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Chapter 1

1. Start Here
This book teaches you how to build Android applications using Jetpack Compose 1.6, Android Studio Iguana 
(2023.2.1), Material Design 3, and the Kotlin programming language.

The book begins with the basics by explaining how to set up an Android Studio development environment.

The book also includes in-depth chapters introducing the Kotlin programming language, including data types, 
operators, control flow, functions, lambdas, coroutines, and object-oriented programming.

An introduction to the key concepts of Jetpack Compose and Android project architecture is followed by a 
guided tour of Android Studio in Compose development mode. The book also covers the creation of custom 
Composables and explains how functions are combined to create user interface layouts, including row, column, 
box, flow, pager, and list components.

Other topics covered include data handling using state properties and key user interface design concepts such 
as modifiers, navigation bars, and user interface navigation. Additional chapters explore building your own 
reusable custom layout components, securing your apps with Biometric authentication, and integrating Google 
Maps.

The book covers graphics drawing, user interface animation, transitions, Kotlin Flows, and gesture handling.

Chapters also cover view models, SQLite databases, Room database access, the Database Inspector, live data, 
and custom theme creation. You will also learn to generate extra revenue from your app using in-app billing.

Finally, the book explains how to package up a completed app and upload it to the Google Play Store for 
publication.

Along the way, the topics covered in the book are put into practice through detailed tutorials, the source code 
for which is also available for download.

Assuming you already have some rudimentary programming experience, are ready to download Android Studio 
and the Android SDK, and have access to a Windows, Mac, or Linux system, you are ready to start.

1.1 For Kotlin programmers
This book addresses the needs of existing Kotlin programmers and those new to Kotlin and Jetpack Compose 
app development. If you are familiar with the Kotlin programming language, you can probably skip the Kotlin-
specific chapters. 

1.2 For new Kotlin programmers
If you are new to Kotlin programming, the entire book is appropriate for you. Just start at the beginning and 
keep going.

1.3 Downloading the code samples
The source code and Android Studio project files for the examples contained in this book are available for 
download at:

https://www.payloadbooks.com/product/compose16/

https://www.payloadbooks.com/product/compose16/
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The steps to load a project from the code samples into Android Studio are as follows:

1. Click on the Open button option from the Welcome to Android Studio dialog.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and 
click on OK.

1.4 Feedback
We want you to be satisfied with your purchase of this book. Therefore, if you find any errors in the book or have 
any comments, questions, or concerns, please contact us at info@payloadbooks.com.

1.5 Errata
While we make every effort to ensure the accuracy of the content of this book, inevitably, a book covering a 
subject area of this size and complexity may include some errors and oversights. Any known issues with the 
book will be outlined, together with solutions, at the following URL:
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Chapter 3

3. A Compose Project Overview
Now that we have installed Android Studio, the next step is to create an Android app using Jetpack Compose. 
Although this project will use several Compose features, it is an intentionally simple example intended to provide 
an early demonstration of Compose in action and an initial success on which to build as you work through the 
remainder of the book. The project will also verify that your Android Studio environment is correctly installed 
and configured. 

This chapter will create a new project using the Android Studio Compose project template and explore both the 
basic structure of a Compose-based Android Studio project and some of the key areas of Android Studio. The 
next chapter will use this project to create a simple Android app.

Both chapters will briefly explain key features of Compose as they are introduced within the project. If anything 
is unclear when you have completed the project, rest assured that all the areas covered in the tutorial will be 
explored in greater detail in later chapters of the book.

3.1 About the project
The completed project will consist of two text components and a slider. When the slider is moved, the current 
value will be displayed on one of the text components, while the font size of the second text instance will adjust 
to match the current slider position. Once completed, the user interface for the app will appear as shown in 
Figure 3-1:

Figure 3-1



16

A Compose Project Overview

3.2 Creating the project
The first step in building an app is to create a new project within Android Studio. Begin, therefore, by launching 
Android Studio so that the “Welcome to Android Studio” screen appears as illustrated in Figure 3-2:

Figure 3-2
Once this window appears, Android Studio is ready for a new project to be created. To create the new project, 
click on the New Project button to display the first screen of the New Project wizard.

