585
<provider> 571
accessing 585
Authority 575
client tutorial 585
ContentProvider class 569
Content Resolver 570
ContentResolver 582
content URI 570
Content URI 575, 585
ContentValues 577
delete() 570, 580
getType() 570
insert() 569, 577
onCreate() 569, 577
overview 85
query() 569,578
tutorial 573
update() 570, 579
UriMatcher 576
UriMatcher class 570
ContentProvider class 569
Content Resolver 570
getContentResolver() 570
ContentResolver 582
getContentResolver() 570
content URI 570
Content URI 570, 575
ContentValues 577
Context class 85
CoordinatorLayout 182, 455
Coroutine Builders 501
async 501
coroutineScope 501
launch 501
runBlocking 501
supervisorScope 501
withContext 501

Coroutine Dispatchers 500

834

Coroutines 499, 531

channel communication 505
GlobalScope 500
returning results 503
Suspend Functions 500
suspending 502
tutorial 507
ViewModelScope 500
vs. Threads 499
coroutineScope 501
Coroutine Scope 500
Custom Accessors 127
Custom Attribute 389
Custom Gesture
recognition 293
Custom Theme
building 717
Cycle Editor 417
Cycle Keyframe 397
Cycle Keyframes

overview 413

D

dangerous permissions
list of 642
Data Access Object (DAO) 590
Database Inspector 596, 620
live updates 620
SQL query 620
Database Rows 556
Database Schema 555
Database Tables 555
Data binding
binding expressions 341
Data Binding 323
binding classes 340
enabling 346
event and listener binding 342
key components 337
overview 337
tutorial 345
variables 340

with LiveData 323
DDMS 32
Debugging
enabling on device 59
debug.keystore file 465, 487
Default Function Parameters 119
DefaultLifecycleObserver 358, 361
deltaRelative 394
Density-independent pixels 249
Density Independent Pixels
converting to pixels 264
Device Definition
custom 199
Device File Explorer 54
device frame 35
Device Mirroring 65
enabling 65
device pairing 63
Digital Asset Links file 465
Direct Reply Input 679
Dispatchers.Default 501
Dispatchers.IO 500
Dispatchers.Main 500
dp 249
DROP_LATEST 543
DROP_OLDEST 543
Dynamic Colors
applyToActivitiesIfAvailable() method 726
enabling in Android 725
Dynamic State 163
saving 177

E

Elvis Operator 99
Empty Process 157
Empty template 185
Emulator
battery 42
cellular configuration 42
configuring fingerprints 44
directional pad 42

extended control options 41

Index

Extended controls 41
fingerprint 42
location configuration 42
phone settings 42
Resizable 47
resize 41
rotate 40
Screen Record 43
Snapshots 43
starting 29
take screenshot 40
toolbar 39
toolbar options 39
tool window mode 46
Virtual Sensors 43
zoom 40
enablePendingPurchases() method 701
enabling ADB support 59
Escape Sequences 93
Event Handling 275
example 276
Event Listener 277
Event Listeners 276
Events
consuming 279
execSQL() 564
explicit
intent 84
explicit intent 461
Explicit Intent 461
Extended Control

options 41

F

Files

switching between 68
filter() operator 536
findPointerIndex() method 282
findViewBylId() 139
Fingerprint

emulation 44

FLAG_INCLUDE_STOPPED_PACKAGES 491

835

Index

flatMapConcat() operator 539
flatMapMerge() operator 539
flexible space area 453
Float 92
floating action button 14, 186
changing appearance of 428
margins 426
removing 187
sizes 426
Flow 531
asFlow() builder 533
asSharedFlow() 542
asStateFlow() 541
background handling 551
buffering 535
buffer() operator 535
cold 541
collect() 533
collecting data 533
collectLatest() operator 534
combine() operator 540
conflate() operator 535
declaring 532
emit() 533
emitting data 533
filter() operator 536
flatMapConcat() operator 539
flatMapMerge() operator 539
flattening 538
flowOf() builder 533
flow of flows 538
fold() operator 538
hot 541
intermediate operators 536
library requirements 532
map() operator 536
MutableSharedFlow 542
MutableStateFlow 541
onEach() operator 540
reduce() operator 538
repeatOnLifecycle 552
SharedFlow 542

836

single() operator 535
StateFlow 541
terminal flow operators 538
transform() operator 537
try/finally 534
zip() operator 540
flowOf() builder 533
flow of flows 538
Flow operators 536
Flows
combining 540
Introduction to 531
Foldable Devices 166
multi-resume 166
Foreground Process 156
Fragment
creation 303
event handling 307
XML file 304
FragmentActivity class 162
Fragment Communication 307
Fragments 303
adding in code 306
duplicating 434
example 311
overview 303
FragmentStateAdapter class 437
FrameLayout 182
Function Parameters
variable number of 119

Functions 117

G

Gemini 145
asking questions 148
configuration 147
enabling 145
in Android Studio 145
inline code completion 149
overview 145
playground 148
proposed changes 151

question context 149

tool window 146

transforming code 150
Gesture Builder Application 293

building and running 293
Gesture Detector class 287
GestureDetectorCompat

instance creation 290
GestureDetectorCompat class 287
GestureDetector.OnDoubleTapListener 287, 288
GestureDetector.OnGestureListener 288
GestureLibrary 293
GestureOverlayView 293

configuring color 298

configuring multiple strokes 298
GestureOverlayView class 293
GesturePerformedListener 293
Gestures

interception of 298
Gestures File

creation 294

extract from SD card 294

loading into application 296
GET_ACCOUNTS permission 642
getAction() method 497
getContentResolver() 570
getDebugMessage() 713
getld() method 254
getIntent() method 462
getPointerCount() method 282
getPointerId() method 282
getPurchaseState() method 701
getService() method 521
getWritableDatabase() 564
GlobalScope 500
GNU/Linux 80
Google Play App Signing 686
Google Play Console 705

Creating an in-app product 705

License Testers 705
Google Play Developer Console 684
Gradle

Index
APK signing settings 734
Build Variants 730
command line tasks 735
dependencies 729
Manifest Entries 730
overview 729
sensible defaults 729
Gradle Build File
top level 731
Gradle Build Files
module level 732
gradle.properties file 730
GridLayout 182
GridLayoutManager 441

H

HAL 80

Handler class 526

Hardware Abstraction Layer 80
Higher-order Functions 121
Hot flows 541

I

IBinder 513,519

IBinder object 517, 526

Immutable Variables 94

implicit
intent 84

implicit intent 461

Implicit Intent 463

Implicit Intents
example 479

importance hierarchy 155

in 249

INAPP 702

In-App Products 697

In-App Purchasing 703
acknowledgePurchase() method 701
BillingClient 698
BillingResult 713
consumeAsync() method 701

ConsumeParams 711

837

Index

Consuming purchases 710
enablePendingPurchases() method 701
getPurchaseState() method 701
launchBillingFlow() method 700
Libraries 703
newBuilder() method 698
onBillingServiceDisconnected() callback 708
onBillingServiceDisconnected() method 699
onBillingSetupFinished() listener 708
onProductDetailsResponse() callback 708
Overview 697
ProductDetail 700
ProductDetails 709
products 697
ProductType 702
Purchase Flow 709
PurchaseResponseListener 702
PurchasesUpdatedListener 701
PurchaseUpdatedListener 709
purchase updates 709
queryProductDetailsAsync() 708
queryProductDetailsAsync() method 699
queryPurchasesAsync() 711
queryPurchasesAsync() method 702
runOnUiThread() 709
subscriptions 697
tutorial 703

Initializer Blocks 127

In-Memory Database 596

Inner Classes 128

Intelli] IDEA 87

Intent 84
explicit 84
implicit 84

Intent Availability
checking for 468

Intent Filters 464

Intents 461
ActivityResultLauncher 463
overview 461
registerForActivityResult() 463, 476

