
Essen�als

Jetpack

Payload
publishing

Compose 1.6

Jetpack Compose 1.6
Essentials

Jetpack Compose 1.6 Essentials

ISBN-13: 978-1-951442-91-0

© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Payload
publishing

Find more books at https://www.payloadbooks.com.
Copyright
“

i

Contents
Table of Contents
1. Start Here

1.1 For Kotlin programmers
1.2 For new Kotlin programmers
1.3 Downloading the code samples
1.4 Feedback
1.5 Errata
1.6 Find more books
1.7 Authors wanted

2. Setting up an Android Studio Development Environment
2.1 System requirements
2.2 Downloading the Android Studio package
2.3 Installing Android Studio

2.3.1 Installation on Windows
2.3.2 Installation on macOS
2.3.3 Installation on Linux

2.4 The Android Studio setup wizard
2.5 Installing additional Android SDK packages
2.6 Installing the Android SDK Command-line Tools

2.6.1 Windows 8.1
2.6.2 Windows 10
2.6.3 Windows 11
2.6.4 Linux
2.6.5 macOS

2.7 Android Studio memory management
2.8 Updating Android Studio and the SDK
2.9 Summary

3. A Compose Project Overview
3.1 About the project
3.2 Creating the project
3.3 Creating an activity
3.4 Defining the project and SDK settings
3.5 Enabling the New Android Studio UI
3.6 Previewing the example project
3.7 Reviewing the main activity
3.8 Preview updates
3.9 Bill of Materials and the Compose version
3.10 Summary

4. An Example Compose Project
4.1 Getting started
4.2 Removing the template Code
4.3 The Composable hierarchy

ii

Table of Contents

4.4 Adding the DemoText composable
4.5 Previewing the DemoText composable
4.6 Adding the DemoSlider composable
4.7 Adding the DemoScreen composable
4.8 Previewing the DemoScreen composable
4.9 Adjusting preview settings
4.10 Testing in interactive mode
4.11 Completing the project
4.12 Summary

5. Creating an Android Virtual Device (AVD) in Android Studio
5.1 About Android Virtual Devices
5.2 Starting the Emulator
5.3 Running the Application in the AVD
5.4 Real-time updates with Live Edit
5.5 Running on Multiple Devices
5.6 Stopping a Running Application
5.7 Supporting Dark Theme
5.8 Running the Emulator in a Separate Window
5.9 Removing the Device Frame
5.10 Summary

6. Using and Configuring the Android Studio AVD Emulator
6.1 The Emulator Environment
6.2 Emulator Toolbar Options
6.3 Working in Zoom Mode
6.4 Resizing the Emulator Window
6.5 Extended Control Options

6.5.1 Location
6.5.2 Displays
6.5.3 Cellular
6.5.4 Battery
6.5.5 Camera
6.5.6 Phone
6.5.7 Directional Pad
6.5.8 Microphone
6.5.9 Fingerprint
6.5.10 Virtual Sensors
6.5.11 Snapshots
6.5.12 Record and Playback
6.5.13 Google Play
6.5.14 Settings
6.5.15 Help

6.6 Working with Snapshots
6.7 Configuring Fingerprint Emulation
6.8 The Emulator in Tool Window Mode
6.9 Creating a Resizable Emulator
6.10 Summary

7. A Tour of the Android Studio User Interface
7.1 The Welcome Screen

iii

Table of Contents

7.2 The Menu Bar
7.3 The Main Window
7.4 The Tool Windows
7.5 The Tool Window Menus
7.6 Android Studio Keyboard Shortcuts
7.7 Switcher and Recent Files Navigation
7.8 Changing the Android Studio Theme
7.9 Summary

8. Testing Android Studio Apps on a Physical Android Device
8.1 An Overview of the Android Debug Bridge (ADB)
8.2 Enabling USB Debugging ADB on Android Devices

8.2.1 macOS ADB Configuration
8.2.2 Windows ADB Configuration
8.2.3 Linux adb Configuration

8.3 Resolving USB Connection Issues
8.4 Enabling Wireless Debugging on Android Devices
8.5 Testing the adb Connection
8.6 Device Mirroring
8.7 Summary

9. The Basics of the Android Studio Code Editor
9.1 The Android Studio Editor
9.2 Splitting the Editor Window
9.3 Code Completion
9.4 Statement Completion
9.5 Parameter Information
9.6 Parameter Name Hints
9.7 Code Generation
9.8 Code Folding
9.9 Quick Documentation Lookup
9.10 Code Reformatting
9.11 Finding Sample Code
9.12 Live Templates
9.13 Summary

10. An Overview of the Android Architecture
10.1 The Android Software Stack
10.2 The Linux Kernel
10.3 Hardware Abstraction Layer
10.4 Android Runtime – ART
10.5 Android Libraries

10.5.1 C/C++ Libraries
10.6 Application Framework
10.7 Applications
10.8 Summary

11. An Introduction to Kotlin
11.1 What is Kotlin?
11.2 Kotlin and Java
11.3 Converting from Java to Kotlin

iv

Table of Contents

11.4 Kotlin and Android Studio
11.5 Experimenting with Kotlin
11.6 Semi-colons in Kotlin
11.7 Summary

12. Kotlin Data Types, Variables and Nullability
12.1 Kotlin data types

12.1.1 Integer data types
12.1.2 Floating point data types
12.1.3 Boolean data type
12.1.4 Character data type
12.1.5 String data type
12.1.6 Escape sequences

12.2 Mutable variables
12.3 Immutable variables
12.4 Declaring mutable and immutable variables
12.5 Data types are objects
12.6 Type annotations and type inference
12.7 Nullable type
12.8 The safe call operator
12.9 Not-null assertion
12.10 Nullable types and the let function
12.11 Late initialization (lateinit)
12.12 The Elvis operator
12.13 Type casting and type checking
12.14 Summary

13. Kotlin Operators and Expressions
13.1 Expression syntax in Kotlin
13.2 The Basic assignment operator
13.3 Kotlin arithmetic operators
13.4 Augmented assignment operators
13.5 Increment and decrement operators
13.6 Equality operators
13.7 Boolean logical operators
13.8 Range operator
13.9 Bitwise operators

13.9.1 Bitwise inversion
13.9.2 Bitwise AND
13.9.3 Bitwise OR
13.9.4 Bitwise XOR
13.9.5 Bitwise left shift
13.9.6 Bitwise right shift

13.10 Summary
14. Kotlin Control Flow

14.1 Looping control flow
14.1.1 The Kotlin for-in Statement
14.1.2 The while loop
14.1.3 The do ... while loop
14.1.4 Breaking from Loops

v

Table of Contents

14.1.5 The continue statement
14.1.6 Break and continue labels

14.2 Conditional control flow
14.2.1 Using the if expressions
14.2.2 Using if ... else … expressions
14.2.3 Using if ... else if ... Expressions
14.2.4 Using the when statement

14.3 Summary
15. An Overview of Kotlin Functions and Lambdas

15.1 What is a function?
15.2 How to declare a Kotlin function
15.3 Calling a Kotlin function
15.4 Single expression functions
15.5 Local functions
15.6 Handling return values
15.7 Declaring default function parameters
15.8 Variable number of function parameters
15.9 Lambda expressions
15.10 Higher-order functions
15.11 Summary

16. The Basics of Object-Oriented Programming in Kotlin
16.1 What is an object?
16.2 What is a class?
16.3 Declaring a Kotlin class
16.4 Adding properties to a class
16.5 Defining methods
16.6 Declaring and initializing a class instance
16.7 Primary and secondary constructors
16.8 Initializer blocks
16.9 Calling methods and accessing properties
16.10 Custom accessors
16.11 Nested and inner classes
16.12 Companion objects
16.13 Summary

17. An Introduction to Kotlin Inheritance and Subclassing
17.1 Inheritance, classes, and subclasses
17.2 Subclassing syntax
17.3 A Kotlin inheritance example
17.4 Extending the functionality of a subclass
17.5 Overriding inherited methods
17.6 Adding a custom secondary constructor
17.7 Using the SavingsAccount class
17.8 Summary

18. An Overview of Compose
18.1 Development before Compose
18.2 Compose declarative syntax
18.3 Compose is data-driven

vi

Table of Contents

18.4 Summary
19. A Guide to Gradle Version Catalogs

19.1 Library and Plugin Dependencies
19.2 Project Gradle Build File
19.3 Module Gradle Build Files
19.4 Version Catalog File
19.5 Adding Dependencies
19.6 Library Updates
19.7 Summary

20. Composable Functions Overview
20.1 What is a composable function?
20.2 Stateful vs. stateless composables
20.3 Composable function syntax
20.4 Foundation and Material composables
20.5 Summary

21. An Overview of Compose State and Recomposition
21.1 The basics of state
21.2 Introducing recomposition
21.3 Creating the StateExample project
21.4 Declaring state in a composable
21.5 Unidirectional data flow
21.6 State hoisting
21.7 Saving state through configuration changes
21.8 Summary

22. An Introduction to Composition Local
22.1 Understanding CompositionLocal
22.2 Using CompositionLocal
22.3 Creating the CompLocalDemo project
22.4 Designing the layout
22.5 Adding the CompositionLocal state
22.6 Accessing the CompositionLocal state
22.7 Testing the design
22.8 Summary

23. An Overview of Compose Slot APIs
23.1 Understanding slot APIs
23.2 Declaring a slot API
23.3 Calling slot API composables
23.4 Summary

24. A Compose Slot API Tutorial
24.1 About the project
24.2 Creating the SlotApiDemo project
24.3 Preparing the MainActivity class file
24.4 Creating the MainScreen composable
24.5 Adding the ScreenContent composable
24.6 Creating the Checkbox composable
24.7 Implementing the ScreenContent slot API

vii

Table of Contents

24.8 Adding an Image drawable resource
24.9 Coding the TitleImage composable
24.10 Completing the MainScreen composable
24.11 Previewing the project
24.12 Summary

25. Using Modifiers in Compose
25.1 An overview of modifiers
25.2 Creating the ModifierDemo project
25.3 Creating a modifier
25.4 Modifier ordering
25.5 Adding modifier support to a composable
25.6 Common built-in modifiers
25.7 Combining modifiers
25.8 Summary

26. Annotated Strings and Brush Styles
26.1 What are annotated strings?
26.2 Using annotated strings
26.3 Brush Text Styling
26.4 Creating the example project
26.5 An example SpanStyle annotated string
26.6 An example ParagraphStyle annotated string
26.7 A Brush style example
26.8 Summary

27. Composing Layouts with Row and Column
27.1 Creating the RowColDemo project
27.2 Row composable
27.3 Column composable
27.4 Combining Row and Column composables
27.5 Layout alignment
27.6 Layout arrangement positioning
27.7 Layout arrangement spacing
27.8 Row and Column scope modifiers
27.9 Scope modifier weights
27.10 Summary

28. Box Layouts in Compose
28.1 An introduction to the Box composable
28.2 Creating the BoxLayout project
28.3 Adding the TextCell composable
28.4 Adding a Box layout
28.5 Box alignment
28.6 BoxScope modifiers
28.7 Using the clip() modifier
28.8 Summary

29. An Introduction to FlowRow and FlowColumn
29.1 FlowColumn and FlowRow
29.2 Maximum number of items

viii

Table of Contents

29.3 Working with main axis arrangement
29.4 Understanding cross-axis arrangement
29.5 Item alignment
29.6 Controlling item size
29.7 Summary

30. A FlowRow and FlowColumn Tutorial
30.1 Creating the FlowLayoutDemo project
30.2 Generating random height and color values
30.3 Adding the Box Composable
30.4 Modifying the Flow arrangement
30.5 Modifying item alignment
30.6 Switching to FlowColumn
30.7 Using cross-axis arrangement
30.8 Adding item weights
30.9 Summary

31. Custom Layout Modifiers
31.1 Compose layout basics
31.2 Custom layouts
31.3 Creating the LayoutModifier project
31.4 Adding the ColorBox composable
31.5 Creating a custom layout modifier
31.6 Understanding default position
31.7 Completing the layout modifier
31.8 Using a custom modifier
31.9 Working with alignment lines
31.10 Working with baselines
31.11 Summary

32. Building Custom Layouts
32.1 An overview of custom layouts
32.2 Custom layout syntax
32.3 Using a custom layout
32.4 Creating the CustomLayout project
32.5 Creating the CascadeLayout composable
32.6 Using the CascadeLayout composable
32.7 Summary

33. A Guide to ConstraintLayout in Compose
33.1 An introduction to ConstraintLayout
33.2 How ConstraintLayout works

33.2.1 Constraints
33.2.2 Margins
33.2.3 Opposing constraints
33.2.4 Constraint bias
33.2.5 Chains
33.2.6 Chain styles

33.3 Configuring dimensions
33.4 Guideline helper
33.5 Barrier helper

ix

Table of Contents

33.6 Summary
34. Working with ConstraintLayout in Compose

34.1 Calling ConstraintLayout
34.2 Generating references
34.3 Assigning a reference to a composable
34.4 Adding constraints
34.5 Creating the ConstraintLayout project
34.6 Adding the ConstraintLayout library
34.7 Adding a custom button composable
34.8 Basic constraints
34.9 Opposing constraints
34.10 Constraint bias
34.11 Constraint margins
34.12 The importance of opposing constraints and bias
34.13 Creating chains
34.14 Working with guidelines
34.15 Working with barriers
34.16 Decoupling constraints with constraint sets
34.17 Summary

35. Working with IntrinsicSize in Compose
35.1 Intrinsic measurements
35.2 Max. vs Min. Intrinsic Size measurements
35.3 About the example project
35.4 Creating the IntrinsicSizeDemo project
35.5 Creating the custom text field
35.6 Adding the Text and Box components
35.7 Adding the top-level Column
35.8 Testing the project
35.9 Applying IntrinsicSize.Max measurements
35.10 Applying IntrinsicSize.Min measurements
35.11 Summary

36. Coroutines and LaunchedEffects in Jetpack Compose
36.1 What are coroutines?
36.2 Threads vs. coroutines
36.3 Coroutine Scope
36.4 Suspend functions
36.5 Coroutine dispatchers
36.6 Coroutine builders
36.7 Jobs
36.8 Coroutines – suspending and resuming
36.9 Coroutine channel communication
36.10 Understanding side effects
36.11 Summary

37. An Overview of Lists and Grids in Compose
37.1 Standard vs. lazy lists
37.2 Working with Column and Row lists
37.3 Creating lazy lists

x

Table of Contents

37.4 Enabling scrolling with ScrollState
37.5 Programmatic scrolling
37.6 Sticky headers
37.7 Responding to scroll position
37.8 Creating a lazy grid
37.9 Summary

38. A Compose Row and Column List Tutorial
38.1 Creating the ListDemo project
38.2 Creating a Column-based list
38.3 Enabling list scrolling
38.4 Manual scrolling
38.5 A Row list example
38.6 Summary

39. A Compose Lazy List Tutorial
39.1 Creating the LazyListDemo project
39.2 Adding list data to the project
39.3 Reading the XML data
39.4 Handling image loading
39.5 Designing the list item composable
39.6 Building the lazy list
39.7 Testing the project
39.8 Making list items clickable
39.9 Summary

40. Lazy List Sticky Headers and Scroll Detection
40.1 Grouping the list item data
40.2 Displaying the headers and items
40.3 Adding sticky headers
40.4 Reacting to scroll position
40.5 Adding the scroll button
40.6 Testing the finished app
40.7 Summary

41. A Compose Lazy Staggered Grid Tutorial
41.1 Lazy Staggered Grids
41.2 Creating the StaggeredGridDemo project
41.3 Adding the Box composable
41.4 Generating random height and color values
41.5 Creating the Staggered List
41.6 Testing the project
41.7 Switching to a horizontal staggered grid
41.8 Summary

42. VerticalPager and HorizontalPager in Compose
42.1 The Pager composables
42.2 Working with pager state
42.3 About the PagerDemo project
42.4 Creating the PagerDemo project
42.5 Adding the book cover images

xi

Table of Contents

42.6 Adding the HorizontalPager
42.7 Creating the page content
42.8 Testing the pager
42.9 Adding the arrow buttons
42.10 Summary

43. Compose Visibility Animation
43.1 Creating the AnimateVisibility project
43.2 Animating visibility
43.3 Defining enter and exit animations
43.4 Animation specs and animation easing
43.5 Repeating an animation
43.6 Different animations for different children
43.7 Auto-starting an animation
43.8 Implementing crossfading
43.9 Summary

44. Compose State-Driven Animation
44.1 Understanding state-driven animation
44.2 Introducing animate as state functions
44.3 Creating the AnimateState project
44.4 Animating rotation with animateFloatAsState
44.5 Animating color changes with animateColorAsState
44.6 Animating motion with animateDpAsState
44.7 Adding spring effects
44.8 Working with keyframes
44.9 Combining multiple animations
44.10 Using the Animation Inspector
44.11 Summary

45. Canvas Graphics Drawing in Compose
45.1 Introducing the Canvas component
45.2 Creating the CanvasDemo project
45.3 Drawing a line and getting the canvas size
45.4 Drawing dashed lines
45.5 Drawing a rectangle
45.6 Applying rotation
45.7 Drawing circles and ovals
45.8 Drawing gradients
45.9 Drawing arcs
45.10 Drawing paths
45.11 Drawing points
45.12 Drawing an image
45.13 Drawing text
45.14 Summary