Intent Service 513

838

Intent URL 481

intermediate flow operators 536

is 99

isInitialized property 99

J

Java

convert to Kotlin 87

Java Native Interface 81

JetBrains 87

Jetpack 321

overview 321

JobIntentService 513

BIND_JOB_SERVICE permission 515
onHandleWork() method 513

join() 501

K

K2 mode 607
KeyAttribute 392
Keyboard Shortcuts 56

KeyCycle 413

Cycle Editor 417
tutorial 413

Keyframe 406
Keyframes 392
KeyFrameSet 422
KeyPosition 393

deltaRelative 394
parentRelative 393
pathRelative 394

Keystore File

creation 686

KeyTimeCycle 413

keytool 465

KeyTrigger 396

Killed state 158

Kotlin

accessing class properties 127
and Java 87
arithmetic operators 101

assignment operator 101

augmented assignment operators 102
bitwise operators 104
Boolean 92

break 112

breaking from loops 111
calling class methods 127
Char 92

class declaration 123

class initialization 124
class properties 124
Companion Objects 129
conditional control flow 113
continue labels 112
continue statement 112
control flow 109

convert from Java 87
Custom Accessors 127
data types 91

decrement operator 102
Default Function Parameters 119
defining class methods 124
do ... while loop 111

Elvis Operator 99

equality operators 103
Escape Sequences 93
expression syntax 101
Float 92

Flow 531

for-in statement 109
function calling 118
Functions 117
Higher-order Functions 121
if ... else ... expressions 114
if expressions 113
Immutable Variables 94
increment operator 102
inheritance 133

Initializer Blocks 127
Inner Classes 128
introduction 87

Lambda Expressions 120

let Function 97

Index
Local Functions 118
logical operators 103
looping 109
Mutable Variables 94
Not-Null Assertion 97
Nullable Type 96
Overriding inherited methods 136
playground 88
Primary Constructor 124
properties 127
range operator 104
Safe Call Operator 96
Secondary Constructors 124
Single Expression Functions 118
String 92
subclassing 133
Type Annotations 95
Type Casting 99
Type Checking 99
Type Inference 95
variable parameters 119
when statement 114

while loop 110

L

Lambda Expressions 120
Large Language Model 145
lateinit 98
Late Initialization 98
launch 501
launchBillingFlow() method 700
layout_collapseMode

parallax 458

pin 458
layout_constraintDimentionRatio 238
layout_constraintHorizontal_bias 236
layout_constraintVertical_bias 236
layout editor

ConstraintLayout chains 233
Layout Editor 16, 241

Autoconnect Mode 215

code mode 192

839

Index

Component Tree 189
design mode 189
device screen 189
example project 241
Inference Mode 215
palette 189
properties panel 190
Sample Data 198
Setting Properties 193
toolbar 190
user interface design 241
view conversion 197
Layout Editor Tool
changing orientation 17
overview 189
Layout Inspector 55
Layout Managers 181
Layouts 181
layout_scrollFlags
enterAlwaysCollapsed mode 455
enterAlways mode 455
exitUntilCollapsed mode 455
scroll mode 455
Layout Validation 200
let Function 97
libc 81
libs.versions.toml file 272
License Testers 705
Lifecycle
awareness 357
components 324
observers 358
owners 357
states and events 358
tutorial 361
Lifecycle- Aware Components 357
Lifecycle library 532
Lifecycle Methods 163
Lifecycle Observer 361
creatinga 361
Lifecycle Owner

creatinga 363

840

Lifecycles
modern 324
Lifecycle.State. CREATED 553
Lifecycle.State. DESTROYED 553
Lifecycle.State.INITIALIZED 553
Lifecycle.State RESUMED 553
Lifecycle.State. STARTED 553
LinearLayout 182
LinearLayoutManager 441
LinearLayoutManager layout 449
Linux Kernel 80
list devices 59
LiveData 322,333
adding to ViewModel 333
observer 335
tutorial 333
Live Templates 76
LLM 145
Local Bound Service 517
example 517
Local Functions 118
Location Manager 82
Location permission 642
Logcat
tool window 54
LogCat
enabling 173

M

MANAGE_EXTERNAL_STORAGE 643

adb enabling 643

testing 643
Manifest File

permissions 483
map() operator 536
match_parent properties 249
Material design 425
Material Design 2 715
Material Design 2 Theming 715
Material Design 3 715
Material Theme Builder 717
Material You 715

measureTimeMillis() function 535
MediaController

adding to VideoView instance 627
MediaController class 624

methods 624
MediaPlayer class 649

methods 649
MediaRecorder class 649

methods 650

recording audio 650
Memory Indicator 69
Messenger object 526
Microphone

checking for availability 652
Microphone permissions 642
mm 249
MotionEvent 281, 282, 301

getActionMasked() 282
MotionLayout 387

arc motion 392

Attribute Keyframes 392

ConstraintSets 388

Custom Attribute 408

Custom Attributes 389

Cycle Editor 417

Editor 399

KeyAttribute 392

KeyCycle 413

Keyframes 392

KeyFrameSet 422

KeyPosition 393

KeyTimeCycle 413

KeyTrigger 396

OnClick 391, 404

OnSwipe 391

overview 387

Position Keyframes 393

previewing animation 404

Trigger Keyframe 396

Tutorial 399
MotionScene

ConstraintSets 388

Index

Custom Attributes 389

file 388

overview 387

transition 388
multiple devices

testing app on 31
Multiple Touches

handling 282
multi-resume 166
Multi-Touch

example 283
Multi-touch Event Handling 281
multi-window support 166
MutableSharedFlow 542
MutableStateFlow 541
Mutable Variables 94

N

Navigation 367
adding destinations 376
overview 367
pass data with safeargs 383
passing arguments 372
stack 367
tutorial 373
Navigation Action
triggering 371
Navigation Architecture Component 367
Navigation Component
tutorial 373
Navigation Controller
accessing 371
Navigation Graph 370, 374
adding actions 380
creatinga 374
Navigation Host 368
declaring 375
newBuilder() method 698
normal permissions 641
Notification
adding actions 670
Direct Reply Input 679

841

Index

issuing a basic 666 onReceive() method 156, 492, 493, 495
launch activity from a 668 onRequestPermissionsResult() method 645, 656, 664, 674
PendingIntent 676 onRestart() method 163
Reply Action 678 onRestorelnstanceState() method 164
updating direct reply 680 onResume() method 156, 164
Notifications onSavelnstanceState() method 164
bundled 670 onScaleBegin() method 299
overview 659 onScaleEnd() method 299
Notifications Manager 82 onScale() method 299
Not-Null Assertion 97 onScroll() method 287
Nullable Type 96 OnSeekBarChangeListener 318
onServiceConnected() method 517, 520, 527
o onServiceDisconnected() method 517, 520, 527
Observer onShowPress() method 287
implementing a LiveData 335 onSingleTapUp() method 287
onAttach() method 308 onStartCommand() method 514
onBillingServiceDisconnected() callback 708 onStart() method 164
onBillingServiceDisconnected() method 699 onStop() method 164
onBillingSetupFinished() listener 708 onTouchEvent() method 287, 299
onBind() method 514, 517, 525 onTouchListener 276
onBindViewHolder() method 449 onTouch() method 282
OnClick 391 onUpgrade() 564
onClickListener 276, 277, 280 onViewCreated() method 164
onClick() method 275 onViewStatusRestored() method 164
onCreateContextMenuListener 276 OpenJDK 3
onCreate() method 156, 163, 514
onCreateView() method 164 P
onDestroy() method 164, 514 Package Explorer 15
onDoubleTap() method 287 Package Manager 82
onDown() method 287 PackageManager class 652
onEach() operator 540 PackageManager. FEATURE_MICROPHONE 652
onFling() method 287 PackageManager. PERMISSION_DENIED 643
onFocusChangeListener 276 PackageManager. PERMISSION_GRANTED 643
OnFragmentInteractionListener Package Name 14
implementation 381 Packed chain 207, 236
onGesturePerformed() method 293 parentRelative 393
onHandleWork() method 514 parent view 183
onKeyListener 276 pathRelative 394
onLongClickListener 276 Paused state 158
onLongPress() method 287 PendinglIntent class 676
onPause() method 164 Permission
onProductDetailsResponse() callback 708 checking for 643

842

permissions

normal 641
Persistent State 163
Phone permissions 642
Pinch Gesture

detection 299

example 299
Pinch Gesture Recognition 293
Position Keyframes 393
POST_NOTIFICATIONS permission 642, 674
Primary Constructor 124
Problems

tool window 54, 55
process

priority 155

state 155
PROCESS_OUTGOING_CALLS permission 642
Process States 155
ProductDetail 700
ProductDetails 709
ProductType 702
Profiler

tool window 55
ProgressBar 181
proguard-rules.pro file 734
ProGuard Support 730
Project Name 14
Project tool window 15, 53
pt 249
PurchaseResponseListener 702
PurchasesUpdatedListener 701
PurchaseUpdatedListener 709
putExtra() method 461, 491
px 250

Q

queryProductDetailsAsync() 708
queryPurchasesAsync() 711
quickboot snapshot 44

Quick Documentation 75

R

Index
RadioButton 181
Range Operator 104
ratios 237
READ_CALENDAR permission 642
READ_CALL_LOG permission 642
READ_CONTACTS permission 642
READ_EXTERNAL_STORAGE permission 643
READ_PHONE_STATE permission 642
READ_SMS permission 642
RECEIVE_MMS permission 642
RECEIVE_SMS permission 642
RECEIVE_WAP_PUSH permission 642
Recent Files Navigation 56
RECORD_AUDIO permission 642
Recording Audio
permission 651
RecyclerView 441
adding to layout file 442
GridLayoutManager 441
initializing 449
LinearLayoutManager 441
StaggeredGridLayoutManager 441
RecyclerView Adapter
creation of 447
RecyclerView.Adapter 442, 448
getltemCount() method 442
onBindViewHolder() method 442
onCreateViewHolder() method 442
RecyclerView.ViewHolder
getAdapterPosition() method 452
reduce() operator 538
registerForActivityResult() 463
registerForActivityResult() method 462, 476
registerReceiver() method 493
RelativeLayout 182
Release Preparation 683
Remote Bound Service 525
client communication 525
implementation 525
manifest file declaration 527
Remotelnput.Builder() method 676
Remotelnput Object 676

843

Index

Remote Service
launching and binding 527
sending a message 529
repeatOnLifecycle 552
Repository
tutorial 607
Repository Modules 324
Resizable Emulator 47
Resource
string creation 20
Resource File 22
Resource Management 155
Resource Manager 53, 82
result receiver 493
Room
Data Access Object (DAO) 590
entities 590, 591
In-Memory Database 596
Repository 590
Room Database 590
tutorial 607
Room Database Persistence 589
Room Persistence Library 560, 589
root element 181
root view 183
Run
tool window 53
runBlocking 501
Running Devices
tool window 65

runOnUiThread() 709

S

safeargs 383

Safe Call Operator 96

Sample Data 198

Saved State 323, 353

SavedStateHandle 354
contains() method 355
keys() method 355
remove() method 355

Saved State module 353

844

SavedStateViewModelFactory 354
ScaleGestureDetector class 299
Scale-independent 249

SDK Packages 5

Secondary Constructors 124
Secure Sockets Layer (SSL) 81
SeekBar 311

sendBroadcast() method 491, 493

sendOrderedBroadcast() method 491, 493

SEND_SMS permission 642
sendStickyBroadcast() method 491
Sensor permissions 642
Service

anatomy 514

launch at system start 515

manifest file entry 514

overview 84

run in separate process 515
ServiceConnection class 527
Service Process 156
Service Restart Options 514
setAudioEncoder() method 650
setAudioSource() method 650
setBackgroundColor() 254
setContentView() method 253, 259
setld() method 254

setOnClickListener() method 275, 277
setOnDoubleTapListener() method 287, 290

setOutputFile() method 650
setOutputFormat() method 650
setResult() method 463
setText() method 180
settings.gradle file 730
settings.gradle.kts file 730
setTransition() 397
setVideoSource() method 650
SHA-256 certificate fingerprint 465
SharedFlow 542, 545
backgroudn handling 551
DROP_LATEST 543
DROP_OLDEST 543
in ViewModel 547

repeatOnLifecycle 552
SUSPEND 543
tutorial 545
SimpleOnScaleGestureListener 299
SimpleOnScaleGestureListener class 300
single() operator 535
SMS permissions 642
Snackbar 425, 426, 427
Snapshots
emulator 43
sp 249
Spread chain 206
Spread inside 236
Spread inside chain 206
SQL 556
SQL CREATE 564
SQLite 555
AVD command-line use 557
Columns and Data Types 555
overview 556
Primary keys 556
tutorial 561
SQLiteDatabase 564
SQLiteOpenHelper 562
SQL SELECT 565
StaggeredGridLayoutManager 441
startActivity() method 461
startForeground() method 156
START_NOT_STICKY 514
START_REDELIVER_INTENT 514
START_STICKY 514
State
restoring 180
State Change
handling 159
StateFlow 541
Statement Completion 72
Status Bar Widgets 69
Memory Indicator 69
Sticky Broadcast Intents 493
Stopped state 158

Storage permissions 643

Index

String 92
strings.xml file 24
Structure

tool window 55
Structured Query Language 556
Structure tool window 55
SUBS 702
subscriptions 697
supervisorScope 501
SUSPEND 543
Suspend Functions 500
Switcher 56
System Broadcasts 497

system requirements 3

T

TabLayout

adding to layout 435

app

tabGravity property 440
tabMode property 440

example 432

fixed mode 439

getltemCount() method 431

overview 431
TableLayout 182, 599
TableRow 599
Telephony Manager 82
Templates

blank vs. empty 185
Terminal

tool window 54
terminal flow operators 538
Theme

building a custom 717
Theme Builder 717
Theming 715

tutorial 721
Time Cycle Keyframes 397
TODO

tool window 55

ToolbarListener 308

845

Index

tools
layout 305
Tool window bars 52
Tool windows 52
Touch Actions 282
Touch Event Listener
implementation 283
Touch Events
intercepting 281
Touch handling 281
transform() operator 537
try/finally 534
Type Annotations 95
Type Casting 99
Type Checking 99
Type Inference 95

U

unbindService() method 513
unregisterReceiver() method 493
upload key 686
UriMatcher 570, 576
UriMatcher class 570
USB connection issues

resolving 62
user interface state 163

USE_SIP permission 642

\%

Version catalog 271
dependencies 273
libraries 273
libs.versions.toml file 272
plugins 273
versions 273

Video Playback 623

VideoView class 623
methods 623
supported formats 623

view bindings
enabling 140

using 140

846

View class
setting properties 260
view conversion 197
ViewGroup 181
View Groups 181
View Hierarchy 183
ViewHolder class 442
sample implementation 448
ViewModel
adding LiveData 333
data access 331
overview 322
saved state 353
Saved State 323, 353
tutorial 327
ViewModelProvider 330
ViewModel Saved State 353
ViewModelScope 500
ViewPager
adding to layout 435
example 432
Views 181
Java creation 253

View System 82

Virtual Device Configuration dialog 28

Virtual Sensors 43

Visible Process 156

w

WebView view 481
Weighted chain 206, 236
Welcome screen 49
while Loop 110

Widget Dimensions 207
Widget Group Alignment 229
Widgets palette 242
WiFi debugging 63
Wireless debugging 63
Wireless pairing 63
withContext 501, 503

wrap_content properties 251

WRITE_CALENDAR permission 642

Index

WRITE_CALL_LOG permission 642
WRITE_CONTACTS permission 642
WRITE_EXTERNAL_STORAGE permission 643

X

XML Layout File
manual creation 249

vs. Java Code 253

Z

zip() operator 540

847

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 Installing additional Android SDK packages
	2.5 Installing the Android SDK Command-line Tools
	2.5.1 Windows 8.1
	2.5.2 Windows 10
	2.5.3 Windows 11
	2.5.4 Linux
	2.5.5 macOS