46. Working with ViewModels in Compose
46.1 What is Android Jetpack?
46.2 The “old” architecture
46.3 Modern Android architecture
46.4 The ViewModel component

xii

Table of Contents

46.5 ViewModel implementation using state
46.6 Connecting a ViewModel state to an activity
46.7 ViewModel implementation using LiveData
46.8 Observing ViewModel LiveData within an activity
46.9 Summary

47. A Compose ViewModel Tutorial
47.1 About the project
47.2 Creating the ViewModelDemo project
47.3 Adding the ViewModel
47.4 Accessing DemoViewModel from MainActivity
47.5 Designing the temperature input composable
47.6 Designing the temperature input composable
47.7 Completing the user interface design
47.8 Testing the app
47.9 Summary

48. An Overview of Android SQLite Databases
48.1 Understanding database tables
48.2 Introducing database schema
48.3 Columns and data types
48.4 Database rows
48.5 Introducing primary keys
48.6 What is SQLite?
48.7 Structured Query Language (SQL)
48.8 Trying SQLite on an Android Virtual Device (AVD)
48.9 The Android Room persistence library
48.10 Summary

49. Room Databases and Compose
49.1 Revisiting modern app architecture
49.2 Key elements of Room database persistence

49.2.1 Repository
49.2.2 Room database
49.2.3 Data Access Object (DAO)
49.2.4 Entities
49.2.5 SQLite database

49.3 Understanding entities
49.4 Data Access Objects
49.5 The Room database
49.6 The Repository
49.7 In-Memory databases
49.8 Database Inspector
49.9 Summary

50. A Compose Room Database and Repository Tutorial
50.1 About the RoomDemo project
50.2 Creating the RoomDemo project
50.3 Modifying the build configuration
50.4 Building the entity
50.5 Creating the Data Access Object

xiii

Table of Contents

50.6 Adding the Room database
50.7 Adding the repository
50.8 Adding the ViewModel
50.9 Designing the user interface
50.10 Writing a ViewModelProvider Factory class
50.11 Completing the MainScreen function
50.12 Testing the RoomDemo app
50.13 Using the Database Inspector
50.14 Summary

51. An Overview of Navigation in Compose
51.1 Understanding navigation
51.2 Declaring a navigation controller
51.3 Declaring a navigation host
51.4 Adding destinations to the navigation graph
51.5 Navigating to destinations
51.6 Passing arguments to a destination
51.7 Working with bottom navigation bars
51.8 Summary

52. A Compose Navigation Tutorial
52.1 Creating the NavigationDemo project
52.2 About the NavigationDemo project
52.3 Declaring the navigation routes
52.4 Adding the home screen
52.5 Adding the welcome screen
52.6 Adding the profile screen
52.7 Creating the navigation controller and host
52.8 Implementing the screen navigation
52.9 Passing the user name argument
52.10 Testing the project
52.11 Summary

53. A Compose Navigation Bar Tutorial
53.1 Creating the BottomBarDemo project
53.2 Declaring the navigation routes
53.3 Designing bar items
53.4 Creating the bar item list
53.5 Adding the destination screens
53.6 Creating the navigation controller and host
53.7 Designing the navigation bar
53.8 Working with the Scaffold component
53.9 Testing the project
53.10 Summary

54. Detecting Gestures in Compose
54.1 Compose gesture detection
54.2 Creating the GestureDemo project
54.3 Detecting click gestures
54.4 Detecting taps using PointerInputScope
54.5 Detecting drag gestures

xiv

Table of Contents

54.6 Detecting drag gestures using PointerInputScope
54.7 Scrolling using the scrollable modifier
54.8 Scrolling using the scroll modifiers
54.9 Detecting pinch gestures
54.10 Detecting rotation gestures
54.11 Detecting translation gestures
54.12 Summary

55. Working with Anchored Draggable Components
55.1 Dragging and anchors
55.2 Detecting dragging gestures
55.3 Declaring the anchor points
55.4 Declaring thresholds
55.5 Declaring draggable state
55.6 Moving a component in response to a drag
55.7 About the DraggableDemo project
55.8 Creating the DraggableDemo project
55.9 Adding Foundation library
55.10 Adding the anchors enumeration
55.11 Setting up the draggable state and anchors
55.12 Designing the parent Box
55.13 Adding the draggable box
55.14 Testing the project
55.15 Summary

56. An Introduction to Kotlin Flow
56.1 Understanding Flows
56.2 Creating the sample project
56.3 Adding a view model to the project
56.4 Declaring the flow
56.5 Emitting flow data
56.6 Collecting flow data as state
56.7 Transforming data with intermediaries
56.8 Collecting flow data
56.9 Adding a flow buffer
56.10 More terminal flow operators
56.11 Flow flattening
56.12 Combining multiple flows
56.13 Hot and cold flows
56.14 StateFlow
56.15 SharedFlow
56.16 Converting a flow from cold to hot
56.17 Summary

57. A Jetpack Compose SharedFlow Tutorial
57.1 About the project
57.2 Creating the SharedFlowDemo project
57.3 Adding a view model to the project
57.4 Declaring the SharedFlow
57.5 Collecting the flow values
57.6 Testing the SharedFlowDemo app

xv

Table of Contents

57.7 Handling flows in the background
57.8 Summary

58. An Android Biometric Authentication Tutorial
58.1 An overview of biometric authentication
58.2 Creating the biometric authentication project
58.3 Adding the biometric dependency
58.4 Configuring device fingerprint authentication
58.5 Adding the biometric permissions to the manifest file
58.6 Checking the security settings
58.7 Designing the user interface
58.8 Configuring the authentication callbacks
58.9 Starting the biometric prompt
58.10 Testing the project
58.11 Summary

59. Working with the Google Maps Android API in Android Studio
59.1 The elements of the Google Maps Android API
59.2 Creating the Google Maps project
59.3 Creating a Google Cloud billing account
59.4 Creating a new Google Cloud project
59.5 Enabling the Google Maps SDK
59.6 Generating a Google Maps API key
59.7 Adding the API key to the Android Studio project
59.8 Adding the compose map dependency
59.9 Creating a map
59.10 Testing the application
59.11 Understanding geocoding and reverse geocoding
59.12 Specifying a map location
59.13 Changing the map type
59.14 Displaying map controls to the user
59.15 Handling map gesture interaction

59.15.1 Map zooming gestures
59.15.2 Map scrolling/panning gestures
59.15.3 Map tilt gestures
59.15.4 Map rotation gestures

59.16 Creating map markers
59.17 Controlling the map camera
59.18 Summary

60. Creating, Testing, and Uploading an Android App Bundle
60.1 The Release Preparation Process
60.2 Android App Bundles
60.3 Register for a Google Play Developer Console Account
60.4 Configuring the App in the Console
60.5 Enabling Google Play App Signing
60.6 Creating a Keystore File
60.7 Creating the Android App Bundle
60.8 Generating Test APK Files
60.9 Uploading the App Bundle to the Google Play Developer Console
60.10 Exploring the App Bundle

xvi

Table of Contents

60.11 Managing Testers
60.12 Rolling the App Out for Testing
60.13 Uploading New App Bundle Revisions
60.14 Analyzing the App Bundle File
60.15 Summary

61. An Overview of Android In-App Billing
61.1 Preparing a project for In-App purchasing
61.2 Creating In-App products and subscriptions
61.3 Billing client initialization
61.4 Connecting to the Google Play Billing library
61.5 Querying available products
61.6 Starting the purchase process
61.7 Completing the purchase
61.8 Querying previous purchases
61.9 Summary

62. An Android In-App Purchasing Tutorial
62.1 About the In-App purchasing example project
62.2 Creating the InAppPurchase project
62.3 Adding libraries to the project
62.4 Adding the App to the Google Play Store
62.5 Creating an In-App product
62.6 Enabling license testers
62.7 Creating a purchase helper class
62.8 Adding the StateFlow streams
62.9 Initializing the billing client
62.10 Querying the product
62.11 Handling purchase updates
62.12 Launching the purchase flow
62.13 Consuming the product
62.14 Restoring a previous purchase
62.15 Completing the MainActivity
62.16 Testing the app
62.17 Troubleshooting
62.18 Summary

63. Working with Compose Theming
63.1 Material Design 2 vs. Material Design 3
63.2 Material Design 3 theming
63.3 Building a custom theme
63.4 Summary

64. A Material Design 3 Theming Tutorial
64.1 Creating the ThemeDemo project
64.2 Designing the user interface
64.3 Building a new theme
64.4 Adding the theme to the project
64.5 Enabling dynamic colors
64.6 Summary

65. An Overview of Gradle in Android Studio

xvii

Table of Contents

65.1 An Overview of Gradle
65.2 Gradle and Android Studio

65.2.1 Sensible Defaults
65.2.2 Dependencies
65.2.3 Build Variants
65.2.4 Manifest Entries
65.2.5 APK Signing
65.2.6 ProGuard Support

65.3 The Property and Settings Gradle Build File
65.4 The Top-level Gradle Build File
65.5 Module Level Gradle Build Files
65.6 Configuring Signing Settings in the Build File
65.7 Running Gradle Tasks from the Command Line
65.8 Summary

Index

1

Chapter 1

1. Start Here
This book teaches you how to build Android applications using Jetpack Compose 1.6, Android Studio Iguana
(2023.2.1), Material Design 3, and the Kotlin programming language.

The book begins with the basics by explaining how to set up an Android Studio development environment.

The book also includes in-depth chapters introducing the Kotlin programming language, including data types,
operators, control flow, functions, lambdas, coroutines, and object-oriented programming.

An introduction to the key concepts of Jetpack Compose and Android project architecture is followed by a
guided tour of Android Studio in Compose development mode. The book also covers the creation of custom
Composables and explains how functions are combined to create user interface layouts, including row, column,
box, flow, pager, and list components.

Other topics covered include data handling using state properties and key user interface design concepts such
as modifiers, navigation bars, and user interface navigation. Additional chapters explore building your own
reusable custom layout components, securing your apps with Biometric authentication, and integrating Google
Maps.

The book covers graphics drawing, user interface animation, transitions, Kotlin Flows, and gesture handling.

Chapters also cover view models, SQLite databases, Room database access, the Database Inspector, live data,
and custom theme creation. You will also learn to generate extra revenue from your app using in-app billing.

Finally, the book explains how to package up a completed app and upload it to the Google Play Store for
publication.

Along the way, the topics covered in the book are put into practice through detailed tutorials, the source code
for which is also available for download.

Assuming you already have some rudimentary programming experience, are ready to download Android Studio
and the Android SDK, and have access to a Windows, Mac, or Linux system, you are ready to start.

1.1 For Kotlin programmers
This book addresses the needs of existing Kotlin programmers and those new to Kotlin and Jetpack Compose
app development. If you are familiar with the Kotlin programming language, you can probably skip the Kotlin-
specific chapters.

1.2 For new Kotlin programmers
If you are new to Kotlin programming, the entire book is appropriate for you. Just start at the beginning and
keep going.

1.3 Downloading the code samples
The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.payloadbooks.com/product/compose16/

https://www.payloadbooks.com/product/compose16/

2

Start Here

The steps to load a project from the code samples into Android Studio are as follows:

1. Click on the Open button option from the Welcome to Android Studio dialog.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.4 Feedback
We want you to be satisfied with your purchase of this book. Therefore, if you find any errors in the book or have
any comments, questions, or concerns, please contact us at info@payloadbooks.com.

1.5 Errata
While we make every effort to ensure the accuracy of the content of this book, inevitably, a book covering a
subject area of this size and complexity may include some errors and oversights. Any known issues with the
book will be outlined, together with solutions, at the following URL:

https://www.payloadbooks.com/compose16_errata

If you find an error not listed in the errata, email our technical support team at info@payloadbooks.com.

1.6 Find more books
Visit https://www.payloadbooks.com to view our complete book catalog.

1.7 Authors wanted
Payload Publishing is looking for authors.

Are you an aspiring author with a book idea in mind? When you publish with us, you’ll receive our full support
every step of the way. We offer guidance and technical and editorial assistance to help you bring your book
to life. Once your book is completed, we will publish and market it worldwide through our distribution and
channel partnerships while paying you higher royalties than traditional publishers.

Find out more at:

https://www.payloadbooks.com/authors-wanted

or email us at:

authors@payloadbooks.com

https://www.payloadbooks.com/compose16_errata
https://www.payloadbooks.com
https://www.payloadbooks.com/authors-wanted

15

Chapter 3

3. A Compose Project Overview
Now that we have installed Android Studio, the next step is to create an Android app using Jetpack Compose.
Although this project will use several Compose features, it is an intentionally simple example intended to provide
an early demonstration of Compose in action and an initial success on which to build as you work through the
remainder of the book. The project will also verify that your Android Studio environment is correctly installed
and configured.

This chapter will create a new project using the Android Studio Compose project template and explore both the
basic structure of a Compose-based Android Studio project and some of the key areas of Android Studio. The
next chapter will use this project to create a simple Android app.

Both chapters will briefly explain key features of Compose as they are introduced within the project. If anything
is unclear when you have completed the project, rest assured that all the areas covered in the tutorial will be
explored in greater detail in later chapters of the book.

3.1 About the project
The completed project will consist of two text components and a slider. When the slider is moved, the current
value will be displayed on one of the text components, while the font size of the second text instance will adjust
to match the current slider position. Once completed, the user interface for the app will appear as shown in
Figure 3-1:

Figure 3-1

16

A Compose Project Overview

3.2 Creating the project
The first step in building an app is to create a new project within Android Studio. Begin, therefore, by launching
Android Studio so that the “Welcome to Android Studio” screen appears as illustrated in Figure 3-2:

Figure 3-2
Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project button to display the first screen of the New Project wizard.

3.3 Creating an activity
The next step is to define the type of initial activity that is to be created for the application. The left-hand panel
provides a list of platform categories from which the Phone and Tablet option must be selected. Although various
activity types are available when developing Android applications, only the Empty Activity template provides a
pre-configured project ready to work with Compose. Select this option before clicking on the Next button:

Figure 3-3

17

A Compose Project Overview

3.4 Defining the project and SDK settings
In the project configuration window (Figure 3-4), set the Name field to ComposeDemo. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store:

Figure 3-4
The Package name uniquely identifies the application within the Google Play app store application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the application’s name. For example, if your domain is www.mycompany.
com, and the application has been named ComposeDemo, then the package name might be specified as follows:
com.mycompany.composedemo

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.composedemo

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in
most projects created in this book unless a necessary feature is only available in a more recent version. The
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK
setting will outline the percentage of Android devices currently in use on which the app will run. Click on the
Help me choose link to see a full breakdown of the various Android versions still in use:

18

A Compose Project Overview

Figure 3-5
Finally, select Kotlin DSL (build.gradle.kts) as the build configuration language before clicking Finish to create
the project.

3.5 Enabling the New Android Studio UI
Android Studio is transitioning to a new, modern user interface that is not enabled by default in the Giraffe
version. If your installation of Android Studio resembles Figure 3-6 below, then you will need to enable the new
UI before proceeding:

Figure 3-6
Enable the new UI by selecting the File -> Settings... menu option (Android Studio -> Settings... on macOS) and
selecting the New UI option under Appearance and Behavior in the left-hand panel. From the main panel, turn
on the Enable new UI checkbox before clicking Apply, followed by OK to commit the change:

19

A Compose Project Overview

Figure 3-7
When prompted, restart Android Studio to activate the new user interface.

3.6 Previewing the example project
Once Android Studio has restarted, the main window will reappear using the new UI and containing our
AndroidSample project as illustrated in Figure 3-8 below:

Figure 3-8
The newly created project and references to associated files are listed in the Project tool window located on the
left-hand side of the main project window. The Project tool window has several modes in which information
can be displayed. By default, this panel should be in Android mode. This setting is controlled by the menu at
the top of the panel as highlighted in Figure 3-9. If the panel is not currently in Android mode, use the menu to
switch mode:

20

A Compose Project Overview

Figure 3-9
The code for the main activity of the project (an activity corresponds to a single user interface screen or module
within an Android app) is contained within the MainActivity.kt file located under app -> kotlin+java -> com.
example.composedemo within the Project tool window as indicated in Figure 3-10:

Figure 3-10
Double-click on this file to load it into the main code editor panel. The editor can be used in different view
modes. Only the source code of the currently selected file is visible when the editor is in Code mode (as shown in
Figure 3-8 above). Code mode is selected by clicking the button A in the figure below. However, the most helpful
option when working with Compose is Split mode. To switch to Split mode, click on the button marked B:

21

A Compose Project Overview

Figure 3-11
Split mode displays the code editor (A) alongside the Preview panel (B) in which the current user interface
design will appear:

Figure 3-12
Only the Preview panel is displayed when the editor is in Design mode (button C).

To get us started, Android Studio has already added some code to the MainActivity.kt file to display a Text
component configured to display a message which reads “Hello Android”.