	2.6 Android Studio memory management
	2.7 Updating Android Studio and the SDK
	2.8 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Modifying the Example Application
	3.6 Modifying the User Interface
	3.7 Reviewing the Layout and Resource Files
	3.8 Adding Interaction
	3.9 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Running the Emulator in a Separate Window
	4.7 Removing the Device Frame
	4.8 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Common Android Settings
	5.10 Creating a Resizable Emulator
	5.11 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Menu Bar
	6.3 The Main Window
	6.4 The Tool Windows
	6.5 The Tool Window Menus
	6.6 Android Studio Keyboard Shortcuts
	6.7 Switcher and Recent Files Navigation
	6.8 Changing the Android Studio Theme
	6.9 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Device Mirroring
	7.7 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Hardware Abstraction Layer
	9.4 Android Runtime – ART
	9.5 Android Libraries
	9.5.1 C/C++ Libraries

	9.6 Application Framework
	9.7 Applications
	9.8 Summary

	10. The Anatomy of an Android App
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types, Variables, and Nullability
	12.1 Kotlin Data Types
	12.1.1 Integer Data Types
	12.1.2 Floating-Point Data Types
	12.1.3 Boolean Data Type
	12.1.4 Character Data Type
	12.1.5 String Data Type
	12.1.6 Escape Sequences

	12.2 Mutable Variables
	12.3 Immutable Variables
	12.4 Declaring Mutable and Immutable Variables
	12.5 Data Types are Objects
	12.6 Type Annotations and Type Inference
	12.7 Nullable Type
	12.8 The Safe Call Operator
	12.9 Not-Null Assertion
	12.10 Nullable Types and the let Function
	12.11 Late Initialization (lateinit)
	12.12 The Elvis Operator
	12.13 Type Casting and Type Checking
	12.14 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression Syntax in Kotlin
	13.2 The Basic Assignment Operator
	13.3 Kotlin Arithmetic Operators
	13.4 Augmented Assignment Operators
	13.5 Increment and Decrement Operators
	13.6 Equality Operators
	13.7 Boolean Logical Operators
	13.8 Range Operator
	13.9 Bitwise Operators
	13.9.1 Bitwise Inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise Left Shift
	13.9.6 Bitwise Right Shift

	13.10 Summary

	14. Kotlin Control Flow
	14.1 Looping Control flow
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while Loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue Statement
	14.1.6 Break and Continue Labels

	14.2 Conditional Control Flow
	14.2.1 Using the if Expressions
	14.2.2 Using if ... else … Expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when Statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a Function?
	15.2 How to Declare a Kotlin Function
	15.3 Calling a Kotlin Function
	15.4 Single Expression Functions
	15.5 Local Functions
	15.6 Handling Return Values
	15.7 Declaring Default Function Parameters
	15.8 Variable Number of Function Parameters
	15.9 Lambda Expressions
	15.10 Higher-order Functions
	15.11 Summary

	16. The Basics of Object Oriented Programming in Kotlin
	16.1 What is an Object?
	16.2 What is a Class?
	16.3 Declaring a Kotlin Class
	16.4 Adding Properties to a Class
	16.5 Defining Methods
	16.6 Declaring and Initializing a Class Instance
	16.7 Primary and Secondary Constructors
	16.8 Initializer Blocks
	16.9 Calling Methods and Accessing Properties
	16.10 Custom Accessors
	16.11 Nested and Inner Classes
	16.12 Companion Objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, Classes and Subclasses
	17.2 Subclassing Syntax
	17.3 A Kotlin Inheritance Example
	17.4 Extending the Functionality of a Subclass
	17.5 Overriding Inherited Methods
	17.6 Adding a Custom Secondary Constructor
	17.7 Using the SavingsAccount Class
	17.8 Summary

	18. An Overview of Android View Binding
	18.1 Find View by Id
	18.2 View Binding
	18.3 Converting the AndroidSample project
	18.4 Enabling View Binding
	18.5 Using View Binding
	18.6 Choosing an Option
	18.7 View Binding in the Book Examples
	18.8 Migrating a Project to View Binding
	18.9 Summary

	19. Introducing Gemini in Android Studio
	19.1 Introducing Gemini AI
	19.2 Enabling Gemini in Android Studio
	19.3 Gemini configuration
	19.4 Asking Gemini questions
	19.5 Question contexts
	19.6 Inline code completion
	19.7 Transforming and documenting code
	19.8 Summary

	20. Understanding Android Application and Activity Lifecycles
	20.1 Android Applications and Resource Management
	20.2 Android Process States
	20.2.1 Foreground Process
	20.2.2 Visible Process
	20.2.3 Service Process
	20.2.4 Background Process
	20.2.5 Empty Process

	20.3 Inter-Process Dependencies
	20.4 The Activity Lifecycle
	20.5 The Activity Stack
	20.6 Activity States
	20.7 Configuration Changes
	20.8 Handling State Change
	20.9 Summary

	21. Handling Android Activity State Changes
	21.1 New vs. Old Lifecycle Techniques
	21.2 The Activity and Fragment Classes
	21.3 Dynamic State vs. Persistent State
	21.4 The Android Lifecycle Methods
	21.5 Lifetimes
	21.6 Foldable Devices and Multi-Resume
	21.7 Disabling Configuration Change Restarts
	21.8 Lifecycle Method Limitations
	21.9 Summary

	22. Android Activity State Changes by Example
	22.1 Creating the State Change Example Project
	22.2 Designing the User Interface
	22.3 Overriding the Activity Lifecycle Methods
	22.4 Filtering the Logcat Panel
	22.5 Running the Application
	22.6 Experimenting with the Activity
	22.7 Summary

	23. Saving and Restoring the State of an Android Activity
	23.1 Saving Dynamic State
	23.2 Default Saving of User Interface State
	23.3 The Bundle Class
	23.4 Saving the State
	23.5 Restoring the State
	23.6 Testing the Application
	23.7 Summary

	24. Understanding Android Views, View Groups and Layouts
	24.1 Designing for Different Android Devices
	24.2 Views and View Groups
	24.3 Android Layout Managers
	24.4 The View Hierarchy
	24.5 Creating User Interfaces
	24.6 Summary

	25. A Guide to the Android Studio Layout Editor Tool
	25.1 Basic vs. Empty Views Activity Templates
	25.2 The Android Studio Layout Editor
	25.3 Design Mode
	25.4 The Palette
	25.5 Design Mode and Layout Views
	25.6 Night Mode
	25.7 Code Mode
	25.8 Split Mode
	25.9 Setting Attributes
	25.10 Transforms
	25.11 Tools Visibility Toggles
	25.12 Converting Views
	25.13 Displaying Sample Data
	25.14 Creating a Custom Device Definition
	25.15 Changing the Current Device
	25.16 Layout Validation
	25.17 Summary

	26. A Guide to the Android ConstraintLayout
	26.1 How ConstraintLayout Works
	26.1.1 Constraints
	26.1.2 Margins
	26.1.3 Opposing Constraints
	26.1.4 Constraint Bias
	26.1.5 Chains
	26.1.6 Chain Styles

	26.2 Baseline Alignment
	26.3 Configuring Widget Dimensions
	26.4 Guideline Helper
	26.5 Group Helper
	26.6 Barrier Helper
	26.7 Flow Helper
	26.8 Ratios
	26.9 ConstraintLayout Advantages
	26.10 ConstraintLayout Availability
	26.11 Summary

	27. A Guide to Using ConstraintLayout in Android Studio
	27.1 Design and Layout Views
	27.2 Autoconnect Mode
	27.3 Inference Mode
	27.4 Manipulating Constraints Manually
	27.5 Adding Constraints in the Inspector
	27.6 Viewing Constraints in the Attributes Window
	27.7 Deleting Constraints
	27.8 Adjusting Constraint Bias
	27.9 Understanding ConstraintLayout Margins
	27.10 The Importance of Opposing Constraints and Bias
	27.11 Configuring Widget Dimensions
	27.12 Design Time Tools Positioning
	27.13 Adding Guidelines
	27.14 Adding Barriers
	27.15 Adding a Group
	27.16 Working with the Flow Helper
	27.17 Widget Group Alignment and Distribution
	27.18 Converting other Layouts to ConstraintLayout
	27.19 Summary