If the project has not yet been built, the Preview panel will display the message shown in Figure 3-13:

Figure 3-13
If you see this notification, click on the Build & Refresh link to rebuild the project. After the build is complete,
the Preview panel should update to display the user interface defined by the code in the MainActivity.kt file:

22

A Compose Project Overview

Figure 3-14

3.7 Reviewing the main activity
Android applications are created by combining one or more elements known as Activities. An activity is a single,
standalone module of application functionality that either correlates directly to a single user interface screen
and its corresponding functionality, or acts as a container for a collection of related screens. An appointments
application might, for example, contain an activity screen that displays appointments set up for the current day.
The application might also utilize a second activity consisting of multiple screens where new appointments may
be entered by the user and existing appointments edited.

When we created the ComposeDemo project, Android Studio created a single initial activity for our app, named
it MainActivity, and generated some code for it in the MainActivity.kt file. This activity contains the first screen
that will be displayed when the app is run on a device. Before we modify the code for our requirements in the
next chapter, it is worth taking some time to review the code currently contained within the MainActivity.kt file.

The file begins with the following line (keep in mind that this may be different if you used your own domain
name instead of com.example):
package com.example.composedemo

This tells the build system that the classes and functions declared in this file belong to the com.example.
composedemo package which we configured when we created the project.

Next are a series of import directives. The Android SDK comprises a vast collection of libraries that provide the
foundation for building Android apps. If all of these libraries were included within an app the resulting app
bundle would be too large to run efficiently on a mobile device. To avoid this problem an app only imports the
libraries that it needs to be able to run:
import android.os.Bundle

import androidx.activity.ComponentActivity

import androidx.activity.compose.setContent

import androidx.compose.foundation.layout.fillMaxSize

import androidx.compose.material3.MaterialTheme

import androidx.compose.material3.Surface

import androidx.compose.material3.Text

.

.

Initially, the list of import directives will most likely be “folded” to save space. To unfold the list, click on the
small disclosure button indicated by the arrow in Figure 3-15 below:

23

A Compose Project Overview

Figure 3-15
The MainActivity class is then declared as a subclass of the Android ComponentActivity class:
class MainActivity : ComponentActivity() {

.

.

}

The MainActivity class implements a single method in the form of onCreate(). This is the first method that is
called when an activity is launched by the Android runtime system and is an artifact of the way apps used to be
developed before the introduction of Compose. The onCreate() method is used here to provide a bridge between
the containing activity and the Compose-based user interfaces that are to appear within it:
override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ComposeDemoTheme {

.

.

 }

 }

}

The method declares that the content of the activity’s user interface will be provided by a composable function
named ComposeDemoTheme. This composable function is declared in the Theme.kt file located under the app
-> <package name> -> ui.theme folder in the Project tool window. This, along with the other files in the ui.theme
folder defines the colors, fonts, and shapes to be used by the activity and provides a central location from which
to customize the overall theme of the app’s user interface.

The call to the ComposeDemoTheme composable function is configured to contain a Surface composable.
Surface is a built-in Compose component designed to provide a background for other composables:
ComposeDemoTheme {

 // A surface container using the 'background' color from the theme

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

.

.

}

In this case, the Surface component is configured to fill the entire screen and with the background set to the
standard background color defined by the Android Material Design theme. Material Design is a set of design
guidelines developed by Google to provide a consistent look and feel across all Android apps. It includes a theme

24

A Compose Project Overview

(including fonts and colors), a set of user interface components (such as button, text, and a range of text fields),
icons, and generally defines how an Android app should look, behave and respond to user interactions.

Finally, the Surface is configured to contain a composable function named Greeting which is passed a string
value that reads “Android”:
ComposeDemoTheme {

 // A surface container using the 'background' color from the theme

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

) {

 Greeting("Android")

 }

}

Outside of the scope of the MainActivity class, we encounter our first composable function declaration within
the activity. The function is named Greeting and is, unsurprisingly, marked as being composable by the @
Composable annotation:
@Composable

fun Greeting(name: String, modifier: Modifier = Modifier) {

 Text(

 text = "Hello $name!",

 modifier = modifier

)

}

The function accepts a String parameter (labeled name) and calls the built-in Text composable, passing through
a string value containing the word “Hello” concatenated with the name parameter. The function also accepts an
optional modifier parameter (a topic covered in the chapter titled “Using Modifiers in Compose”). As will soon
become evident as you work through the book, composable functions are the fundamental building blocks for
developing Android apps using Compose.

The second composable function declared in the MainActivity.kt file reads as follows:
@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

 ComposeDemoTheme {

 Greeting("Android")

 }

}

Earlier in the chapter, we looked at how the Preview panel allows us to see how the user interface will appear
without having to compile and run the app. At first glance, it would be easy to assume that the preview rendering
is generated by the code in the onCreate() method. In fact, that method only gets called when the app runs
on a device or emulator. Previews are generated by preview composable functions. The @Preview annotation
associated with the function tells Android Studio that this is a preview function and that the content emitted by
the function is to be displayed in the Preview panel. As we will see later in the book, a single activity can contain
multiple preview composable functions configured to preview specific sections of a user interface using different
data values.

25

A Compose Project Overview

In addition, each preview may be configured by passing parameters to the @Preview annotation. For example,
to view the preview with the rest of the standard Android screen decorations, modify the preview annotation so
that it reads as follows:
@Preview(showSystemUi = true)

Once the preview has been updated, it should now be rendered as shown in Figure 3-16:

Figure 3-16

3.8 Preview updates
One final point worth noting is that the Preview panel is live and will automatically reflect minor changes made
to the composable functions that make up a preview. To see this in action, edit the call to the Greeting function
in the GreetingPreview() preview composable function to change the name from “Android” to “Compose”. Note
that as you make the change in the code editor, it is reflected in the preview.

More significant changes will require a build and refresh before being reflected in the preview. When this is
required, Android Studio will display the following “Out of date” notice at the top of the Preview panel and a
Build & Refresh button (indicated by the arrow in Figure 3-17):

Figure 3-17
Simply click on the button to update the preview for the latest changes. Occasionally, Android Studio will fail to
update the preview after code changes. If you believe that the preview no longer matches your code, hover the
mouse pointer over the Up-to-date status text and select Build & Refresh from the resulting menu, as illustrated
in Figure 3-18:

26

A Compose Project Overview

Figure 3-18

The Preview panel also includes an interactive mode that allows you to trigger events on the user interface
components (for example, clicking buttons, moving sliders, scrolling through lists, etc.). Since ComposeDemo
contains only an inanimate Text component at this stage, it makes more sense to introduce interactive mode in
the next chapter.

3.9 Bill of Materials and the Compose version
Although Jetpack Compose and Android Studio appear to be tightly integrated, they are two separate products
developed by different teams at Google. As a result, there is no guarantee that the most recent Android Studio
version will default to using the latest version of Jetpack Compose. It can, therefore, be helpful to know which
version of Jetpack Compose is being used by Android Studio. This is declared in a Bill of Materials (BOM)
setting within the build configuration files of your Android Studio projects.

To identify the BOM for a project, locate the Gradle Scripts -> libs.versions.toml file (highlighted in the figure
below) and double-click on it to load it into the editor:

Figure 3-19
With the file loaded into the editor, locate the composeBom entry in the [versions] section:
[versions]

.

.

composeBom = "2023.08.00"
.

.

27

A Compose Project Overview

In the above example, we can see that the project is using BOM 2023.08.00. With this information, we can use
the BOM to library version mapping web page at the following URL to identify the library versions being used
to build our app:

https://developer.android.com/jetpack/compose/bom/bom-mapping

Once the web page has loaded, select the BOM version from the menu highlighted in Figure 3-20 below. For
example, the figure shows that BOM 2023.08.00 uses version 1.5.0 of the Compose libraries:

Figure 3-20
At the time of writing, Android Studio Iguana defaults to BOM 2023.08.00, while the latest stable BOM version
is 2024.03.00, which maps to Jetpack Compose 1.6.4. Therefore, when working with the projects in this book,
you should edit the composeBom entry in the Gradle Scripts -> libs.versions.toml and upgrade the BOM version
to at least 2024.03.00.

Library versions and dependencies will be covered in greater detail in the “A Guide to Gradle Version Catalogs”
chapter.

3.10 Summary
In this chapter, we have created a new project using Android Studio’s Empty Activity template and explored some
of the code automatically generated for the project. We have also introduced several features of Android Studio
designed to make app development with Compose easier. The most useful features, and the places where you
will spend most of your time while developing Android apps, are the code editor and Preview panel.

While the default code in the MainActivity.kt file provides an interesting example of a basic user interface, it
bears no resemblance to the app we want to create. In the next chapter, we will modify and extend the app by
removing some of the template code and writing our own composable functions.

https://developer.android.com/jetpack/compose/bom/bom-mapping

111

Chapter 13

13. Kotlin Operators and Expressions
So far, we have looked at using variables and constants in Kotlin and also described the different data types.
Being able to create variables is only part of the story, however. The next step is to learn how to use these
variables in Kotlin code. The primary method for working with data is in the form of expressions.

13.1 Expression syntax in Kotlin
The most basic expression consists of an operator, two operands, and an assignment. The following is an example
of an expression:
val myresult = 1 + 2

In the above example, the (+) operator is used to add two operands (1 and 2) together. The assignment operator (=)
subsequently assigns the result of the addition to a variable named myresult. The operands could have easily
been variables (or a mixture of values and variables) instead of the actual numerical values used in the example.

In the remainder of this chapter, we will look at the basic types of operators available in Kotlin.

13.2 The Basic assignment operator
We have already looked at the most basic of assignment operators, the = operator. This assignment operator
simply assigns the result of an expression to a variable. In essence, the = assignment operator takes two operands.
The left-hand operand is the variable to which a value is to be assigned and the right-hand operand is the value
to be assigned. The right-hand operand is, more often than not, an expression that performs some type of
arithmetic or logical evaluation or a call to a function, the result of which will be assigned to the variable. The
following examples are all valid uses of the assignment operator:
var x: Int // Declare a mutable Int variable

val y = 10 // Declare and initialize an immutable Int variable

x = 10 // Assign a value to x

x = x + y // Assign the result of x + y to x

x = y // Assign the value of y to x

13.3 Kotlin arithmetic operators
Kotlin provides a range of operators for creating mathematical expressions. These operators primarily fall into
the category of binary operators in that they take two operands. The exception is the unary negative operator (-)
which serves to indicate that a value is negative rather than positive. This contrasts with the subtraction
operator (-) which takes two operands (i.e. one value to be subtracted from another). For example:
var x = -10 // Unary - operator used to assign -10 to variable x

x = x - 5 // Subtraction operator. Subtracts 5 from x

The following table lists the primary Kotlin arithmetic operators:

Operator Description
-(unary) Negates the value of a variable or expression
* Multiplication

112

Kotlin Operators and Expressions

/ Division
+ Addition
- Subtraction
% Remainder/Modulo

Table 13-1
Note that multiple operators may be used in a single expression.

For example:
x = y * 10 + z - 5 / 4

13.4 Augmented assignment operators
In an earlier section, we looked at the basic assignment operator (=). Kotlin provides several operators designed
to combine an assignment with a mathematical or logical operation. These are primarily of use when performing
an evaluation where the result is to be stored in one of the operands. For example, one might write an expression
as follows:
x = x + y

The above expression adds the value contained in variable x to the value contained in variable y and stores the
result in variable x. This can be simplified using the addition augmented assignment operator:
x += y

The above expression performs the same task as x = x + y but saves the programmer some typing.

Numerous augmented assignment operators are available in Kotlin. The most frequently used of which are
outlined in the following table:

Operator Description
x += y Add x to y and place result in x
x -= y Subtract y from x and place result in x
x *= y Multiply x by y and place result in x
x /= y Divide x by y and place result in x
x %= y Perform Modulo on x and y and place result in x

Table 13-2

13.5 Increment and decrement operators
Another useful shortcut can be achieved using the Kotlin increment and decrement operators (also referred to
as unary operators because they operate on a single operand). Consider the code fragment below:
x = x + 1 // Increase value of variable x by 1

x = x - 1 // Decrease value of variable x by 1

These expressions increment and decrement the value of x by 1. Instead of using this approach, however, it is
quicker to use the ++ and -- operators. The following examples perform the same tasks as the examples above:
x++ // Increment x by 1

x-- // Decrement x by 1

These operators can be placed either before or after the variable name. If the operator is placed before the
variable name, the increment or decrement operation is performed before any other operations are performed
on the variable. For example, in the following code, x is incremented before it is assigned to y, leaving y with a

113

Kotlin Operators and Expressions

value of 10:
var x = 9

val y = ++x

In the next example, however, the value of x (9) is assigned to variable y before the decrement is performed. After
the expression is evaluated the value of y will be 9 and the value of x will be 8.
var x = 9

val y = x--

13.6 Equality operators
Kotlin also includes a set of logical operators useful for performing comparisons. These operators all return a
Boolean result depending on the result of the comparison. These operators are binary operators in that they work
with two operands.

Equality operators are most frequently used in constructing program control flow logic. For example,
an if statement may be constructed based on whether one value matches another:
if (x == y) {

 // Perform task

}

The result of a comparison may also be stored in a Boolean variable. For example, the following code will result
in a true value being stored in the variable result:
var result: Boolean

val x = 10

val y = 20

result = x < y

Clearly 10 is less than 20, resulting in a true evaluation of the x < y expression. The following table lists the full
set of Kotlin comparison operators:

Operator Description
x == y Returns true if x is equal to y
x > y Returns true if x is greater than y
x >= y Returns true if x is greater than or equal to y
x < y Returns true if x is less than y
x <= y Returns true if x is less than or equal to y
x != y Returns true if x is not equal to y

Table 13-3

13.7 Boolean logical operators
Kotlin also provides a set of so-called logical operators designed to return Boolean true or false values. These
operators both return Boolean results and take Boolean values as operands. The key operators are NOT (!),
AND (&&), and OR (||).

The NOT (!) operator simply inverts the current value of a Boolean variable or the result of an expression. For
example, if a variable named flag is currently true, prefixing the variable with a ‘!’ character will invert the value
to false:
val flag = true // variable is true

114

Kotlin Operators and Expressions

val secondFlag = !flag // secondFlag set to false

The OR (||) operator returns true if one of its two operands evaluates to true, otherwise, it returns false. For
example, the following code evaluates to true because at least one of the expressions on either side of the OR
operator is true:
if ((10 < 20) || (20 < 10)) {

 print("Expression is true")

}

The AND (&&) operator returns true only if both operands are evaluated to be true. The following example will
return false because only one of the two operand expressions evaluates to true:
if ((10 < 20) && (20 < 10)) {

 print("Expression is true")

}

13.8 Range operator
Kotlin includes a useful operator that allows a range of values to be declared. As will be seen in later chapters,
this operator is invaluable when working with looping in program logic.

The syntax for the range operator is as follows:
x..y

This operator represents the range of numbers starting at x and ending at y where both x and y are included
within the range (referred to as a closed range). The range operator 5..8, for example, specifies the numbers 5,
6, 7, and 8.

13.9 Bitwise operators
As previously discussed, computer processors work in binary. These are essentially streams of ones and zeros,
each one referred to as a bit. Bits are formed into groups of 8 to form bytes. As such, it is not surprising that we,
as programmers, will occasionally end up working at this level in our code. To facilitate this requirement, Kotlin
provides a range of bit operators.

Those familiar with bitwise operators in other languages such as C, C++, C#, Objective-C, and Java will find
nothing new in this area of the Kotlin language syntax. For those unfamiliar with binary numbers, now may be
a good time to seek out reference materials on the subject to understand how ones and zeros are formed into
bytes to form numbers. Other authors have done a much better job of describing the subject than we can do
within the scope of this book.

For this exercise, we will be working with the binary representation of two numbers. First, the decimal number
171 is represented in binary as:
10101011

Second, the number 3 is represented by the following binary sequence:
00000011

Now that we have two binary numbers with which to work, we can begin to look at the Kotlin bitwise operators:

13.9.1 Bitwise inversion
The Bitwise inversion (also referred to as NOT) is performed using the inv() operation and has the effect of
inverting all of the bits in a number. In other words, all the zeros become ones and all the ones become zeros.
Taking our example 3 number, a Bitwise NOT operation has the following result:
00000011 NOT

115

Kotlin Operators and Expressions

========

11111100

The following Kotlin code, therefore, results in a value of -4:
val y = 3

val z = y.inv()

print("Result is $z")

13.9.2 Bitwise AND
The Bitwise AND is performed using the and() operation. It makes a bit-by-bit comparison of two numbers. Any
corresponding position in the binary sequence of each number where both bits are 1 results in a 1 appearing in
the same position of the resulting number. If either bit position contains a 0 then a zero appears in the result.
Taking our two example numbers, this would appear as follows:
10101011 AND

00000011

========

00000011

As we can see, the only locations where both numbers have 1s are the last two positions. If we perform this in
Kotlin code, therefore, we should find that the result is 3 (00000011):
val x = 171

val y = 3

val z = x.and(y)

print("Result is $z")

13.9.3 Bitwise OR
The bitwise OR also performs a bit-by-bit comparison of two binary sequences. Unlike the AND operation, the
OR places a 1 in the result if there is a 1 in the first or second operand. Using our example numbers, the result
will be as follows:
10101011 OR

00000011

========

10101011

If we perform this operation in Kotlin using the or() operation the result will be 171:
val x = 171

val y = 3

val z = x.or(y)

print("Result is $z")

13.9.4 Bitwise XOR
The bitwise XOR (commonly referred to as exclusive OR and performed using the xor() operation) performs a
similar task to the OR operation except that a 1 is placed in the result if one or other corresponding bit positions
in the two numbers is 1. If both positions are a 1 or a 0 then the corresponding bit in the result is set to a 0. For
example:
10101011 XOR

116

Kotlin Operators and Expressions

00000011

========

10101000

The result, in this case, is 10101000 which converts to 168 in decimal. To verify this we can, once again, try some
Kotlin code:
val x = 171

val y = 3

val z = x.xor(y)

print("Result is $z")

When executed, we get the following output from print:
Result is 168

13.9.5 Bitwise left shift
The bitwise left shift moves each bit in a binary number a specified number of positions to the left. Shifting an
integer one position to the left has the effect of doubling the value.

As the bits are shifted to the left, zeros are placed in the vacated rightmost (low-order) positions. Note also that
once the leftmost (high-order) bits are shifted beyond the size of the variable containing the value, those high
-order bits are discarded:
10101011 Left Shift one bit

========

101010110

In Kotlin the bitwise left shift operator is performed using the shl() operation, passing through the number of bit
positions to be shifted. For example, to shift left by 1 bit:
val x = 171

val z = x.shl(1)

print("Result is $z")

When compiled and executed, the above code will display a message stating that the result is 342 which, when
converted to binary, equates to 101010110.

13.9.6 Bitwise right shift
A bitwise right shift is, as you might expect, the same as a left except that the shift takes place in the opposite
direction. Shifting an integer one position to the right has the effect of halving the value.

Note that since we are shifting to the right, there is no opportunity to retain the lowermost bits regardless of the
data type used to contain the result. As a result, the low-order bits are discarded. Whether or not the vacated
high-order bit positions are replaced with zeros or ones depends on whether the sign bit used to indicate positive
and negative numbers is set or not.
10101011 Right Shift one bit

========

01010101

The bitwise right shift is performed using the shr() operation passing through the shift count:
val x = 171

117

Kotlin Operators and Expressions

val z = x.shr(1)

print("Result is $z")

When executed, the above code will report the result of the shift as being 85, which equates to binary 01010101.

13.10 Summary
Operators and expressions provide the underlying mechanism by which variables and constants are manipulated
and evaluated within Kotlin code. This can take the simplest of forms whereby two numbers are added using the
addition operator in an expression and the result stored in a variable using the assignment operator. Operators
fall into a range of categories, details of which have been covered in this chapter.

237

Chapter 29

29. An Introduction to FlowRow and
FlowColumn
The chapter entitled “Composing Layouts with Row and Column” used the Row and Column composables to
present content elements uniformly within a user interface. One limitation of Row and Column-based layouts
is that they are not well suited to organizing dynamic elements in terms of the quantity and sizes of the content.
These composables are also less effective when designing layouts that are responsive to device screen orientation
and size changes.

In this chapter, we will learn about the Flow layout composables and explore how they provide a more flexible
way to organize content in rows and columns.

29.1 FlowColumn and FlowRow
The Row and Column composables work best when you know the number of items to be displayed and their
respective sizes. This results in a spreadsheet-like layout with rows of aligned columns. The Flow layouts,
however, are designed to flow content onto the next row or column when space runs out. These composables
also discard the spreadsheet approach to organization, providing a more flexible approach to displaying items of
varying sizes. Figure 29-1, for example, shows a typical FlowRow layout:

Figure 29-1
As we will explore later in this chapter, Flow layouts provide extensive options for configuring the layout and
arrangement of child items, including weight, spacing, alignment, and the maximum number of items per row
or column.

The FlowRow composable uses the following syntax:
FlowRow(

 modifier: Modifier = Modifier,

 horizontalArrangement: Arrangement.Horizontal,

 verticalArrangement: Arrangement.Vertical,

 maxItemsInEachRow: Int

) {

 // Content here

238

An Introduction to FlowRow and FlowColumn

}

Figure 29-2 shows an example FlowColumn layout:

Figure 29-2
The FlowColumn composable uses the following syntax:
FlowColumn(

 modifier: Modifier,

 verticalArrangement: Arrangement.Vertical,

 horizontalArrangement: Arrangement.Horizontal,

 maxItemsInEachColumn: Int,

) {

 // Content here

}

29.2 Maximum number of items
Without restrictions, the Flow layouts will fit as many items into a row or column as possible before flowing
to the next one. The maximum number of items can be restricted using the maxItemsInEachColumn and
maxItemsInEachRow properties of the FlowColumn and FlowRow. For example:
FlowRow(maxItemsInEachRow = 10) {

 // Flow items here

}

FlowColumn(maxItemsInEachColumn = 5) {

 // Flow items here

}

29.3 Working with main axis arrangement
Main axis arrangement defines how the flow items are positioned along the main axis of the parent Flow layout.
For example, the horizontalArrangement property controls the arrangement of flow items along the horizontal
axis of the FlowRow composable. Table 29-1 shows the effects of the various horizontalArrangement options

239

An Introduction to FlowRow and FlowColumn

when applied to a FlowRow instance:

Arrangement.Start Arrangement.Center

Arrangement.End Arrangement.SpaceBetween

Arrangement.SpaceAround Arrangement.SpaceEvenly

Arrangement.spacedBy(10.dp)

Table 29-1
Similarly, the verticalArrangement property controls the positioning of flow items along the vertical access of the
FlowColumn. The same arrangement options are available as those listed above, except that Arrangement.Start
and Arrangement.End are replaced by Arrangement.Top and Arrangement.Bottom.

29.4 Understanding cross-axis arrangement
Cross-axis arrangement controls the arrangement of a flow layout on the opposite axis to the main flow. In
other words, the verticalArrangement property controls the vertical positioning of FlowRow items, while
horizontalArrangement does the same along the horizontal axis of FlowColumn items. Table 29-2 demonstrates
the three horizontalArrangement options applied to a FlowColumn instance:

240

An Introduction to FlowRow and FlowColumn

Arrangement.Start Arrangement.Center Arrangement.End

Table 29-2

29.5 Item alignment
The alignment of items within individual rows or columns can be controlled by passing an alignment value to the
align() modifier of the child items of a Flow layout. This is useful when the Flow items vary in height (FlowRow)
or width (FlowColumn). The following code, for example, specifies bottom alignment for a FlowRow item:
FlowRow {

 repeat(6) {

 MyFlowItem(modifier = Modifier.align(Alignment.Bottom))
 }

}

The following table illustrates the effect of applying Alignment.Top, Alignment.CenterVertically, and Alignment.
Bottom to FlowRow items of varying height:

Alignment.Top Alignment.CenterVertically Alignment.Bottom

Table 29-3
Equivalent alignment effects can be achieved for FlowColumn items using Alignment.Start, Alignment.
CenterHorizontally, and Alignment.End

29.6 Controlling item size
Weight factors can be applied to individual Flow items to specify the size relative to the overall space available
and the weights of other items in the same row or column. Weights are expressed as Float values and applied to
individual Flow items using the weight() modifier. Consider, for example, a FlowRow containing a single item
with a weight of 1f:
FlowRow {

 MyFlowItem(

 Modifier

 .weight(1f)

241

An Introduction to FlowRow and FlowColumn

)

}

When the layout is rendered, the item will occupy all the available space because it is the only item in the row:

Figure 29-3
If we add a second item, also with a weight of 1f, the two items will share the row equally:

Figure 29-4
If we add a third item with a weight of 1f, each item would occupy a third of the space. However, suppose that
the third item has a weight of 2f, giving us a weight combination of 1f, 1f, and 2f. In this case, the first two items
occupy half of the available space, while the third occupies the other half:

Figure 29-5
To calculate an item’s when using weights, the Flow composables divide the amount of space remaining in the
row or column by the total item weights, multiplied by the weight of the current item.

Another way to control the size of the items in a Flow layout is to use fractional sizing. Fractional sizing involves
specifying the percentage of the overall space in a row or column that an item is to occupy. The fraction is declared
as a Float value and applied to FlowRow and FlowColumn items using the fillMaxWidth() and fillMaxHeight()
modifiers, respectively. For example:
FlowRow {

 MyFlowItem(Modifier.width(50.dp))

 MyFlowItem(Modifier.fillMaxWidth(0.7f))
 MyFlowItem(Modifier.width(50.dp))

}

Regardless of the sizes of the other items, the fractional item in the above code example will always occupy 70%
of the row:

Figure 29-6
If there is insufficient room for the fractional item, items will flow onto the next row to make room:

242

An Introduction to FlowRow and FlowColumn

Figure 29-7

29.7 Summary
The FlowRow and FlowColumn composables are ideal for arranging groups of items of varying sizes and
quantities into flexible rows and columns. When a Flow layout runs out of space to display items, the remaining
content flows to the next row or column. Combined with an extensive collection of alignment, spacing, and
arrangement options, these composables provide a flexible and easy layout solution for presenting content
within apps.

407

Chapter 46

46. Working with ViewModels in
Compose
Until a few years ago, Google did not recommend a specific approach to building Android apps other than to
provide tools and development kits while letting developers decide what worked best for a particular project
or individual programming style. That changed in 2017 with the introduction of the Android Architecture
Components which became part of Android Jetpack when it was released in 2018. Jetpack has of course, since
been expanded with the addition of Compose.

This chapter will provide an overview of the concepts of Jetpack, Android app architecture recommendations,
and the ViewModel component.

46.1 What is Android Jetpack?
Android Jetpack consists of Android Studio, the Android Architecture Components, Android Support Library,
and the Compose framework together with a set of guidelines that recommend how an Android App should be
structured. The Android Architecture Components were designed to make it quicker and easier both to perform
common tasks when developing Android apps while also conforming to the key principle of the architectural
guidelines. While many of these components have been superseded by features built into Compose, the
ViewModel architecture component remains relevant today. Before exploring the ViewModel component, it
first helps to understand both the old and new approaches to Android app architecture.

46.2 The “old” architecture
In the chapter entitled “An Example Compose Project”, an Android project was created consisting of a single
activity that contained all of the code for presenting and managing the user interface together with the back-end
logic of the app. Up until the introduction of Jetpack, the most common architecture followed this paradigm
with apps consisting of multiple activities (one for each screen within the app) with each activity class to some
degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

46.3 Modern Android architecture
At the most basic level, Google now advocates single activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept called “separation of concerns”). One of the keys to this approach is the
ViewModel component.

46.4 The ViewModel component
The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the
code responsible for displaying and managing the user interface and interacting with the operating system.

408

Working with ViewModels in Compose

When designed in this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data needed by those controllers.

A ViewModel is implemented as a separate class and contains state values containing the model data and
functions that can be called to manage that data. The activity containing the user interface observes the model
state values such that any value changes trigger a recomposition. User interface events relating to the model data
such as a button click are configured to call the appropriate function within the ViewModel. This is, in fact, a
direct implementation of the unidirectional data flow concept described in the chapter entitled “An Overview of
Compose State and Recomposition”. The diagram in Figure 46-1 illustrates this concept as it relates to activities
and ViewModels:

Figure 46-1
This separation of responsibility addresses the issues relating to the lifecycle of activities. Regardless of how
many times an activity is recreated during the lifecycle of an app, the ViewModel instances remain in memory
thereby maintaining data consistency. A ViewModel used by an activity, for example, will remain in memory
until the activity finishes which, in the single activity app, is not until the app exits.

In addition to using ViewModels, the code responsible for gathering data from data sources such as web services
or databases should be built into a separate repository module instead of being bundled with the view model.
This topic will be covered in detail beginning with the chapter entitled “Room Databases and Compose”.

46.5 ViewModel implementation using state
The main purpose of a ViewModel is to store data that can be observed by the user interface of an activity. This
allows the user interface to react when changes occur to the ViewModel data. There are two ways to declare the
data within a ViewModel so that it is observable. One option is to use the Compose state mechanism which has
been used extensively throughout this book. An alternative approach is to use the Jetpack LiveData component,
a topic that will be covered later in this chapter.

Much like the state declared within composables, ViewModel state is declared using the mutableStateOf group
of functions. The following ViewModel declaration, for example, declares a state containing an integer count
value with an initial value of 0:
class MyViewModel : ViewModel() {

 var customerCount by mutableStateOf(0)

}

With some data encapsulated in the model, the next step is to add a function that can be called from within the
UI to change the counter value:

409

Working with ViewModels in Compose

class MyViewModel : ViewModel() {

 var customerCount by mutableStateOf(0)

 fun increaseCount() {

 customerCount++

 }

}

Even complex models are nothing more than a continuation of these two basic state and function building
blocks.

46.6 Connecting a ViewModel state to an activity
A ViewModel is of little use unless it can be used within the composables that make up the app user interface.
All this requires is to pass an instance of the ViewModel as a parameter to a composable from which the state
values and functions can be accessed. Programming convention recommends that these steps be performed in a
composable dedicated solely for this task and located at the top of the screen’s composable hierarchy. The model
state and event handler functions can then be passed to child composables as necessary. The following code
shows an example of how a ViewModel might be accessed from within an activity:
class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ViewModelWorkTheme {

 Surface(color = MaterialTheme.colorScheme.background) {

 TopLevel()

 }

 }

 }

 }

}

@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

 MainScreen(model.customerCount) { model.increaseCount() }

}

@Composable

fun MainScreen(count: Int, addCount: () -> Unit = {}) {

 Column(horizontalAlignment = Alignment.CenterHorizontally,

 modifier = Modifier.fillMaxWidth()) {

 Text("Total customers = $count",

 Modifier.padding(10.dp))

 Button(

 onClick = addCount,

) {

 Text(text = "Add a Customer")

410

Working with ViewModels in Compose

 }

 }

}

In the above example, the first function call is made by the onCreate() method to the TopLevel composable
which is declared with a default ViewModel parameter initialized via a call to the viewModel() function:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {
.

.

The viewModel() function is provided by the Compose view model lifecycle library which needs to be added to
the project’s build dependencies when working with view models. This requires the following additions to the
Gradle Scripts -> libs.version.tomi file:
[versions]

activityCompose = "1.8.2"
.
.
[libraries]

androidx-lifecycle-viewmodel-compose = { module = "androidx.lifecycle:lifecycle-
viewmodel-compose", version.ref = "lifecycleRuntimeKtx" }
.

.

Once the library has been added to the version catalog, it must be added to the dependencies section of the
Gradle Scripts -> build.gradle.kts (Module :app) file:
dependencies {

.

.

 implementation(libs.androidx.lifecycle.viewmodel.compose)
.
.

If an instance of the view model has already been created within the current scope, the viewModel() function will
return a reference to that instance. Otherwise, a new view model instance will be created and returned.

With access to the ViewModel instance, the TopLevel function is then able to obtain references to the view model
customerCount state variable and increaseCount() function which it passes to the MainScreen composable:
MainScreen(model.customerCount) { model.increaseCount() }

As implemented, Button clicks will result in calls to the view model increaseCount() function which, in turn,
increments the customerCount state. This change in state triggers a recomposition of the user interface, resulting
in the new customer count value appearing in the Text composable.

The use of state and view models will be demonstrated in the chapter entitled “A Compose ViewModel Tutorial”.

46.7 ViewModel implementation using LiveData
The Jetpack LiveData component predates the introduction of Compose and can be used as a wrapper around
data values within a view model. Once contained in a LiveData instance, those variables become observable to
composables within an activity. LiveData instances can be declared as being mutable using the MutableLiveData

411

Working with ViewModels in Compose

class, allowing the ViewModel functions to make changes to the underlying data value. An example view model
designed to store a customer name could, for example, be implemented as follows using MutableLiveData
instead of state:
class MyViewModel : ViewModel() {

 var customerName: MutableLiveData<String> = MutableLiveData("")

 fun setName(name: String) {

 customerName.value = name

 }

}

Note that new values must be assigned to the live data variable via the value property.

46.8 Observing ViewModel LiveData within an activity
As with state, the first step when working with LiveData is to obtain an instance of the view model within an
initialization composable:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

}

Once we have access to a view model instance, the next step is to make the live data observable. This is achieved
by calling the observeAsState() method on the live data object:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

 var customerName: String by model.customerName.observeAsState("")
}

In the above code, the observeAsState() call converts the live data value into a state instance and assigns it to
the customerName variable. Once converted, the state will behave in the same way as any other state object,
including triggering recompositions whenever the underlying value changes.

The use of LiveData and view models will be demonstrated in the chapter entitled “A Compose Room Database
and Repository Tutorial”.

46.9 Summary
Until recently, Google has tended not to recommend any particular approach to structuring an Android app.
That changed with the introduction of Android Jetpack which consists of a set of tools, components, libraries,
and architecture guidelines. These architectural guidelines recommend that an app project be divided into
separate modules, each being responsible for a particular area of functionality, otherwise known as “separation
of concerns”. In particular, the guidelines recommend separating the view data model of an app from the code
responsible for handling the user interface. This is achieved using the ViewModel component. In this chapter,
we have covered ViewModel-based architecture and demonstrated how this is implemented when developing
with Compose. We have also explored how to observe and access view model data from within an activity using
both state and LiveData.