	28. Working with ConstraintLayout Chains and Ratios in Android Studio
	28.1 Creating a Chain
	28.2 Changing the Chain Style
	28.3 Spread Inside Chain Style
	28.4 Packed Chain Style
	28.5 Packed Chain Style with Bias
	28.6 Weighted Chain
	28.7 Working with Ratios
	28.8 Summary

	29. An Android Studio Layout Editor ConstraintLayout Tutorial
	29.1 An Android Studio Layout Editor Tool Example
	29.2 Preparing the Layout Editor Environment
	29.3 Adding the Widgets to the User Interface
	29.4 Adding the Constraints
	29.5 Testing the Layout
	29.6 Using the Layout Inspector
	29.7 Summary

	30. Manual XML Layout Design in Android Studio
	30.1 Manually Creating an XML Layout
	30.2 Manual XML vs. Visual Layout Design
	30.3 Summary

	31. Managing Constraints using Constraint Sets
	31.1 Kotlin Code vs. XML Layout Files
	31.2 Creating Views
	31.3 View Attributes
	31.4 Constraint Sets
	31.4.1 Establishing Connections
	31.4.2 Applying Constraints to a Layout
	31.4.3 Parent Constraint Connections
	31.4.4 Sizing Constraints
	31.4.5 Constraint Bias
	31.4.6 Alignment Constraints
	31.4.7 Copying and Applying Constraint Sets
	31.4.8 ConstraintLayout Chains
	31.4.9 Guidelines
	31.4.10 Removing Constraints
	31.4.11 Scaling
	31.4.12 Rotation

	31.5 Summary

	32. An Android ConstraintSet Tutorial
	32.1 Creating the Example Project in Android Studio
	32.2 Adding Views to an Activity
	32.3 Setting View Attributes
	32.4 Creating View IDs
	32.5 Configuring the Constraint Set
	32.6 Adding the EditText View
	32.7 Converting Density Independent Pixels (dp) to Pixels (px)
	32.8 Summary

	33. A Guide to Using Apply Changes in Android Studio
	33.1 Introducing Apply Changes
	33.2 Understanding Apply Changes Options
	33.3 Using Apply Changes
	33.4 Configuring Apply Changes Fallback Settings
	33.5 An Apply Changes Tutorial
	33.6 Using Apply Code Changes
	33.7 Using Apply Changes and Restart Activity
	33.8 Using Run App
	33.9 Summary

	34. A Guide to Gradle Version Catalogs
	34.1 Library and Plugin Dependencies
	34.2 Project Gradle Build File
	34.3 Module Gradle Build Files
	34.4 Version Catalog File
	34.5 Adding Dependencies
	34.6 Library Updates
	34.7 Summary

	35. An Overview and Example of Android Event Handling
	35.1 Understanding Android Events
	35.2 Using the android:onClick Resource
	35.3 Event Listeners and Callback Methods
	35.4 An Event Handling Example
	35.5 Designing the User Interface
	35.6 The Event Listener and Callback Method
	35.7 Consuming Events
	35.8 Summary

	36. Android Touch and Multi-touch Event Handling
	36.1 Intercepting Touch Events
	36.2 The MotionEvent Object
	36.3 Understanding Touch Actions
	36.4 Handling Multiple Touches
	36.5 An Example Multi-Touch Application
	36.6 Designing the Activity User Interface
	36.7 Implementing the Touch Event Listener
	36.8 Running the Example Application
	36.9 Summary

	37. Detecting Common Gestures Using the Android Gesture Detector Class
	37.1 Implementing Common Gesture Detection
	37.2 Creating an Example Gesture Detection Project
	37.3 Implementing the Listener Class
	37.4 Creating the GestureDetector Instance
	37.5 Implementing the onTouchEvent() Method
	37.6 Testing the Application
	37.7 Summary

	38. Implementing Custom Gesture and Pinch Recognition on Android
	38.1 The Android Gesture Builder Application
	38.2 The GestureOverlayView Class
	38.3 Detecting Gestures
	38.4 Identifying Specific Gestures
	38.5 Installing and Running the Gesture Builder Application
	38.6 Creating a Gestures File
	38.7 Creating the Example Project
	38.8 Extracting the Gestures File from the SD Card
	38.9 Adding the Gestures File to the Project
	38.10 Designing the User Interface
	38.11 Loading the Gestures File
	38.12 Registering the Event Listener
	38.13 Implementing the onGesturePerformed Method
	38.14 Testing the Application
	38.15 Configuring the GestureOverlayView
	38.16 Intercepting Gestures
	38.17 Detecting Pinch Gestures
	38.18 A Pinch Gesture Example Project
	38.19 Summary

	39. An Introduction to Android Fragments
	39.1 What is a Fragment?
	39.2 Creating a Fragment
	39.3 Adding a Fragment to an Activity using the Layout XML File
	39.4 Adding and Managing Fragments in Code
	39.5 Handling Fragment Events
	39.6 Implementing Fragment Communication
	39.7 Summary

	40. Using Fragments in Android Studio - An Example
	40.1 About the Example Fragment Application
	40.2 Creating the Example Project
	40.3 Creating the First Fragment Layout
	40.4 Migrating a Fragment to View Binding
	40.5 Adding the Second Fragment
	40.6 Adding the Fragments to the Activity
	40.7 Making the Toolbar Fragment Talk to the Activity
	40.8 Making the Activity Talk to the Text Fragment
	40.9 Testing the Application
	40.10 Summary

	41. Modern Android App Architecture with Jetpack
	41.1 What is Android Jetpack?
	41.2 The “Old” Architecture
	41.3 Modern Android Architecture
	41.4 The ViewModel Component
	41.5 The LiveData Component
	41.6 ViewModel Saved State
	41.7 LiveData and Data Binding
	41.8 Android Lifecycles
	41.9 Repository Modules
	41.10 Summary

	42. An Android ViewModel Tutorial
	42.1 About the Project
	42.2 Creating the ViewModel Example Project
	42.3 Removing Unwanted Project Elements
	42.4 Designing the Fragment Layout
	42.5 Implementing the View Model
	42.6 Associating the Fragment with the View Model
	42.7 Modifying the Fragment
	42.8 Accessing the ViewModel Data
	42.9 Testing the Project
	42.10 Summary

	43. An Android Jetpack LiveData Tutorial
	43.1 LiveData - A Recap
	43.2 Adding LiveData to the ViewModel
	43.3 Implementing the Observer
	43.4 Summary

	44. An Overview of Android Jetpack Data Binding
	44.1 An Overview of Data Binding
	44.2 The Key Components of Data Binding
	44.2.1 The Project Build Configuration
	44.2.2 The Data Binding Layout File
	44.2.3 The Layout File Data Element
	44.2.4 The Binding Classes
	44.2.5 Data Binding Variable Configuration
	44.2.6 Binding Expressions (One-Way)
	44.2.7 Binding Expressions (Two-Way)
	44.2.8 Event and Listener Bindings

	44.3 Summary

	45. An Android Jetpack Data Binding Tutorial
	45.1 Removing the Redundant Code
	45.2 Enabling Data Binding
	45.3 Adding the Layout Element
	45.4 Adding the Data Element to Layout File
	45.5 Working with the Binding Class
	45.6 Assigning the ViewModel Instance to the Data Binding Variable
	45.7 Adding Binding Expressions
	45.8 Adding the Conversion Method
	45.9 Adding a Listener Binding
	45.10 Testing the App
	45.11 Summary

	46. An Android ViewModel Saved State Tutorial
	46.1 Understanding ViewModel State Saving
	46.2 Implementing ViewModel State Saving
	46.3 Saving and Restoring State
	46.4 Adding Saved State Support to the ViewModelDemo Project
	46.5 Summary

	47. Working with Android Lifecycle-Aware Components
	47.1 Lifecycle Awareness
	47.2 Lifecycle Owners
	47.3 Lifecycle Observers
	47.4 Lifecycle States and Events
	47.5 Summary

	48. An Android Jetpack Lifecycle Awareness Tutorial
	48.1 Creating the Example Lifecycle Project
	48.2 Creating a Lifecycle Observer
	48.3 Adding the Observer
	48.4 Testing the Observer
	48.5 Creating a Lifecycle Owner
	48.6 Testing the Custom Lifecycle Owner
	48.7 Summary