577

Chapter 61

61. An Overview of Android In-App
Billing
In the early days of mobile applications for operating systems such as Android and iOS, the most common
method for earning revenue was to charge an upfront fee to download and install the application. However,
Google soon introduced another revenue opportunity by embedding advertising within applications. Perhaps
the most common and lucrative option is now to charge the user for purchasing items from within the application
after it has been installed. This typically takes the form of access to a higher level in a game, acquiring virtual
goods or currency, or subscribing to premium content in the digital edition of a magazine or newspaper.

Google supports integrating in-app purchasing through the Google Play In-App Billing API and the Play
Console. This chapter will provide an overview of in-app billing and outline how to integrate in-app billing into
your Android projects. Once these topics have been explored, the next chapter will walk you through creating
an example app that includes in-app purchasing features.

61.1 Preparing a project for In-App purchasing
Building in-app purchasing into an app will require a Google Play Developer Console account, which was
covered previously in the “Creating, Testing and Uploading an Android App Bundle” chapter. In addition, you
must also register a Google merchant account and configure your payment settings. You can find these settings
by navigating to Setup -> Payments profile in the Play Console. Note that merchant registration is not available
in all countries. For details, refer to the following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app will then need to be uploaded to the console and enabled for in-app purchasing. The console will not
activate in-app purchasing support for an app, however, unless the Google Play Billing Library has been added
to the module-level build.gradle.kts file. When working with Kotlin, the Google Play Kotlin Extensions Library
is also recommended:
dependencies {

.

.

 implementation(libs.billing)
 implementation(libs.billing.ktx)
.

.

}

The corresponding entries in the libs.versions.toml file for the above libraries will read as follows:
[versions]

billing = "<latest version>"
.

.

[libraries]

https://support.google.com/googleplay/android-developer/answer/9306917

578

An Overview of Android In-App Billing

billing = { module = "com.android.billingclient:billing", version.ref = "billing"
}
billing-ktx = { module = "com.android.billingclient:billing-kStx", version.ref =
"billing" }
.

.

Once the build files have been modified and the app bundle uploaded to the console, the next step is to add in-
app products or subscriptions for the user to purchase.

61.2 Creating In-App products and subscriptions
Products and subscriptions are created and managed using the options listed beneath the Monetize section of
the Play Console navigation panel as highlighted in Figure 61-1 below:

Figure 61-1
Each product or subscription needs an ID, title, description, and pricing information. Purchases fall into
the categories of consumable (the item must be purchased each time it is required by the user such as virtual
currency in a game), non-consumable (only needs to be purchased once by the user such as content access), and
subscription-based. Consumable and non-consumable products are collectively referred to as managed products.

Subscriptions are useful for selling an item that needs to be renewed on a regular schedule such as access to news
content or the premium features of an app. When creating a subscription, a base plan is defined specifying the
price, renewal period (monthly, annually, etc.), and whether the subscription auto-renews. Users can also be
provided with discount offers and given the option of pre-purchasing a subscription.

61.3 Billing client initialization
A BillingClient instance handles communication between your app and the Google Play Billing Library.
In addition, BillingClient includes a set of methods that can be called to perform both synchronous and
asynchronous billing-related activities. When the billing client is initialized, it will need to be provided with a
reference to a PurchasesUpdatedListener callback handler. The client will call this handler to notify your app
of the results of any purchasing activity. To avoid duplicate notifications, it is recommended to have only one
BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() method, passing through the current activity or
fragment context. The purchase update handler is then assigned to the client via the setListener() method:
private val purchasesUpdatedListener =

 PurchasesUpdatedListener { billingResult, purchases ->

579

An Overview of Android In-App Billing

 if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK

 && purchases != null

) {

 for (purchase in purchases) {

 // Process the purchases

 }

 } else if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.USER_CANCELED

) {

 // Purchase cancelled by user

 } else {

 // Handle errors here

 }

 }

billingClient = BillingClient.newBuilder(this)

 .setListener(purchasesUpdatedListener)

 .enablePendingPurchases()

 .build()

61.4 Connecting to the Google Play Billing library
After successfully creating the Billing Client, the next step is initializing a connection to the Google Play Billing
Library. To establish this connection, a call needs to be made to the startConnection() method of the billing client
instance. Since the connection is performed asynchronously, a BillingClientStateListener handler needs to be
implemented to receive a callback indicating whether the connection was successful. Code should also be added
to override the onBillingServiceDisconnected() method. This is called if the connection to the Billing Library is
lost and can be used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the BillingClient instance will make a call to the
onBillingSetupFinished() method which can be used to check that the client is ready:
billingClient.startConnection(object : BillingClientStateListener {

 override fun onBillingSetupFinished(

 billingResult: BillingResult

) {

 if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK

) {

 // Connection successful

 } else {

 // Connection failed

 }

 }

 override fun onBillingServiceDisconnected() {

 // Connection to billing service lost

 }

580

An Overview of Android In-App Billing

})

61.5 Querying available products
Once the billing environment is initialized and ready to go, the next step is to request the details of the products
or subscriptions available for purchase. This is achieved by making a call to the queryProductDetailsAsync()
method of the BillingClient and passing through an appropriately configured QueryProductDetailsParams
instance containing the product ID and type (ProductType.SUBS for a subscription or ProductType.INAPP for
a managed product):
val queryProductDetailsParams = QueryProductDetailsParams.newBuilder()

 .setProductList(

 ImmutableList.of(

 QueryProductDetailsParams.Product.newBuilder()

 .setProductId(productId)

 .setProductType(

 BillingClient.ProductType.INAPP

)

 .build()

)

)

 .build()

billingClient.queryProductDetailsAsync(

 queryProductDetailsParams

) { billingResult, productDetailsList ->

 if (!productDetailsList.isEmpty()) {

 // Process list of matching products

 } else {

 // No product matches found

 }

}

The queryProductDetailsAsync() method is passed a ProductDetailsResponseListener handler (in this case in
the form of a lambda code block) which, in turn, is called and passed a list of ProductDetail objects containing
information about the matching products. For example, we can call methods on these objects to get information
such as the product name, title, description, price, and offer details.

61.6 Starting the purchase process
Once a product or subscription has been queried and selected for purchase by the user, the purchase process is
ready to be launched. We do this by calling the launchBillingFlow() method of the BillingClient, passing through
as arguments the current activity and a BillingFlowParams instance configured with the ProductDetail object
for the item being purchased.
val billingFlowParams = BillingFlowParams.newBuilder()

 .setProductDetailsParamsList(

 ImmutableList.of(

 BillingFlowParams.ProductDetailsParams.newBuilder()

 .setProductDetails(productDetails)

 .build()

581

An Overview of Android In-App Billing

)

)

 .build()

billingClient.launchBillingFlow(this, billingFlowParams)

The success or otherwise of the purchase operation will be reported via a call to the PurchasesUpdatedListener
callback handler outlined earlier in the chapter.

61.7 Completing the purchase
When purchases are successful, the PurchasesUpdatedListener handler will be passed a list containing a Purchase
object for each item. You can verify that the item has been purchased by calling the getPurchaseState() method
of the Purchase instance as follows:
if (purchase.getPurchaseState() == Purchase.PurchaseState.PURCHASED) {

 // Purchase completed.

} else if (purchase.getPurchaseState() == Purchase.PurchaseState.PENDING) {

 // Payment is still pending

}

Note that your app will only support pending purchases if a call is made to the enablePendingPurchases() method
during initialization. A pending purchase will remain so until the user completes the payment process.

When the purchase of a non-consumable item is complete, it will need to be acknowledged to prevent a refund
from being issued to the user. This requires the purchase token for the item which is obtained via a call to the
getPurchaseToken() method of the Purchase object. This token is used to create an AcknowledgePurchaseParams
instance together with an AcknowledgePurchaseResponseListener handler. Managed product purchases and
subscriptions are acknowledged by calling the BillingClient’s acknowledgePurchase() method as follows:
billingClient.acknowledgePurchase(acknowledgePurchaseParams,

 acknowledgePurchaseResponseListener);

val acknowledgePurchaseParams = AcknowledgePurchaseParams.newBuilder()

 .setPurchaseToken(purchase.purchaseToken)

 .build()

val acknowledgePurchaseResponseListener = AcknowledgePurchaseResponseListener {

 // Check acknowledgement result

}

billingClient.acknowledgePurchase(

 acknowledgePurchaseParams,

 acknowledgePurchaseResponseListener

)

For consumable purchases, you will need to notify Google Play when the item has been consumed so that it
is available to be repurchased by the user. This requires a configured ConsumeParams instance containing a
purchase token and a call to the billing client’s consumePurchase() method:
val consumeParams = ConsumeParams.newBuilder()

 .setPurchaseToken(purchase.purchaseToken)

 .build()

582

An Overview of Android In-App Billing

coroutineScope.launch {

 val result = billingClient.consumePurchase(consumeParams)

 if (result.billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK) {

 // Purchase successfully consumed

 }

}

61.8 Querying previous purchases
When working with in-app billing it is a common requirement to check whether a user has already purchased a
product or subscription. A list of all the user’s previous purchases of a specific type can be generated by calling
the queryPurchasesAsync() method of the BillingClient instance and implementing a PurchaseResponseListener.
The following code, for example, obtains a list of all previously purchased items that have not yet been consumed:
val queryPurchasesParams = QueryPurchasesParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build()

billingClient.queryPurchasesAsync(

 queryPurchasesParams,

 purchasesListener

)

.

.

private val purchasesListener =

 PurchasesResponseListener { billingResult, purchases ->

 if (!purchases.isEmpty()) {

 // Access existing active purchases

 } else {

 // No

 }

 }

To obtain a list of active subscriptions, change the ProductType value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for each product, make a call to the BillingClient
queryPurchaseHistoryAsync() method:
val queryPurchaseHistoryParams = QueryPurchaseHistoryParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build()

billingClient.queryPurchaseHistoryAsync(queryPurchaseHistoryParams) {
billingResult, historyList ->

 // Process purchase history list

}

583

An Overview of Android In-App Billing

61.9 Summary
In-app purchases provide a way to generate revenue from within Android apps by selling virtual products and
subscriptions to users. In this chapter, we have explored managed products and subscriptions and explained
the difference between consumable and non-consumable products. In-app purchasing support is added to
an app using the Google Play In-app Billing Library and involves creating and initializing a billing client on
which methods are called to perform tasks such as making purchases, listing available products, and consuming
existing purchases. The next chapter contains a tutorial demonstrating the addition of in-app purchases to an
Android Studio project.

619

Index

Index

Symbols
?. 107

2D graphics 387

@Composable 24, 155

@ExperimentalFoundationApi 334

:: operator 109

@Preview 25

showSystemUi 25

A
acknowledgePurchase() method 581

Activity Manager 96

adb

command-line tool 73

connection testing 79

device pairing 77

enabling on Android devices 73

Linux configuration 76

list devices 73

macOS configuration 74

overview 73

restart server 74

testing connection 79

WiFi debugging 77

Windows configuration 75

Wireless debugging 77

Wireless pairing 77

AlertDialog 159

align() 233

alignByBaseline() 225

Alignment.Bottom 219, 223

Alignment.BottomCenter 231

Alignment.BottomEnd 231

Alignment.BottomStart 231

Alignment.Center 231

Alignment.CenterEnd 231

Alignment.CenterHorizontally 219

Alignment.CenterStart 231

Alignment.CenterVertically 219, 223

Alignment.End 219

alignment lines 255

Alignment.Start 219

Alignment.Top 219, 223

Alignment.TopCenter 231

Alignment.TopEnd 231

Alignment.TopStart 231

Anchored Draggable Components 499

anchoredDraggable() modifier 499

AnchoredDraggableState 500

anchor points 499

DraggableAnchors 500

threshold 499

anchoredDraggable() modifier 499, 508

orientation 499

reverseDirection 499

state 499

AnchoredDraggableState 500

anchors 500

animationSpec 501

initialValue 500

positionalThreshold 500

requiredOffset() 501, 507

velocityThreshold 501

Android

architecture 93

runtime 94

SDK Packages 6

android.app 94

Android Architecture Components 407

android.content 94

android.database 94

Android Debug Bridge. See ADB

Android Development

System Requirements 3

620

Index

android.graphics 95

android.hardware 95

android.hardware.camera 539

Android Jetpack 407

Android Libraries 94

android.media 95

Android Monitor tool window 46

Android Native Development Kit 95

android.net 95

android.opengl 95

android.os 95

android.print 95

android.provider 95

Android SDK Location

identifying 10

Android SDK Manager 8, 10

Android SDK Packages

version requirements 8

Android SDK Tools

command-line access 9

Linux 11

macOS 11

Windows 7 10

Windows 8 10

Android Software Stack 93

Android Studio

Animation Inspector 385

Asset Studio 190

changing theme 71

Database Inspector 455

downloading 3

Editor Window 66

installation 4

Layout Editor 149

Linux installation 5

macOS installation 4

Navigation Bar 65

Project tool window 66

setup wizard 5

Status Bar 66

Toolbar 65

Tool window bars 66

tool windows 66

updating 12

Welcome Screen 63

Windows installation 4

Android Support Library, 407

android.text 95

android.util 95

android.view 95

Android Virtual Device. See AVD

overview 39

Android Virtual Device Manager 39

android.webkit 95

android.widget 95

AndroidX libraries 612

animate as state functions 371

animateColorAsState() function 371, 375, 377

animateDpAsState() function 377, 382

AnimatedVisibility 359

animation specs 363

enter and exit animations 362

expandHorizontally() 362

expandIn() 362

expandVertically() 362

fadeIn() 362

fadeOut() 363

MutableTransitionState 367

scaleIn() 363

scaleOut() 363

shrinkHorizontally() 363

shrinkOut() 363

shrinkVertically() 363

slideIn() 363

slideInHorizontally() 363

slideInVertically() 363

slideOut() 363

slideOutHorizontally() 363

slideOutVertically() 363

animateEnterExit() modifier 366

animateFloatAsState() function 372

animateScrollTo() function 310, 321

animateScrollToItem(index: Int) 310

animateScrollTo(value: Int) 309

621

Index
Animation

auto-starting 366

combining animations 382

inspector 385

keyframes 381

KeyframesSpec 381

motion 377

spring effects 380

state-based 371

visibility 359

Animation damping

DampingRatioHighBouncy 380

DampingRatioLowBouncy 380

DampingRatioMediumBouncy 380

DampingRatioNoBouncy 380

Animation Inspector 385

AnimationSpec 363

tween() function 364

Animation specs 363

Animation stiffness

StiffnessHigh 381

StiffnessLow 381

StiffnessMedium 381

StiffnessMediumLow 381

StiffnessVeryLow 381

annotated strings 207, 403

append function 207

buildAnnotatedString function 207

ParagraphStyle 208

SpanStyle 207

API Key 549

APK analyzer 574

APK file 567

APK File

analyzing 574

APK Signing 612

APK Wizard dialog 566

App Bundles 563

creating 567

overview 563

revisions 573

uploading 570

append function 207

App Inspector 67

Application

stopping 46

Application Framework 96

Arrangement.Bottom 221

Arrangement.Center 220, 221

Arrangement.End 220

Arrangement.SpaceAround 222

Arrangement.SpaceBetween 222

Arrangement.SpaceEvenly 222

Arrangement.Start 220

Arrangement.Top 221

ART 94

as 109

as? 109

asFlow() builder 513

Asset Studio 190

asSharedFlow() 525

asStateFlow() 523

async 301

AVD

Change posture 61

cold boot 58

command-line creation 39

creation 39

device frame 50

Display mode 60

launch in tool window 50

overview 39

quickboot 58

Resizable 60

running an application 42

Snapshots 57

standalone 47

starting 41

Startup size and orientation 42

B
background modifier 204

barriers 285

Barriers 270

622

Index

constrained views 270

baseline

alignment 223

baselines 257

BaseTextField 158

BillingClient 582

acknowledgePurchase() method 581

consumeAsync() method 581

getPurchaseState() method 581

initialization 578, 589

launchBillingFlow() method 580

queryProductDetailsAsync() method 580

queryPurchasesAsync() method 582

startConnection() method 579

BillingResult 597

getDebugMessage() 597

Bill of Materials. See BOM

Biometric Authentication 537

callbacks 542

overview 537

tutorial 537

Biometric library 538

BiometricManager 537

BiometricPrompt 537

Bitwise AND 115

Bitwise Inversion 114

Bitwise Left Shift 116

Bitwise OR 115

Bitwise Right Shift 116

Bitwise XOR 115

BOM 26

build.gradle.kts 26

compose-bom 26

library version mapping 27

Boolean 102

BottomNavigation 159, 463

BottomNavigationItem 463

Box 158

align() 233

alignment 231

Alignment.BottomCenter 231

Alignment.BottomEnd 231

Alignment.BottomStart 231

Alignment.Center 231

Alignment.CenterEnd 231

Alignment.CenterStart 231

Alignment.TopCenter 231

Alignment.TopEnd 231

Alignment.TopStart 231

BoxScope 233

contentAlignment 231

matchParentSize() 233

overview 229

tutorial 229

BoxScope

align() 233

matchParentSize() 233

modifiers 233

BoxWithConstraints 158

Brush Text Styling 208

buffer() operator 519

buildAnnotatedString function 207

Build tool window 68

Build Variants , 68

tool window 68

Button 159

by keyword 164

C
CAMERA permission 539

CameraUpdateFactory class

methods 559

cancelAndJoin() 302

cancelChildren() 302

Canvas 158

DrawScope 387

inset() function 391

overview 387

size 387

Card 159

example 314

C/C++ Libraries 95

centerAround() function 274

chain head 268

623

Index
chaining modifiers 199

chains 268

chain styles 268

Char 102

Checkbox 159, 188

Circle class 545

CircleShape 233

CircularProgressIndicator 159

clickable 204

clip 204

Clip Art 191

clip() modifier 233

CircleShape 233

CutCornerShape 233

RectangleShape 233

RoundedCornerShape 233

close() function 399

Code completion 84

Code Editor

basics 81

Code completion 84

Code Generation 86

Code Reformatting 89

Document Tabs 82

Editing area 82

Gutter Area 82

Live Templates 90

Splitting 84

Statement Completion 86

Status Bar 83

Code Generation 86

Code Reformatting 89

code samples

download 1

Coil

rememberImagePainter() function 328

cold boot 58

Cold flow 523

convert to hot 526

collectLatest() operator 518

collect() operator 514

ColorFilter 402

color filtering 402

Column 158

Alignment.CenterHorizontally 219

Alignment.End 219

Alignment.Start 219

Arrangement.Bottom 221

Arrangement.Center 221

Arrangement.SpaceAround 222

Arrangement.SpaceBetween 222

Arrangement.SpaceEvenly 222

Arrangement.Top 221

Layout alignment 218

list 307

list tutorial 317

overview 216

scope 223

scope modifiers 223

spacing 222

tutorial 215

verticalArrangement 220

Column lists 307

ColumnScope 223

Modifier.align() 223

Modifier.alignBy() 223

Modifier.weight() 223

combine() operator 522

combining modifiers 204

Communicating Sequential Processes 299

Companion Objects 139

components 155

Composable

adding a 30

previewing 32

Composable function

syntax 156

composable functions 155

composables

add modifier support 200

Composables

Foundation 158

Material 158

Compose

624

Index

before 149

components 155

data-driven 150

declarative syntax 149

functions 155

layout overview 251

modifiers 197

overview 149

state 150

compose-bom 26

compose() method 459

CompositionLocal

example 175

overview 173

state 176, 177

syntax 174

compositionLocalOf() function 174

conflate() operator 518

constrainAs() modifier function 273

constrain() function 290

Constraint bias 279

Constraint Bias 267

ConstraintLayout 158

adding constraints 274

barriers 285

Barriers 270

basic constraints 276

centerAround() function 274

chain head 268

chains 268

chain styles 268

constrainAs() function 273

constrain() function 290

Constraint bias 279

Constraint Bias 267

Constraint margins 279

Constraints 265

constraint sets 289

createEndBarrier() 285, 286

createHorizontalChain() 283

createRefFor() function 290

createRef() function 273

createRefs() function 273

createStartBarrier() 285

createTopBarrier() 285

createVerticalChain() 283

creating chains 283

generating references 273

guidelines 284

Guidelines 269

how to call 273

layout() modifier 290

linkTo() function 274

Margins 266

Opposing constraints 277

Opposing Constraints 266, 281

overview of 265

Packed chain 269

reference assignment 273

Spread chain 268

Spread inside chain 268

Weighted chain 268

Widget Dimensions 269

Constraint margins 279

constraints 260

constraint sets 289

consumeAsync() method 581

ConsumeParams 593

contentAlignment 231

Content Provider 96

Coroutine Builders 301

async 301

coroutineScope 301

launch 301

runBlocking 301

supervisorScope 301

withContext 301

Coroutine Dispatchers 300

Coroutines 310, 511

channel communication 303

coroutine scope 310

CoroutineScope 310

GlobalScope 300

LaunchedEffect 304

625

Index
rememberCoroutineScope() 310

rememberCoroutineScope() function 300

SideEffect 304

Side Effects 304

Suspend Functions 300

suspending 302

ViewModelScope 300

vs Threads 299

vs. Threads 299

coroutineScope 301

CoroutineScope 300, 310

rememberCoroutineScope() 310

createEndBarrier() 285

createHorizontalChain() 283

createRefFor() function 290

createRef() function 273

createRefs() 273

createStartBarrier() 285

createTopBarrier() 285

createVerticalChain() 283

cross axis arrangement 249

Crossfading 367

currentBackStackEntryAsState() method 464, 480

Custom Accessors 137

Custom layout 259

building 259

constraints 260

Layout() composable 260

measurables 260

overview 259

Placeable 260

syntax 259

custom layout modifiers 251

alignment lines 255

baselines 257

creating 253

default position 253

Custom layouts

overview 251

tutorial 251

Custom Theme

building 603

CutCornerShape 233

D
DampingRatioHighBouncy 380

DampingRatioLowBouncy 380

DampingRatioMediumBouncy 380

DampingRatioNoBouncy 380

Dark Theme 46

enable on device 46

dashPathEffect() method 389

Data Access Object (DAO) 430, 443

Data Access Objects 433

Database Inspector 437, 455

live updates 455

SQL query 455

Database Rows 424

Database Schema 423

Database Tables 423

data-driven 150

DDMS 46

Debugging

enabling on device 73

declarative syntax 149

Default Function Parameters 129

default position 253

derivedStateOf 337

Device File Explorer 68

device frame 50

Device Mirroring 79

enabling 79

device pairing 77

Dispatchers.Default 301

Dispatchers.IO 301

Dispatchers.Main 300

DraggableAnchors 500

drag gestures 488

drawable

folder 190

drawArc() function 398

drawCircle() function 394

drawImage() function 401

Drawing

626

Index

arcs 398

circle 394

close() 399

dashed lines 389

dashPathEffect() 389

drawArc() 398

drawImage() 401

drawPath() 399

drawPoints() 400

drawRect() 389

drawRoundRect() 392

gradients 395

images 401

line 387

oval 394

points 400

rectangle 389

rotate() 393

rotation 393

Drawing text 403

drawLine() function 388

drawPath() function 399

drawPoints() function 400

drawRect() function 389

drawRoundRect() function 392

DrawScope 387

drawText() function 403, 404

DropdownMenu 159

DROP_LATEST 525

DROP_OLDEST 525

DurationBasedAnimationSpec 363

Dynamic colors

enabling in Android 609

E
Elvis Operator 109

emit 155

Empty Compose Activity

template 16

Emulator

battery 56

cellular configuration 56

configuring fingerprints 58

directional pad 56

extended control options 55

Extended controls 55

fingerprint 56

location configuration 56

phone settings 56

Resizable 60

resize 55

rotate 54

Screen Record 57

Snapshots 57

starting 41

take screenshot 54

toolbar 53

toolbar options 53

tool window mode 59

Virtual Sensors 57

zoom 54

enablePendingPurchases() method 581

enabling ADB support 73

enter animations 362

EnterTransition.None 366

Errata 2

Escape Sequences 103

exit animations 362

ExitTransition.None 366

expandHorizontally() 362

expandIn() 362

expandVertically() 362

Extended Control

options 55

F
fadeIn() 362

fadeOut() 363

Files

switching between 82

fillMaxHeight 204

fillMaxSize 204

fillMaxWidth 204

filter() operator 516

627

Index
findStartDestination() method 464

Fingerprint

emulation 58

Fingerprint authentication

device configuration 538

overview 537

steps to implement 537

tutorial 537

firstVisibleItemIndex 312

flatMapConcat() operator 521

flatMapMerge() operator 521

Float 102

FloatingActionButton 159

Flow 511

asFlow() builder 513

asSharedFlow() 525

asStateFlow() 523

backgroudn handling 533

buffering 518

buffer() operator 519

builder 513

cold 523

collect() 517

collecting data 517

collectLatest() operator 518

combine() operator 522

conflate() operator 518

emit() 513

emitting data 513

filter() operator 516

flatMapConcat() operator 521

flatMapMerge() operator 521

flattening 520

flowOf() builder 513

flow of flows 520

fold() operator 520

hot 523

MutableSharedFlow 525

MutableStateFlow 523

onEach() operator 522

reduce() operator 519, 520

repeatOnLifecycle 534

SharedFlow 524

shareIn() function 526

single() operator 518

StateFlow 523

transform() operator 516

try/finally 517

zip() operator 522

flow builder 513

FlowColumn 237, 243, 248

cross axis arrangement 249

maxItemsInEachColumn 238

tutorial 243

Flow layout

arrangement 246

Flow layouts

cross axis arrangement 239

fillMaxHeight() 241

fillMaxWidth() 241

Fractional sizing 241

horizontalArrangement 249

Item alignment 240

item weights 249

main axis arrangement 238

verticalArrangement 249

weight 240

flowOf() builder 513

flow of flows 520

FlowRow 237, 243, 245

cross axis arrangement 249

horizontalArrangement 246

item alignment 246

maxItemsInEachRow 238

tutorial 243

Flows

combining 522

Introduction to 511

FontWeight 31

forEachIndexed 249

forEach loop 262

Forward-geocoding 551

Foundation components 158

Foundation Composables 158

628

Index

FragmentActivity 539

Function Parameters

variable number of 129

Functions 127

G
Geocoder object 552

Geocoding 551

Gestures 485

click 485

drag 488

horizontalScroll() 492

overview 485

pinch gestures 494

PointerInputScope 487

rememberScrollableState() function 491

rememberScrollState() 492

rememberTransformableState() 494

rotation gestures 495

scrollable() modifier 491

scroll modifiers 492

taps 487

translation gestures 496

tutorial 485

verticalScroll() 492

getDebugMessage() 597

getFromLocation() method 552

getPurchaseState() method 581

getStringArray() method 325

GlobalScope 300

GNU/Linux 94

Google Cloud

billing account 546

new project 547

GoogleMap 545

Google Maps Android API 545

Controlling the Map Camera 559

displaying controls 555

Map Markers 558

overview 545

Google Maps SDK 545

API Key 549

Credentials 548

enabling 548

Maps SDK for Android 548

Google Play App Signing 566

Google Play Billing Library 577

Google Play Console 586

Creating an in-app product 586

License Testers 587

Google Play Developer Console 564

Google Play store 17

Gradient drawing 395

Gradle

APK signing settings 616

Build Variants 612

command line tasks 617

dependencies 611

Manifest Entries 612

overview 611

sensible defaults 611

Gradle Build File

top level 613

Gradle Build Files

module level 614

gradle.properties file 612

Graphics

drawing 387

Grid

overview 307

groupBy() function 311

guidelines 284

H
HAL 94

Hardware Abstraction Layer 94

Higher-order Functions 131

horizontalArrangement 220, 222, 249

HorizontalPager 349

animateScrollToPage() 351

scrollToPage() 351

state 350

syntax 349

horizontalScroll() 492

629

Index
Hot flows 523

I
Image 158

add drawable resource 190

painterResource method 192

Immutable Variables 104

INAPP 582

In-App Products 578

In-App Purchasing 585

acknowledgePurchase() method 581

BillingClient 578

BillingResult 597

consumeAsync() method 581

ConsumeParams 593

Consuming purchases 592

enablePendingPurchases() method 581

getPurchaseState() method 581

Google Play Billing Library 577

launchBillingFlow() method 580

Libraries 585

newBuilder() method 578

onBillingServiceDisconnected() callback 590

onBillingServiceDisconnected() method 579

onBillingSetupFinished() listener 590

onProductDetailsResponse() callback 590

Overview 577

ProductDetail 580

ProductDetails 591

products 578

ProductType 582

Purchase Flow 592

PurchaseResponseListener 582

PurchasesUpdatedListener 581

PurchaseUpdatedListener 591

purchase updates 591

queryProductDetailsAsync() 590

queryProductDetailsAsync() method 580

queryPurchasesAsync() 593

queryPurchasesAsync() method 582

startConnection() method 579

subscriptions 578

tutorial 585

Initializer Blocks 137

In-Memory Database 436

Inner Classes 138

inset() function 391

InstrinsicSize.Max 297

InstrinsicSize.Min 297, 298

intelligent recomposition 161

IntelliJ IDEA 97

Interactive mode 36

Intrinsic measurements 293

IntrinsicSize 293

intrinsic measurements 293

Max 293

Min 293

tutorial 295

is 109

isInitialized property 109

isSystemInDarkTheme() function 176

item() function 308

items() function 308

itemsIndexed() function 308

J
Java

convert to Kotlin 97

Java Native Interface 95

JetBrains 97

Jetpack Compose

see Compose 149

join() 302

K
keyboardOptions 420

Keyboard Shortcuts 69

keyframe 364

keyframes 381

KeyframesSpec 381

keyframes() function 381

KeyframesSpec 381

Keystore File

creation 566

630

Index

Kotlin

accessing class properties 137

and Java 97

arithmetic operators 111

assignment operator 111

augmented assignment operators 112

bitwise operators 114

Boolean 102

break 122

breaking from loops 121

calling class methods 137

Char 102

class declaration 133

class initialization 134

class properties 134

Companion Objects 139

conditional control flow 123

continue labels 122

continue statement 122

control flow 119

convert from Java 97

Custom Accessors 137

data types 101

decrement operator 112

Default Function Parameters 129

defining class methods 134

do ... while loop 121

Elvis Operator 109

equality operators 113

Escape Sequences 103

expression syntax 111

Float 102

Flow 511

for-in statement 119

function calling 128

Functions 127

groupBy() function 311

Higher-order Functions 131

if ... else ... expressions 124

if expressions 123

Immutable Variables 104

increment operator 112

inheritance 143

Initializer Blocks 137