	49. An Overview of the Navigation Architecture Component
	49.1 Understanding Navigation
	49.2 Declaring a Navigation Host
	49.3 The Navigation Graph
	49.4 Accessing the Navigation Controller
	49.5 Triggering a Navigation Action
	49.6 Passing Arguments
	49.7 Summary

	50. An Android Jetpack Navigation Component Tutorial
	50.1 Creating the NavigationDemo Project
	50.2 Adding Navigation to the Build Configuration
	50.3 Creating the Navigation Graph Resource File
	50.4 Declaring a Navigation Host
	50.5 Adding Navigation Destinations
	50.6 Designing the Destination Fragment Layouts
	50.7 Adding an Action to the Navigation Graph
	50.8 Implement the OnFragmentInteractionListener
	50.9 Adding View Binding Support to the Destination Fragments
	50.10 Triggering the Action
	50.11 Passing Data Using Safeargs
	50.12 Summary

	51. An Introduction to MotionLayout
	51.1 An Overview of MotionLayout
	51.2 MotionLayout
	51.3 MotionScene
	51.4 Configuring ConstraintSets
	51.5 Custom Attributes
	51.6 Triggering an Animation
	51.7 Arc Motion
	51.8 Keyframes
	51.8.1 Attribute Keyframes
	51.8.2 Position Keyframes

	51.9 Time Linearity
	51.10 KeyTrigger
	51.11 Cycle and Time Cycle Keyframes
	51.12 Starting an Animation from Code
	51.13 Summary

	52. An Android MotionLayout Editor Tutorial
	52.1 Creating the MotionLayoutDemo Project
	52.2 ConstraintLayout to MotionLayout Conversion
	52.3 Configuring Start and End Constraints
	52.4 Previewing the MotionLayout Animation
	52.5 Adding an OnClick Gesture
	52.6 Adding an Attribute Keyframe to the Transition
	52.7 Adding a CustomAttribute to a Transition
	52.8 Adding Position Keyframes
	52.9 Summary

	53. A MotionLayout KeyCycle Tutorial
	53.1 An Overview of Cycle Keyframes
	53.2 Using the Cycle Editor
	53.3 Creating the KeyCycleDemo Project
	53.4 Configuring the Start and End Constraints
	53.5 Creating the Cycles
	53.6 Previewing the Animation
	53.7 Adding the KeyFrameSet to the MotionScene
	53.8 Summary

	54. Working with the Floating Action Button and Snackbar
	54.1 The Material Design
	54.2 The Design Library
	54.3 The Floating Action Button (FAB)
	54.4 The Snackbar
	54.5 Creating the Example Project
	54.6 Reviewing the Project
	54.7 Removing Navigation Features
	54.8 Changing the Floating Action Button
	54.9 Adding an Action to the Snackbar
	54.10 Summary

	55. Creating a Tabbed Interface using the TabLayout Component
	55.1 An Introduction to the ViewPager2
	55.2 An Overview of the TabLayout Component
	55.3 Creating the TabLayoutDemo Project
	55.4 Creating the First Fragment
	55.5 Duplicating the Fragments
	55.6 Adding the TabLayout and ViewPager2
	55.7 Creating the Pager Adapter
	55.8 Performing the Initialization Tasks
	55.9 Testing the Application
	55.10 Customizing the TabLayout
	55.11 Summary

	56. Working with the RecyclerView and CardView Widgets
	56.1 An Overview of the RecyclerView
	56.2 An Overview of the CardView
	56.3 Summary

	57. An Android RecyclerView and CardView Tutorial
	57.1 Creating the CardDemo Project
	57.2 Modifying the Basic Views Activity Project
	57.3 Designing the CardView Layout
	57.4 Adding the RecyclerView
	57.5 Adding the Image Files
	57.6 Creating the RecyclerView Adapter
	57.7 Initializing the RecyclerView Component
	57.8 Testing the Application
	57.9 Responding to Card Selections
	57.10 Summary

	58. Working with the AppBar and Collapsing Toolbar Layouts
	58.1 The Anatomy of an AppBar
	58.2 The Example Project
	58.3 Coordinating the RecyclerView and Toolbar
	58.4 Introducing the Collapsing Toolbar Layout
	58.5 Changing the Title and Scrim Color
	58.6 Summary

	59. An Overview of Android Intents
	59.1 An Overview of Intents
	59.2 Explicit Intents
	59.3 Returning Data from an Activity
	59.4 Implicit Intents
	59.5 Using Intent Filters
	59.6 Automatic Link Verification
	59.7 Manually Enabling Links
	59.8 Checking Intent Availability
	59.9 Summary

	60. Android Explicit Intents – A Worked Example
	60.1 Creating the Explicit Intent Example Application
	60.2 Designing the User Interface Layout for MainActivity
	60.3 Creating the Second Activity Class
	60.4 Designing the User Interface Layout for SecondActivity
	60.5 Reviewing the Application Manifest File
	60.6 Creating the Intent
	60.7 Extracting Intent Data
	60.8 Launching SecondActivity as a Sub-Activity
	60.9 Returning Data from a Sub-Activity
	60.10 Testing the Application
	60.11 Summary

	61. Android Implicit Intents – A Worked Example
	61.1 Creating the Android Studio Implicit Intent Example Project
	61.2 Designing the User Interface
	61.3 Creating the Implicit Intent
	61.4 Adding a Second Matching Activity
	61.5 Adding the Web View to the UI
	61.6 Obtaining the Intent URL
	61.7 Modifying the MyWebView Project Manifest File
	61.8 Installing the MyWebView Package on a Device
	61.9 Testing the Application
	61.10 Manually Enabling the Link
	61.11 Automatic Link Verification
	61.12 Summary

	62. Android Broadcast Intents and Broadcast Receivers
	62.1 An Overview of Broadcast Intents
	62.2 An Overview of Broadcast Receivers
	62.3 Obtaining Results from a Broadcast
	62.4 Sticky Broadcast Intents
	62.5 The Broadcast Intent Example
	62.6 Creating the Example Application
	62.7 Creating and Sending the Broadcast Intent
	62.8 Creating the Broadcast Receiver
	62.9 Registering the Broadcast Receiver
	62.10 Testing the Broadcast Example
	62.11 Listening for System Broadcasts
	62.12 Summary

	63. An Introduction to Kotlin Coroutines
	63.1 What are Coroutines?
	63.2 Threads vs. Coroutines
	63.3 Coroutine Scope
	63.4 Suspend Functions
	63.5 Coroutine Dispatchers
	63.6 Coroutine Builders
	63.7 Jobs
	63.8 Coroutines – Suspending and Resuming
	63.9 Returning Results from a Coroutine
	63.10 Using withContext
	63.11 Coroutine Channel Communication
	63.12 Summary

	64. An Android Kotlin Coroutines Tutorial
	64.1 Creating the Coroutine Example Application
	64.2 Designing the User Interface
	64.3 Implementing the SeekBar
	64.4 Adding the Suspend Function
	64.5 Implementing the launchCoroutines Method
	64.6 Testing the App
	64.7 Summary

	65. An Overview of Android Services
	65.1 Intent Service
	65.2 Bound Service
	65.3 The Anatomy of a Service
	65.4 Controlling Destroyed Service Restart Options
	65.5 Declaring a Service in the Manifest File
	65.6 Starting a Service Running on System Startup
	65.7 Summary

	66. Android Local Bound Services – A Worked Example
	66.1 Understanding Bound Services
	66.2 Bound Service Interaction Options
	66.3 A Local Bound Service Example
	66.4 Adding a Bound Service to the Project
	66.5 Implementing the Binder
	66.6 Binding the Client to the Service
	66.7 Completing the Example
	66.8 Testing the Application
	66.9 Summary

	67. Android Remote Bound Services – A Worked Example
	67.1 Client to Remote Service Communication
	67.2 Creating the Example Application
	67.3 Designing the User Interface
	67.4 Implementing the Remote Bound Service
	67.5 Configuring a Remote Service in the Manifest File
	67.6 Launching and Binding to the Remote Service
	67.7 Sending a Message to the Remote Service
	67.8 Summary