Inner Classes 138

introduction 97

Lambda Expressions 130

let Function 107

Local Functions 128

logical operators 113

looping 119

Mutable Variables 104

Not-Null Assertion 107

Nullable Type 106

Overriding inherited methods 146

playground 98

Primary Constructor 134

properties 137

range operator 114

Safe Call Operator 106

Secondary Constructors 134

Single Expression Functions 128

String 102

subclassing 143

subStringBefore() method 327

Type Annotations 105

Type Casting 109

Type Checking 109

Type Inference 105

variable parameters 129

when statement 124

while loop 120

L
Lambda Expressions 130

lateinit 108

Late Initialization 108

launch 301

launchBillingFlow() method 580

LaunchedEffect 304

launchSingleTop 461

Layout alignment 218

Layout arrangement 220

Layout arrangement spacing 222

631

Index
Layout components 158

Layout() composable 260

Layout Editor 149

Layout Inspector 68

layout modifier 204

layout() modifier 290

LazyColumn 158, 307

creation 308

scroll position detection 312

LazyHorizontalStaggeredGrid 341, 346

syntax 342

LazyList

tutorial 323

Lazy lists 307

Scrolling 309

LazyListScope 308

item() function 308

items() function 308

itemsIndexed() function 308

stickyHeader() function 310

LazyListState 312

firstVisibleItemIndex 312

LazyRow 158, 307

creation 308

scroll position detection 312

LazyVerticalGrid 307

adaptive mode 312

fixed mode 312

LazyVerticalStaggeredGrid 341, 344

syntax 341

let Function 107

libc 95

libs.versions.toml file 152

License Testers 587

Lifecycle.State.CREATED 534

Lifecycle.State.DESTROYED 534

Lifecycle.State.INITIALIZED 534

Lifecycle.State.RESUMED 534

Lifecycle.State.STARTED 534

LinearProgressIndicator 159

lineTo() 399

lineTo() function 399

linkTo() function 274

Linux Kernel 94

list devices 73

Lists

clickable items 331

enabling scrolling 309

overview 307

literals

live editing 32

LiveData 410

observeAsState() 411

Live Edit 43

disabling 32

enabling 32

of literals 32

Live Templates 90

Local Functions 128

Location Manager 96

Logcat

tool window 67

M
MainActivity.kt file 20

template code 29

map method 260

Maps 545

MAP_TYPE_HYBRID 554

MAP_TYPE_NONE 554

MAP_TYPE_NORMAL 554

MAP_TYPE_SATELLITE 554

MAP_TYPE_TERRAIN 554

Marker class 545

matchParentSize() 233

Material Composables 158

Material Design 2 599

Material Design 2 Theming 599

Material Design 3 599

Material Design components 159

Material Theme Builder 603

Material You 599

maxValue property 321

measurables 260

632

Index

measure() function 404

measureTimeMillis() function 518

Memory Indicator 83

Minimum SDK

setting 17

ModalDrawer 159

Modern Android architecture 407

modifier

adding to composable 200

chaining 199

combining 204

creating a 198

ordering 200

tutorial 197

Modifier.align() 223

Modifier.alignBy() 223

modifiers

build-in 204

overview 197

Modifier.weight() 223

move() method 559

multiple devices

testing app on 45

MutableLiveData 410

MutableSharedFlow 525

MutableState 162

MutableStateFlow 523

mutableStateOf function 155

mutableStateOf() function 163

MutableTransitionState 367

Mutable Variables 104

My Location Layer 545

N
NavHost 459, 471, 479

NavHostController 457, 471, 479

navigate() method 461

Navigation 457

BottomNavigation 463

BottomNavigationItem 463

compose() method 459

currentBackStackEntryAsState() method 464

declaring routes 468

findStartDestination() method 464

graph 459

launchSingleTop 461

NavHost 459, 471

NavHostController 457, 471

navigate() method 461

navigation graph 457

NavType 462

overview 457

passing arguments

popUpTo() method 461

route 459

stack 457, 458

start destination 459

tutorial 467

Navigation Architecture Component 457

NavigationBar 480

NavigationBarItem 481

Navigation bars 463

navigation graph 457, 459

Navigation Host 459

NavType 462

newBuilder() method 578

Notifications Manager 96

Not-Null Assertion 107

Nullable Type 106

O
observeAsState() 411

Offset() function 388

offset modifier 204

onBillingServiceDisconnected() callback 590

onBillingServiceDisconnected() method 579

onBillingSetupFinished() listener 590

onCreate() method 24

onEach() operator 522

onProductDetailsResponse() callback 590

OpenJDK 3

Opposing constraints 277

OutlinedButton 337

OutlinedTextField 413

633

Index

P
Package Manager 96

Package name 17

Packed chain 269

padding 204

Pager 349

animateScrollToPage() 351

scrollToPage() 351

state 350

syntax , 238

Pager state 350

painterResource method 192

ParagraphStyle 208

PathEffect 389

pinch gestures 494

Placeable 260

PointerInputScope 487

drag gestures 490

tap gestures 487

popUpTo() method 461

Preview configuration picker 35

Preview panel 25

build and refresh 25

Interactive mode 36

settings 35

Primary Constructor 134

Problems

tool window 68

ProductDetail 580

ProductDetails 591

ProductType 582

Profiler

tool window 68

proguard-rules.pro file 616

ProGuard Support 612

project

create new 16

package name 17

Project tool window 19, 67

Android mode 19

PurchaseResponseListener 582

PurchasesUpdatedListener 581, 591

Q
queryProductDetailsAsync() 590

queryProductDetailsAsync() method 580

queryPurchaseHistoryAsync() method 582

queryPurchasesAsync() 593

queryPurchasesAsync() method 582

quickboot snapshot 58

Quick Documentation 89

R
RadioButton 159

Random

nextInt() 244

Random.nextInt() method 343, 244

Range Operator 114

Recent Files Navigation 70

recomposition 150

intelligent recomposition 161

overview 161

RectangleShape 233

reduce() operator 519, 520

relativeLineTo() function 399

Release Preparation 563

rememberCoroutineScope() function 300, 310, 319

rememberDraggableState() function 488

rememberImagePainter() function 328

remember keyword 163

rememberPagerState 350

rememberSaveable keyword 170

rememberScrollableState() function 491

rememberScrollState() 492

rememberScrollState() function 309, 319

rememberTextMeasurer() function 403

rememberTransformableState() 494

rememberTransformationState() function 494

repeatable() function 365

RepeatableSpec

repeatable() 365

RepeatMode.Reverse 365

repeatOnLifecycle 534

Repository

tutorial 439

634

Index

requiredOffset() 501, 507

Resizable Emulator 60

Resource Manager , 67

Reverse-geocoding 551

Reverse Geocoding 551

Room

Data Access Object (DAO) 430

entities 430, 431

In-Memory Database 436

Repository 429

Room Database 430

tutorial 439

Room Database Persistence 429

Room Persistence Library 427

rotate modifier 204

rotation gestures 495

RoundedCornerShape 233

Row 158

Alignment.Bottom 219

Alignment.CenterVertically 219

Alignment.Top 219

Arrangement.Center 220

Arrangement.End 220

Arrangement.SpaceAround 222

Arrangement.SpaceBetween 222

Arrangement.SpaceEvenly 222

Arrangement.Start 220

horizontalArrangement 220

Layout alignment 218

Layout arrangement 220

list 307

list example 322

overview 216

scope 223

scope modifiers 223

spacing 222

tutorial 215

Row lists 307

RowScope 223

Modifier.align() 223

Modifier.alignBy() 223

Modifier.alignByBaseline() 223

Modifier.paddingFrom() 224

Modifier.weight() 224

Run

tool window 67

runBlocking 301

Running Devices

tool window 79

S
Safe Call Operator 106

Scaffold 159, 481

bottomBar 482

TopAppBar 482

scaleIn() 363

scale modifier 204

scaleOut() 363

Scope modifiers

weights 227

scrollable modifier 204

scrollable() modifier 491, 492

Scroll detection

example 333

scroll modifiers 492

ScrollState

maxValue property 321

rememberScrollState() function 309

scrollToItem(index: Int) 310

scrollToPage() 351

scrollTo(value: Int) 309

SDK Packages 6

SDK settings 17

Secondary Constructors 134

Secure Sockets Layer (SSL) 95

settings.gradle file 612

settings.gradle.kts file 612

Shape 159

Shapes

CircleShape 233

CutCornerShape 233

RectangleShape 233

RoundedCornerShape 233

SharedFlow 524, 529

635

Index
backgroudn handling 533

DROP_LATEST 525

DROP_OLDEST 525

in ViewModel 530

repeatOnLifecycle 534

SUSPEND 525

tutorial 529

shareIn() function 526

SharingStarted.Eagerly() 526

SharingStarted.Lazily() 526

SharingStarted.WhileSubscribed() 526

showSystemUi 25, 318

shrinkHorizontally() 363

shrinkOut() 363

shrinkVertically() 363

SideEffect 304

Side Effects 304

single() operator 518

size modifier 204

slideIn() 363

slideInHorizontally() 363

slideInVertically() 363

slideOut() 363

slideOutHorizontally() 363

slideOutVertically() 363

Slider 159

Slider component 33

Slot APIs

calling 182

declaring 182

overview 181

tutorial 185

Snackbar 159

Snapshots

emulator 57

SpanStyle 207

Spread chain 268

Spread inside chain 268

Spring effects 380

spring() function 380

SQL 424

SQLite 423

AVD command-line use 425

Columns and Data Types 423

overview 424

Primary keys 424

Staggered Grids 341

startConnection() method 579

start destination 459

state 150

basics of 161

by keyword 164

configuration changes 169

declaring 162

hoisting 167

MutableState 162

mutableStateOf() function 163

overview 161

remember keyword 163

rememberSaveable 170

Unidirectional data flow 165

StateFlow 523

stateful 161

stateful composables 155

State hoisting 167

stateless composables 155

Statement Completion 86

staticCompositionLocalOf() function 174, 176

Status Bar Widgets 83

Memory Indicator 83

stickyHeader 334

stickyHeader() function 310

Sticky headers

adding 334

example 333

stickyHeader() function 310

StiffnessHigh 381

StiffnessLow 381

StiffnessMedium 381

StiffnessMediumLow 381

StiffnessVeryLow 381

String 102

Structure

tool window 68

636

Index

Structured Query Language 424

Structure tool window 68

SUBS 582

subscriptions 578

subStringBefore() method 327

supervisorScope 301

Surface component 23, 231

SUSPEND 525

Suspend Functions 300

Switch 159

Switcher 70

system requirements 3

T
Telephony Manager 96

Terminal

tool window 68

Text 159

Text component 156

TextField 159

TextMeasurer 403

measure() function 404

TextStyle 420

Theme

building a custom 603

Theming 599

tutorial 605

TODO

tool window 69

Tool window bars 66

Tool windows 66

TopAppBar 159, 482

trailingIcon 420

TransformableState 494

transform() operator 516

translation gestures 496

try/finally 517

tween() function 364

Type Annotations 105

Type Casting 109

Type Checking 109

Type Inference 105

Type.kt file 602

U
UI Controllers 408

UI_NIGHT_MODE_YES 177

UiSettings class 545

Unidirectional data flow 165

updateTransition() function 372, 377, 382

upload key 566

USB connection issues

resolving 76

USE_BIOMETRIC permission 539

V
Vector Asset

add to project 190

velocityThreshold 501

Version catalog 151

dependencies 153

libraries 152

libs.versions.toml file 152

plugins 152

versions 152

verticalArrangement 220, 222

VerticalPager

animateScrollToPage() 351

scrollToPage() 351

state 350

syntax , 238

verticalScroll() 492

verticalScroll() modifier 319

ViewModel

example 414

lifecycle library 410, 414, 512, 529

LiveData 410

observeAsState() 411

overview 407

tutorial 413

using state 408

viewModel() 410, 416, 450

ViewModelProvider Factory 450

ViewModelStoreOwner 450

637

Index
viewModel() function 410, 416, 450

ViewModelProvider Factory 450

ViewModelScope 300

ViewModelStoreOwner 450

View System 96

Virtual Device Configuration dialog 40

Virtual Sensors 57

Visibility animation 359

W
Weighted chain 268

Welcome screen 63

while Loop 120

Widget Dimensions 269

WiFi debugging 77

Wireless debugging 77

Wireless pairing 77

withContext 301

X
XML resource

reading an 323

Z
zip() operator 522

	1. Start Here
	1.1 For Kotlin programmers
	1.2 For new Kotlin programmers
	1.3 Downloading the code samples
	1.4 Feedback
	1.5 Errata
	1.6 Find more books
	1.7 Authors wanted

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Installing the Android SDK Command-line Tools
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. A Compose Project Overview
	3.1 About the project
	3.2 Creating the project
	3.3 Creating an activity
	3.4 Defining the project and SDK settings
	3.5 Enabling the New Android Studio UI
	3.6 Previewing the example project
	3.7 Reviewing the main activity
	3.8 Preview updates
	3.9 Bill of Materials and the Compose version
	3.10 Summary

	4. An Example Compose Project
	4.1 Getting started
	4.2 Removing the template Code
	4.3 The Composable hierarchy
	4.4 Adding the DemoText composable
	4.5 Previewing the DemoText composable
	4.6 Adding the DemoSlider composable
	4.7 Adding the DemoScreen composable
	4.8 Previewing the DemoScreen composable
	4.9 Adjusting preview settings
	4.10 Testing in interactive mode
	4.11 Completing the project
	4.12 Summary

	5. Creating an Android Virtual Device (AVD) in Android Studio
	5.1 About Android Virtual Devices
	5.2 Starting the Emulator
	5.3 Running the Application in the AVD
	5.4 Real-time updates with Live Edit
	5.5 Running on Multiple Devices
	5.6 Stopping a Running Application
	5.7 Supporting Dark Theme
	5.8 Running the Emulator in a Separate Window
	5.9 Removing the Device Frame
	5.10 Summary

	6. Using and Configuring the Android Studio AVD Emulator
	6.1 The Emulator Environment
	6.2 Emulator Toolbar Options
	6.3 Working in Zoom Mode
	6.4 Resizing the Emulator Window
	6.5 Extended Control Options
	6.5.1 Location
	6.5.2 Displays
	6.5.3 Cellular
	6.5.4 Battery
	6.5.5 Camera
	6.5.6 Phone
	6.5.7 Directional Pad
	6.5.8 Microphone
	6.5.9 Fingerprint
	6.5.10 Virtual Sensors
	6.5.11 Snapshots
	6.5.12 Record and Playback
	6.5.13 Google Play
	6.5.14 Settings
	6.5.15 Help

	6.6 Working with Snapshots
	6.7 Configuring Fingerprint Emulation
	6.8 The Emulator in Tool Window Mode
	6.9 Creating a Resizable Emulator
	6.10 Summary

	7. A Tour of the Android Studio User Interface
	7.1 The Welcome Screen
	7.2 The Menu Bar
	7.3 The Main Window
	7.4 The Tool Windows
	7.5 The Tool Window Menus
	7.6 Android Studio Keyboard Shortcuts
	7.7 Switcher and Recent Files Navigation
	7.8 Changing the Android Studio Theme
	7.9 Summary

	8. Testing Android Studio Apps on a Physical Android Device
	8.1 An Overview of the Android Debug Bridge (ADB)
	8.2 Enabling USB Debugging ADB on Android Devices
	8.2.1 macOS ADB Configuration
	8.2.2 Windows ADB Configuration
	8.2.3 Linux adb Configuration

	8.3 Resolving USB Connection Issues
	8.4 Enabling Wireless Debugging on Android Devices
	8.5 Testing the adb Connection
	8.6 Device Mirroring
	8.7 Summary

	9. The Basics of the Android Studio Code Editor
	9.1 The Android Studio Editor
	9.2 Splitting the Editor Window
	9.3 Code Completion
	9.4 Statement Completion
	9.5 Parameter Information
	9.6 Parameter Name Hints
	9.7 Code Generation
	9.8 Code Folding
	9.9 Quick Documentation Lookup
	9.10 Code Reformatting
	9.11 Finding Sample Code
	9.12 Live Templates
	9.13 Summary

	10. An Overview of the Android Architecture
	10.1 The Android Software Stack
	10.2 The Linux Kernel
	10.3 Hardware Abstraction Layer
	10.4 Android Runtime – ART
	10.5 Android Libraries
	10.5.1 C/C++ Libraries

	10.6 Application Framework
	10.7 Applications
	10.8 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types, Variables and Nullability
	12.1 Kotlin data types
	12.1.1 Integer data types
	12.1.2 Floating point data types
	12.1.3 Boolean data type
	12.1.4 Character data type
	12.1.5 String data type
	12.1.6 Escape sequences

	12.2 Mutable variables
	12.3 Immutable variables
	12.4 Declaring mutable and immutable variables
	12.5 Data types are objects
	12.6 Type annotations and type inference
	12.7 Nullable type
	12.8 The safe call operator
	12.9 Not-null assertion
	12.10 Nullable types and the let function
	12.11 Late initialization (lateinit)
	12.12 The Elvis operator
	12.13 Type casting and type checking
	12.14 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression syntax in Kotlin
	13.2 The Basic assignment operator
	13.3 Kotlin arithmetic operators
	13.4 Augmented assignment operators
	13.5 Increment and decrement operators
	13.6 Equality operators
	13.7 Boolean logical operators
	13.8 Range operator
	13.9 Bitwise operators
	13.9.1 Bitwise inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise left shift
	13.9.6 Bitwise right shift

	13.10 Summary

	14. Kotlin Control Flow
	14.1 Looping control flow
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue statement
	14.1.6 Break and continue labels

	14.2 Conditional control flow
	14.2.1 Using the if expressions
	14.2.2 Using if ... else … expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a function?
	15.2 How to declare a Kotlin function
	15.3 Calling a Kotlin function
	15.4 Single expression functions
	15.5 Local functions
	15.6 Handling return values
	15.7 Declaring default function parameters
	15.8 Variable number of function parameters
	15.9 Lambda expressions
	15.10 Higher-order functions
	15.11 Summary

	16. The Basics of Object-Oriented Programming in Kotlin
	16.1 What is an object?
	16.2 What is a class?
	16.3 Declaring a Kotlin class
	16.4 Adding properties to a class
	16.5 Defining methods
	16.6 Declaring and initializing a class instance
	16.7 Primary and secondary constructors
	16.8 Initializer blocks
	16.9 Calling methods and accessing properties
	16.10 Custom accessors
	16.11 Nested and inner classes
	16.12 Companion objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, classes, and subclasses
	17.2 Subclassing syntax
	17.3 A Kotlin inheritance example
	17.4 Extending the functionality of a subclass
	17.5 Overriding inherited methods
	17.6 Adding a custom secondary constructor
	17.7 Using the SavingsAccount class
	17.8 Summary

	18. An Overview of Compose
	18.1 Development before Compose
	18.2 Compose declarative syntax
	18.3 Compose is data-driven
	18.4 Summary

	19. A Guide to Gradle Version Catalogs
	19.1 Library and Plugin Dependencies
	19.2 Project Gradle Build File
	19.3 Module Gradle Build Files
	19.4 Version Catalog File
	19.5 Adding Dependencies
	19.6 Library Updates
	19.7 Summary

	20. Composable Functions Overview
	20.1 What is a composable function?
	20.2 Stateful vs. stateless composables
	20.3 Composable function syntax
	20.4 Foundation and Material composables
	20.5 Summary

	21. An Overview of Compose State and Recomposition
	21.1 The basics of state
	21.2 Introducing recomposition
	21.3 Creating the StateExample project
	21.4 Declaring state in a composable
	21.5 Unidirectional data flow
	21.6 State hoisting
	21.7 Saving state through configuration changes
	21.8 Summary

	22. An Introduction to Composition Local
	22.1 Understanding CompositionLocal
	22.2 Using CompositionLocal
	22.3 Creating the CompLocalDemo project
	22.4 Designing the layout
	22.5 Adding the CompositionLocal state
	22.6 Accessing the CompositionLocal state
	22.7 Testing the design
	22.8 Summary

	23. An Overview of Compose Slot APIs
	23.1 Understanding slot APIs
	23.2 Declaring a slot API
	23.3 Calling slot API composables
	23.4 Summary

	24. A Compose Slot API Tutorial
	24.1 About the project
	24.2 Creating the SlotApiDemo project
	24.3 Preparing the MainActivity class file
	24.4 Creating the MainScreen composable
	24.5 Adding the ScreenContent composable
	24.6 Creating the Checkbox composable
	24.7 Implementing the ScreenContent slot API
	24.8 Adding an Image drawable resource
	24.9 Coding the TitleImage composable
	24.10 Completing the MainScreen composable
	24.11 Previewing the project
	24.12 Summary

	25. Using Modifiers in Compose
	25.1 An overview of modifiers
	25.2 Creating the ModifierDemo project
	25.3 Creating a modifier
	25.4 Modifier ordering
	25.5 Adding modifier support to a composable
	25.6 Common built-in modifiers
	25.7 Combining modifiers
	25.8 Summary