	68. An Introduction to Kotlin Flow
	68.1 Understanding Flows
	68.2 Creating the Sample Project
	68.3 Adding the Kotlin Lifecycle Library
	68.4 Declaring a Flow
	68.5 Emitting Flow Data
	68.6 Collecting Flow Data
	68.7 Adding a Flow Buffer
	68.8 Transforming Data with Intermediaries
	68.9 Terminal Flow Operators
	68.10 Flow Flattening
	68.11 Combining Multiple Flows
	68.12 Hot and Cold Flows
	68.13 StateFlow
	68.14 SharedFlow
	68.15 Summary

	69. An Android SharedFlow Tutorial
	69.1 About the Project
	69.2 Creating the SharedFlowDemo Project
	69.3 Adding the Lifecycle Libraries
	69.4 Designing the User Interface Layout
	69.5 Adding the List Row Layout
	69.6 Adding the RecyclerView Adapter
	69.7 Adding the ViewModel
	69.8 Configuring the ViewModelProvider
	69.9 Collecting the Flow Values
	69.10 Testing the SharedFlowDemo App
	69.11 Handling Flows in the Background
	69.12 Summary

	70. An Overview of Android SQLite Databases
	70.1 Understanding Database Tables
	70.2 Introducing Database Schema
	70.3 Columns and Data Types
	70.4 Database Rows
	70.5 Introducing Primary Keys
	70.6 What is SQLite?
	70.7 Structured Query Language (SQL)
	70.8 Trying SQLite on an Android Virtual Device (AVD)
	70.9 Android SQLite Classes
	70.9.1 Cursor
	70.9.2 SQLiteDatabase
	70.9.3 SQLiteOpenHelper
	70.9.4 ContentValues

	70.10 The Android Room Persistence Library
	70.11 Summary

	71. An Android SQLite Database Tutorial
	71.1 About the Database Example
	71.2 Creating the SQLDemo Project
	71.3 Designing the User interface
	71.4 Creating the Data Model
	71.5 Implementing the Data Handler
	71.6 The Add Handler Method
	71.7 The Query Handler Method
	71.8 The Delete Handler Method
	71.9 Implementing the Activity Event Methods
	71.10 Testing the Application
	71.11 Summary

	72. Understanding Android Content Providers
	72.1 What is a Content Provider?
	72.2 The Content Provider
	72.2.1 onCreate()
	72.2.2 query()
	72.2.3 insert()
	72.2.4 update()
	72.2.5 delete()
	72.2.6 getType()

	72.3 The Content URI
	72.4 The Content Resolver
	72.5 The <provider> Manifest Element
	72.6 Summary

	73. An Android Content Provider Tutorial
	73.1 Copying the SQLDemo Project
	73.2 Adding the Content Provider Package
	73.3 Creating the Content Provider Class
	73.4 Constructing the Authority and Content URI
	73.5 Implementing URI Matching in the Content Provider
	73.6 Implementing the Content Provider onCreate() Method
	73.7 Implementing the Content Provider insert() Method
	73.8 Implementing the Content Provider query() Method
	73.9 Implementing the Content Provider update() Method
	73.10 Implementing the Content Provider delete() Method
	73.11 Declaring the Content Provider in the Manifest File
	73.12 Modifying the Database Handler
	73.13 Summary

	74. An Android Content Provider Client Tutorial
	74.1 Creating the SQLDemoClient Project
	74.2 Designing the User interface
	74.3 Accessing the Content Provider
	74.4 Adding the Query Permission
	74.5 Testing the Project
	74.6 Summary

	75. The Android Room Persistence Library
	75.1 Revisiting Modern App Architecture
	75.2 Key Elements of Room Database Persistence
	75.2.1 Repository
	75.2.2 Room Database
	75.2.3 Data Access Object (DAO)
	75.2.4 Entities
	75.2.5 SQLite Database

	75.3 Understanding Entities
	75.4 Data Access Objects
	75.5 The Room Database
	75.6 The Repository
	75.7 In-Memory Databases
	75.8 Database Inspector
	75.9 Summary

	76. An Android TableLayout and TableRow Tutorial
	76.1 The TableLayout and TableRow Layout Views
	76.2 Creating the Room Database Project
	76.3 Converting to a LinearLayout
	76.4 Adding the TableLayout to the User Interface
	76.5 Configuring the TableRows
	76.6 Adding the Button Bar to the Layout
	76.7 Adding the RecyclerView
	76.8 Adjusting the Layout Margins
	76.9 Summary

	77. An Android Room Database and Repository Tutorial
	77.1 About the RoomDemo Project
	77.2 Modifying the Build Configuration
	77.3 Building the Entity
	77.4 Creating the Data Access Object
	77.5 Adding the Room Database
	77.6 Adding the Repository
	77.7 Adding the ViewModel
	77.8 Creating the Product Item Layout
	77.9 Adding the RecyclerView Adapter
	77.10 Preparing the Main Activity
	77.11 Adding the Button Listeners
	77.12 Adding LiveData Observers
	77.13 Initializing the RecyclerView
	77.14 Testing the RoomDemo App
	77.15 Using the Database Inspector
	77.16 Summary

	78. Video Playback on Android using the VideoView and MediaController Classes
	78.1 Introducing the Android VideoView Class
	78.2 Introducing the Android MediaController Class
	78.3 Creating the Video Playback Example
	78.4 Designing the VideoPlayer Layout
	78.5 Downloading the Video File
	78.6 Configuring the VideoView
	78.7 Adding the MediaController to the Video View
	78.8 Setting up the onPreparedListener
	78.9 Summary

	79. Android Picture-in-Picture Mode
	79.1 Picture-in-Picture Features
	79.2 Enabling Picture-in-Picture Mode
	79.3 Configuring Picture-in-Picture Parameters
	79.4 Entering Picture-in-Picture Mode
	79.5 Detecting Picture-in-Picture Mode Changes
	79.6 Adding Picture-in-Picture Actions
	79.7 Summary

	80. An Android Picture-in-Picture Tutorial
	80.1 Adding Picture-in-Picture Support to the Manifest
	80.2 Adding a Picture-in-Picture Button
	80.3 Entering Picture-in-Picture Mode
	80.4 Detecting Picture-in-Picture Mode Changes
	80.5 Adding a Broadcast Receiver
	80.6 Adding the PiP Action
	80.7 Testing the Picture-in-Picture Action
	80.8 Summary

	81. Making Runtime Permission Requests in Android
	81.1 Understanding Normal and Dangerous Permissions
	81.2 Creating the Permissions Example Project
	81.3 Checking for a Permission
	81.4 Requesting Permission at Runtime
	81.5 Providing a Rationale for the Permission Request
	81.6 Testing the Permissions App
	81.7 Summary

	82. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	82.1 Playing Audio
	82.2 Recording Audio and Video using the MediaRecorder Class
	82.3 About the Example Project
	82.4 Creating the AudioApp Project
	82.5 Designing the User Interface
	82.6 Checking for Microphone Availability
	82.7 Initializing the Activity
	82.8 Implementing the recordAudio() Method
	82.9 Implementing the stopAudio() Method
	82.10 Implementing the playAudio() method
	82.11 Configuring and Requesting Permissions
	82.12 Testing the Application
	82.13 Summary

	83. An Android Notifications Tutorial
	83.1 An Overview of Notifications
	83.2 Creating the NotifyDemo Project
	83.3 Designing the User Interface
	83.4 Creating the Second Activity
	83.5 Creating a Notification Channel
	83.6 Requesting Notification Permission
	83.7 Creating and Issuing a Notification
	83.8 Launching an Activity from a Notification
	83.9 Adding Actions to a Notification
	83.10 Bundled Notifications
	83.11 Summary

	84. An Android Direct Reply Notification Tutorial
	84.1 Creating the DirectReply Project
	84.2 Designing the User Interface
	84.3 Requesting Notification Permission
	84.4 Creating the Notification Channel
	84.5 Building the RemoteInput Object
	84.6 Creating the PendingIntent
	84.7 Creating the Reply Action
	84.8 Receiving Direct Reply Input
	84.9 Updating the Notification
	84.10 Summary