	26. Annotated Strings and Brush Styles
	26.1 What are annotated strings?
	26.2 Using annotated strings
	26.3 Brush Text Styling
	26.4 Creating the example project
	26.5 An example SpanStyle annotated string
	26.6 An example ParagraphStyle annotated string
	26.7 A Brush style example
	26.8 Summary

	27. Composing Layouts with Row and Column
	27.1 Creating the RowColDemo project
	27.2 Row composable
	27.3 Column composable
	27.4 Combining Row and Column composables
	27.5 Layout alignment
	27.6 Layout arrangement positioning
	27.7 Layout arrangement spacing
	27.8 Row and Column scope modifiers
	27.9 Scope modifier weights
	27.10 Summary

	28. Box Layouts in Compose
	28.1 An introduction to the Box composable
	28.2 Creating the BoxLayout project
	28.3 Adding the TextCell composable
	28.4 Adding a Box layout
	28.5 Box alignment
	28.6 BoxScope modifiers
	28.7 Using the clip() modifier
	28.8 Summary

	29. An Introduction to FlowRow and FlowColumn
	29.1 FlowColumn and FlowRow
	29.2 Maximum number of items
	29.3 Working with main axis arrangement
	29.4 Understanding cross-axis arrangement
	29.5 Item alignment
	29.6 Controlling item size
	29.7 Summary

	30. A FlowRow and FlowColumn Tutorial
	30.1 Creating the FlowLayoutDemo project
	30.2 Generating random height and color values
	30.3 Adding the Box Composable
	30.4 Modifying the Flow arrangement
	30.5 Modifying item alignment
	30.6 Switching to FlowColumn
	30.7 Using cross-axis arrangement
	30.8 Adding item weights
	30.9 Summary

	31. Custom Layout Modifiers
	31.1 Compose layout basics
	31.2 Custom layouts
	31.3 Creating the LayoutModifier project
	31.4 Adding the ColorBox composable
	31.5 Creating a custom layout modifier
	31.6 Understanding default position
	31.7 Completing the layout modifier
	31.8 Using a custom modifier
	31.9 Working with alignment lines
	31.10 Working with baselines
	31.11 Summary

	32. Building Custom Layouts
	32.1 An overview of custom layouts
	32.2 Custom layout syntax
	32.3 Using a custom layout
	32.4 Creating the CustomLayout project
	32.5 Creating the CascadeLayout composable
	32.6 Using the CascadeLayout composable
	32.7 Summary

	33. A Guide to ConstraintLayout in Compose
	33.1 An introduction to ConstraintLayout
	33.2 How ConstraintLayout works
	33.2.1 Constraints
	33.2.2 Margins
	33.2.3 Opposing constraints
	33.2.4 Constraint bias
	33.2.5 Chains
	33.2.6 Chain styles

	33.3 Configuring dimensions
	33.4 Guideline helper
	33.5 Barrier helper
	33.6 Summary

	34. Working with ConstraintLayout in Compose
	34.1 Calling ConstraintLayout
	34.2 Generating references
	34.3 Assigning a reference to a composable
	34.4 Adding constraints
	34.5 Creating the ConstraintLayout project
	34.6 Adding the ConstraintLayout library
	34.7 Adding a custom button composable
	34.8 Basic constraints
	34.9 Opposing constraints
	34.10 Constraint bias
	34.11 Constraint margins
	34.12 The importance of opposing constraints and bias
	34.13 Creating chains
	34.14 Working with guidelines
	34.15 Working with barriers
	34.16 Decoupling constraints with constraint sets
	34.17 Summary

	35. Working with IntrinsicSize in Compose
	35.1 Intrinsic measurements
	35.2 Max. vs Min. Intrinsic Size measurements
	35.3 About the example project
	35.4 Creating the IntrinsicSizeDemo project
	35.5 Creating the custom text field
	35.6 Adding the Text and Box components
	35.7 Adding the top-level Column
	35.8 Testing the project
	35.9 Applying IntrinsicSize.Max measurements
	35.10 Applying IntrinsicSize.Min measurements
	35.11 Summary

	36. Coroutines and LaunchedEffects in Jetpack Compose
	36.1 What are coroutines?
	36.2 Threads vs. coroutines
	36.3 Coroutine Scope
	36.4 Suspend functions
	36.5 Coroutine dispatchers
	36.6 Coroutine builders
	36.7 Jobs
	36.8 Coroutines – suspending and resuming
	36.9 Coroutine channel communication
	36.10 Understanding side effects
	36.11 Summary

	37. An Overview of Lists and Grids in Compose
	37.1 Standard vs. lazy lists
	37.2 Working with Column and Row lists
	37.3 Creating lazy lists
	37.4 Enabling scrolling with ScrollState
	37.5 Programmatic scrolling
	37.6 Sticky headers
	37.7 Responding to scroll position
	37.8 Creating a lazy grid
	37.9 Summary

	38. A Compose Row and Column List Tutorial
	38.1 Creating the ListDemo project
	38.2 Creating a Column-based list
	38.3 Enabling list scrolling
	38.4 Manual scrolling
	38.5 A Row list example
	38.6 Summary

	39. A Compose Lazy List Tutorial
	39.1 Creating the LazyListDemo project
	39.2 Adding list data to the project
	39.3 Reading the XML data
	39.4 Handling image loading
	39.5 Designing the list item composable
	39.6 Building the lazy list
	39.7 Testing the project
	39.8 Making list items clickable
	39.9 Summary

	40. Lazy List Sticky Headers and Scroll Detection
	40.1 Grouping the list item data
	40.2 Displaying the headers and items
	40.3 Adding sticky headers
	40.4 Reacting to scroll position
	40.5 Adding the scroll button
	40.6 Testing the finished app
	40.7 Summary

	41. A Compose Lazy Staggered Grid Tutorial
	41.1 Lazy Staggered Grids
	41.2 Creating the StaggeredGridDemo project
	41.3 Adding the Box composable
	41.4 Generating random height and color values
	41.5 Creating the Staggered List
	41.6 Testing the project
	41.7 Switching to a horizontal staggered grid
	41.8 Summary

	42. VerticalPager and HorizontalPager in Compose
	42.1 The Pager composables
	42.2 Working with pager state
	42.3 About the PagerDemo project
	42.4 Creating the PagerDemo project
	42.5 Adding the book cover images
	42.6 Adding the HorizontalPager
	42.7 Creating the page content
	42.8 Testing the pager
	42.9 Adding the arrow buttons
	42.10 Summary

	43. Compose Visibility Animation
	43.1 Creating the AnimateVisibility project
	43.2 Animating visibility
	43.3 Defining enter and exit animations
	43.4 Animation specs and animation easing
	43.5 Repeating an animation
	43.6 Different animations for different children
	43.7 Auto-starting an animation
	43.8 Implementing crossfading
	43.9 Summary

	44. Compose State-Driven Animation
	44.1 Understanding state-driven animation
	44.2 Introducing animate as state functions
	44.3 Creating the AnimateState project
	44.4 Animating rotation with animateFloatAsState
	44.5 Animating color changes with animateColorAsState
	44.6 Animating motion with animateDpAsState
	44.7 Adding spring effects
	44.8 Working with keyframes
	44.9 Combining multiple animations
	44.10 Using the Animation Inspector
	44.11 Summary

	45. Canvas Graphics Drawing in Compose
	45.1 Introducing the Canvas component
	45.2 Creating the CanvasDemo project
	45.3 Drawing a line and getting the canvas size
	45.4 Drawing dashed lines
	45.5 Drawing a rectangle
	45.6 Applying rotation
	45.7 Drawing circles and ovals
	45.8 Drawing gradients
	45.9 Drawing arcs
	45.10 Drawing paths
	45.11 Drawing points
	45.12 Drawing an image
	45.13 Drawing text
	45.14 Summary

	46. Working with ViewModels in Compose
	46.1 What is Android Jetpack?
	46.2 The “old” architecture
	46.3 Modern Android architecture
	46.4 The ViewModel component
	46.5 ViewModel implementation using state
	46.6 Connecting a ViewModel state to an activity
	46.7 ViewModel implementation using LiveData
	46.8 Observing ViewModel LiveData within an activity
	46.9 Summary

	47. A Compose ViewModel Tutorial
	47.1 About the project
	47.2 Creating the ViewModelDemo project
	47.3 Adding the ViewModel
	47.4 Accessing DemoViewModel from MainActivity
	47.5 Designing the temperature input composable
	47.6 Designing the temperature input composable
	47.7 Completing the user interface design
	47.8 Testing the app
	47.9 Summary

	48. An Overview of Android SQLite Databases
	48.1 Understanding database tables
	48.2 Introducing database schema
	48.3 Columns and data types
	48.4 Database rows
	48.5 Introducing primary keys
	48.6 What is SQLite?
	48.7 Structured Query Language (SQL)
	48.8 Trying SQLite on an Android Virtual Device (AVD)
	48.9 The Android Room persistence library
	48.10 Summary

	49. Room Databases and Compose
	49.1 Revisiting modern app architecture
	49.2 Key elements of Room database persistence
	49.2.1 Repository
	49.2.2 Room database
	49.2.3 Data Access Object (DAO)
	49.2.4 Entities
	49.2.5 SQLite database

	49.3 Understanding entities
	49.4 Data Access Objects
	49.5 The Room database
	49.6 The Repository
	49.7 In-Memory databases
	49.8 Database Inspector
	49.9 Summary

	50. A Compose Room Database and Repository Tutorial
	50.1 About the RoomDemo project
	50.2 Creating the RoomDemo project
	50.3 Modifying the build configuration
	50.4 Building the entity
	50.5 Creating the Data Access Object
	50.6 Adding the Room database
	50.7 Adding the repository
	50.8 Adding the ViewModel
	50.9 Designing the user interface
	50.10 Writing a ViewModelProvider Factory class
	50.11 Completing the MainScreen function
	50.12 Testing the RoomDemo app
	50.13 Using the Database Inspector
	50.14 Summary

	51. An Overview of Navigation in Compose
	51.1 Understanding navigation
	51.2 Declaring a navigation controller
	51.3 Declaring a navigation host
	51.4 Adding destinations to the navigation graph
	51.5 Navigating to destinations
	51.6 Passing arguments to a destination
	51.7 Working with bottom navigation bars
	51.8 Summary

	52. A Compose Navigation Tutorial
	52.1 Creating the NavigationDemo project
	52.2 About the NavigationDemo project
	52.3 Declaring the navigation routes
	52.4 Adding the home screen
	52.5 Adding the welcome screen
	52.6 Adding the profile screen
	52.7 Creating the navigation controller and host
	52.8 Implementing the screen navigation
	52.9 Passing the user name argument
	52.10 Testing the project
	52.11 Summary

	53. A Compose Navigation Bar Tutorial
	53.1 Creating the BottomBarDemo project
	53.2 Declaring the navigation routes
	53.3 Designing bar items
	53.4 Creating the bar item list
	53.5 Adding the destination screens
	53.6 Creating the navigation controller and host
	53.7 Designing the navigation bar
	53.8 Working with the Scaffold component
	53.9 Testing the project
	53.10 Summary

	54. Detecting Gestures in Compose
	54.1 Compose gesture detection
	54.2 Creating the GestureDemo project
	54.3 Detecting click gestures
	54.4 Detecting taps using PointerInputScope
	54.5 Detecting drag gestures
	54.6 Detecting drag gestures using PointerInputScope
	54.7 Scrolling using the scrollable modifier
	54.8 Scrolling using the scroll modifiers
	54.9 Detecting pinch gestures
	54.10 Detecting rotation gestures
	54.11 Detecting translation gestures
	54.12 Summary

	55. Working with Anchored Draggable Components
	55.1 Dragging and anchors
	55.2 Detecting dragging gestures
	55.3 Declaring the anchor points
	55.4 Declaring thresholds
	55.5 Declaring draggable state
	55.6 Moving a component in response to a drag
	55.7 About the DraggableDemo project
	55.8 Creating the DraggableDemo project
	55.9 Adding Foundation library
	55.10 Adding the anchors enumeration
	55.11 Setting up the draggable state and anchors
	55.12 Designing the parent Box
	55.13 Adding the draggable box
	55.14 Testing the project
	55.15 Summary

	56. An Introduction to Kotlin Flow
	56.1 Understanding Flows
	56.2 Creating the sample project
	56.3 Adding a view model to the project
	56.4 Declaring the flow
	56.5 Emitting flow data
	56.6 Collecting flow data as state
	56.7 Transforming data with intermediaries
	56.8 Collecting flow data
	56.9 Adding a flow buffer
	56.10 More terminal flow operators
	56.11 Flow flattening
	56.12 Combining multiple flows
	56.13 Hot and cold flows
	56.14 StateFlow
	56.15 SharedFlow
	56.16 Converting a flow from cold to hot
	56.17 Summary

	57. A Jetpack Compose SharedFlow Tutorial
	57.1 About the project
	57.2 Creating the SharedFlowDemo project
	57.3 Adding a view model to the project
	57.4 Declaring the SharedFlow
	57.5 Collecting the flow values
	57.6 Testing the SharedFlowDemo app
	57.7 Handling flows in the background
	57.8 Summary

	58. An Android Biometric Authentication Tutorial
	58.1 An overview of biometric authentication
	58.2 Creating the biometric authentication project
	58.3 Adding the biometric dependency
	58.4 Configuring device fingerprint authentication
	58.5 Adding the biometric permissions to the manifest file
	58.6 Checking the security settings
	58.7 Designing the user interface
	58.8 Configuring the authentication callbacks
	58.9 Starting the biometric prompt
	58.10 Testing the project
	58.11 Summary

	59. Working with the Google Maps Android API in Android Studio
	59.1 The elements of the Google Maps Android API
	59.2 Creating the Google Maps project
	59.3 Creating a Google Cloud billing account
	59.4 Creating a new Google Cloud project
	59.5 Enabling the Google Maps SDK
	59.6 Generating a Google Maps API key
	59.7 Adding the API key to the Android Studio project
	59.8 Adding the compose map dependency
	59.9 Creating a map
	59.10 Testing the application
	59.11 Understanding geocoding and reverse geocoding
	59.12 Specifying a map location
	59.13 Changing the map type
	59.14 Displaying map controls to the user
	59.15 Handling map gesture interaction
	59.15.1 Map zooming gestures
	59.15.2 Map scrolling/panning gestures
	59.15.3 Map tilt gestures
	59.15.4 Map rotation gestures

	59.16 Creating map markers
	59.17 Controlling the map camera
	59.18 Summary

	60. Creating, Testing, and Uploading an Android App Bundle
	60.1 The Release Preparation Process
	60.2 Android App Bundles
	60.3 Register for a Google Play Developer Console Account
	60.4 Configuring the App in the Console
	60.5 Enabling Google Play App Signing
	60.6 Creating a Keystore File
	60.7 Creating the Android App Bundle
	60.8 Generating Test APK Files
	60.9 Uploading the App Bundle to the Google Play Developer Console
	60.10 Exploring the App Bundle
	60.11 Managing Testers
	60.12 Rolling the App Out for Testing
	60.13 Uploading New App Bundle Revisions
	60.14 Analyzing the App Bundle File
	60.15 Summary

	61. An Overview of Android In-App Billing
	61.1 Preparing a project for In-App purchasing
	61.2 Creating In-App products and subscriptions
	61.3 Billing client initialization
	61.4 Connecting to the Google Play Billing library
	61.5 Querying available products
	61.6 Starting the purchase process
	61.7 Completing the purchase
	61.8 Querying previous purchases
	61.9 Summary

	62. An Android In-App Purchasing Tutorial
	62.1 About the In-App purchasing example project
	62.2 Creating the InAppPurchase project
	62.3 Adding libraries to the project
	62.4 Adding the App to the Google Play Store
	62.5 Creating an In-App product
	62.6 Enabling license testers
	62.7 Creating a purchase helper class
	62.8 Adding the StateFlow streams
	62.9 Initializing the billing client
	62.10 Querying the product
	62.11 Handling purchase updates
	62.12 Launching the purchase flow
	62.13 Consuming the product
	62.14 Restoring a previous purchase
	62.15 Completing the MainActivity
	62.16 Testing the app
	62.17 Troubleshooting
	62.18 Summary

	63. Working with Compose Theming
	63.1 Material Design 2 vs. Material Design 3
	63.2 Material Design 3 theming
	63.3 Building a custom theme
	63.4 Summary

	64. A Material Design 3 Theming Tutorial
	64.1 Creating the ThemeDemo project
	64.2 Designing the user interface
	64.3 Building a new theme
	64.4 Adding the theme to the project
	64.5 Enabling dynamic colors
	64.6 Summary

	65. An Overview of Gradle in Android Studio
	65.1 An Overview of Gradle
	65.2 Gradle and Android Studio
	65.2.1 Sensible Defaults
	65.2.2 Dependencies
	65.2.3 Build Variants
	65.2.4 Manifest Entries
	65.2.5 APK Signing
	65.2.6 ProGuard Support

	65.3 The Property and Settings Gradle Build File
	65.4 The Top-level Gradle Build File
	65.5 Module Level Gradle Build Files
	65.6 Configuring Signing Settings in the Build File
	65.7 Running Gradle Tasks from the Command Line
	65.8 Summary

	Index