	85. Working with the Google Maps Android API in Android Studio
	85.1 The Elements of the Google Maps Android API
	85.2 Creating the Google Maps Project
	85.3 Creating a Google Cloud Billing Account
	85.4 Creating a New Google Cloud Project
	85.5 Enabling the Google Maps SDK
	85.6 Generating a Google Maps API Key
	85.7 Adding the API Key to the Android Studio Project
	85.8 Testing the Application
	85.9 Understanding Geocoding and Reverse Geocoding
	85.10 Adding a Map to an Application
	85.11 Requesting Current Location Permission
	85.12 Displaying the User’s Current Location
	85.13 Changing the Map Type
	85.14 Displaying Map Controls to the User
	85.15 Handling Map Gesture Interaction
	85.15.1 Map Zooming Gestures
	85.15.2 Map Scrolling/Panning Gestures
	85.15.3 Map Tilt Gestures
	85.15.4 Map Rotation Gestures

	85.16 Creating Map Markers
	85.17 Controlling the Map Camera
	85.18 Summary

	86. Printing with the Android Printing Framework
	86.1 The Android Printing Architecture
	86.2 The Print Service Plugins
	86.3 Google Cloud Print
	86.4 Printing to Google Drive
	86.5 Save as PDF
	86.6 Printing from Android Devices
	86.7 Options for Building Print Support into Android Apps
	86.7.1 Image Printing
	86.7.2 Creating and Printing HTML Content
	86.7.3 Printing a Web Page
	86.7.4 Printing a Custom Document

	86.8 Summary

	87. An Android HTML and Web Content Printing Example
	87.1 Creating the HTML Printing Example Application
	87.2 Printing Dynamic HTML Content
	87.3 Creating the Web Page Printing Example
	87.4 Removing the Floating Action Button
	87.5 Removing Navigation Features
	87.6 Designing the User Interface Layout
	87.7 Accessing the WebView from the Main Activity
	87.8 Loading the Web Page into the WebView
	87.9 Adding the Print Menu Option
	87.10 Summary

	88. A Guide to Android Custom Document Printing
	88.1 An Overview of Android Custom Document Printing
	88.1.1 Custom Print Adapters

	88.2 Preparing the Custom Document Printing Project
	88.3 Designing the UI
	88.4 Creating the Custom Print Adapter
	88.5 Implementing the onLayout() Callback Method
	88.6 Implementing the onWrite() Callback Method
	88.7 Checking a Page is in Range
	88.8 Drawing the Content on the Page Canvas
	88.9 Starting the Print Job
	88.10 Testing the Application
	88.11 Summary

	89. An Introduction to Android App Links
	89.1 An Overview of Android App Links
	89.2 App Link Intent Filters
	89.3 Handling App Link Intents
	89.4 Associating the App with a Website
	89.5 Summary

	90. An Android Studio App Links Tutorial
	90.1 About the Example App
	90.2 The Database Schema
	90.3 Loading and Running the Project
	90.4 Adding the URL Mapping
	90.5 Adding the Intent Filter
	90.6 Adding Intent Handling Code
	90.7 Testing the App
	90.8 Creating the Digital Asset Links File
	90.9 Testing the App Link
	90.10 Summary

	91. An Android Biometric Authentication Tutorial
	91.1 An Overview of Biometric Authentication
	91.2 Creating the Biometric Authentication Project
	91.3 Configuring Device Fingerprint Authentication
	91.4 Adding the Biometric Permission to the Manifest File
	91.5 Designing the User Interface
	91.6 Adding a Toast Convenience Method
	91.7 Checking the Security Settings
	91.8 Configuring the Authentication Callbacks
	91.9 Adding the CancellationSignal
	91.10 Starting the Biometric Prompt
	91.11 Testing the Project
	91.12 Summary

	92. Creating, Testing, and Uploading an Android App Bundle
	92.1 The Release Preparation Process
	92.2 Android App Bundles
	92.3 Register for a Google Play Developer Console Account
	92.4 Configuring the App in the Console
	92.5 Enabling Google Play App Signing
	92.6 Creating a Keystore File
	92.7 Creating the Android App Bundle
	92.8 Generating Test APK Files
	92.9 Uploading the App Bundle to the Google Play Developer Console
	92.10 Exploring the App Bundle
	92.11 Managing Testers
	92.12 Rolling the App Out for Testing
	92.13 Uploading New App Bundle Revisions
	92.14 Analyzing the App Bundle File
	92.15 Summary

	93. An Overview of Android In-App Billing
	93.1 Preparing a Project for In-App Purchasing
	93.2 Creating In-App Products and Subscriptions
	93.3 Billing Client Initialization
	93.4 Connecting to the Google Play Billing Library
	93.5 Querying Available Products
	93.6 Starting the Purchase Process
	93.7 Completing the Purchase
	93.8 Querying Previous Purchases
	93.9 Summary

	94. An Android In-App Purchasing Tutorial
	94.1 About the In-App Purchasing Example Project
	94.2 Creating the InAppPurchase Project
	94.3 Adding Libraries to the Project
	94.4 Designing the User Interface
	94.5 Adding the App to the Google Play Store
	94.6 Creating an In-App Product
	94.7 Enabling License Testers
	94.8 Initializing the Billing Client
	94.9 Querying the Product
	94.10 Launching the Purchase Flow
	94.11 Handling Purchase Updates
	94.12 Consuming the Product
	94.13 Restoring a Previous Purchase
	94.14 Testing the App
	94.15 Troubleshooting
	94.16 Summary

	95. Accessing Cloud Storage using the Android Storage Access Framework
	95.1 The Storage Access Framework
	95.2 Working with the Storage Access Framework
	95.3 Filtering Picker File Listings
	95.4 Handling Intent Results
	95.5 Reading the Content of a File
	95.6 Writing Content to a File
	95.7 Deleting a File
	95.8 Gaining Persistent Access to a File
	95.9 Summary

	96. An Android Storage Access Framework Example
	96.1 About the Storage Access Framework Example
	96.2 Creating the Storage Access Framework Example
	96.3 Designing the User Interface
	96.4 Adding the Activity Launchers
	96.5 Creating a New Storage File
	96.6 Saving to a Storage File
	96.7 Opening and Reading a Storage File
	96.8 Testing the Storage Access Application
	96.9 Summary

	97. An Android Studio Primary/Detail Flow Tutorial
	97.1 The Primary/Detail Flow
	97.2 Creating a Primary/Detail Flow Activity
	97.3 Adding the Primary/Detail Flow Activity
	97.4 Modifying the Primary/Detail Flow Template
	97.5 Changing the Content Model
	97.6 Changing the Detail Pane
	97.7 Modifying the ItemDetailFragment Class
	97.8 Modifying the ItemListFragment Class
	97.9 Adding Manifest Permissions
	97.10 Running the Application
	97.11 Summary

	98. Working with Material Design 3 Theming
	98.1 Material Design 2 vs. Material Design 3
	98.2 Understanding Material Design Theming
	98.3 Material Design 3 Theming
	98.4 Building a custom theme
	98.5 Summary

	99. A Material Design 3 Theming and Dynamic Color Tutorial
	99.1 Creating the ThemeDemo Project
	99.2 Designing the User Interface
	99.3 Building a new theme
	99.4 Adding the Theme to the Project
	99.5 Enabling Dynamic Color Support
	99.6 Summary

	100. An Overview of Gradle in Android Studio
	100.1 An Overview of Gradle
	100.2 Gradle and Android Studio
	100.2.1 Sensible Defaults
	100.2.2 Dependencies
	100.2.3 Build Variants
	100.2.4 Manifest Entries
	100.2.5 APK Signing
	100.2.6 ProGuard Support

	100.3 The Property and Settings Gradle Build File
	100.4 The Top-level Gradle Build File
	100.5 Module Level Gradle Build Files
	100.6 Configuring Signing Settings in the Build File
	100.7 Running Gradle Tasks from the Command Line
	100.8 Summary

	Index
	Blank Page