3.3 Creating an activity
The next step is to define the type of initial activity that is to be created for the application. The left-hand panel 
provides a list of platform categories from which the Phone and Tablet option must be selected. Although various 
activity types are available when developing Android applications, only the Empty Activity template provides a 
pre-configured project ready to work with Compose. Select this option before clicking on the Next button:

Figure 3-3
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3.4 Defining the project and SDK settings
In the project configuration window (Figure 3-4), set the Name field to ComposeDemo. The application name is 
the name by which the application will be referenced and identified within Android Studio and is also the name 
that would be used if the completed application were to go on sale in the Google Play store:

Figure 3-4
The Package name uniquely identifies the application within the Google Play app store application ecosystem. 
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed 
URL of your domain name followed by the application’s name. For example, if your domain is www.mycompany.
com, and the application has been named ComposeDemo, then the package name might be specified as follows:
com.mycompany.composedemo

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may 
use example.com for testing, though this will need to be changed before an application can be published:
com.example.composedemo

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your 
home directory and may be changed by clicking on the folder icon to the right of the text field containing the 
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in 
most projects created in this book unless a necessary feature is only available in a more recent version. The 
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices 
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK 
setting will outline the percentage of Android devices currently in use on which the app will run. Click on the 
Help me choose link to see a full breakdown of the various Android versions still in use:
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Figure 3-5
Finally, select Kotlin DSL (build.gradle.kts) as the build configuration language before clicking Finish to create 
the project. 

3.5 Enabling the New Android Studio UI
Android Studio is transitioning to a new, modern user interface that is not enabled by default in the Giraffe 
version. If your installation of Android Studio resembles Figure 3-6 below, then you will need to enable the new 
UI before proceeding:

Figure 3-6
Enable the new UI by selecting the File -> Settings... menu option (Android Studio -> Settings... on macOS) and 
selecting the New UI option under Appearance and Behavior in the left-hand panel. From the main panel, turn 
on the Enable new UI checkbox before clicking Apply, followed by OK to commit the change:
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Figure 3-7
When prompted, restart Android Studio to activate the new user interface.

3.6 Previewing the example project
Once Android Studio has restarted, the main window will reappear using the new UI and containing our 
AndroidSample project as illustrated in Figure 3-8 below:

Figure 3-8
The newly created project and references to associated files are listed in the Project tool window located on the 
left-hand side of the main project window. The Project tool window has several modes in which information 
can be displayed. By default, this panel should be in Android mode. This setting is controlled by the menu at 
the top of the panel as highlighted in Figure 3-9. If the panel is not currently in Android mode, use the menu to 
switch mode:
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Figure 3-9
The code for the main activity of the project (an activity corresponds to a single user interface screen or module 
within an Android app) is contained within the MainActivity.kt file located under app -> kotlin+java -> com.
example.composedemo within the Project tool window as indicated in Figure 3-10:

Figure 3-10
Double-click on this file to load it into the main code editor panel. The editor can be used in different view 
modes. Only the source code of the currently selected file is visible when the editor is in Code mode (as shown in 
Figure 3-8 above). Code mode is selected by clicking the button A in the figure below. However, the most helpful 
option when working with Compose is Split mode. To switch to Split mode, click on the button marked B:
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Figure 3-11
Split mode displays the code editor (A) alongside the Preview panel (B) in which the current user interface 
design will appear:

Figure 3-12
Only the Preview panel is displayed when the editor is in Design mode (button C).

To get us started, Android Studio has already added some code to the MainActivity.kt file to display a Text 
component configured to display a message which reads “Hello Android”. 

If the project has not yet been built, the Preview panel will display the message shown in Figure 3-13:

Figure 3-13
If you see this notification, click on the Build & Refresh link to rebuild the project. After the build is complete, 
the Preview panel should update to display the user interface defined by the code in the MainActivity.kt file:
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Figure 3-14

3.7 Reviewing the main activity
Android applications are created by combining one or more elements known as Activities. An activity is a single, 
standalone module of application functionality that either correlates directly to a single user interface screen 
and its corresponding functionality, or acts as a container for a collection of related screens. An appointments 
application might, for example, contain an activity screen that displays appointments set up for the current day. 
The application might also utilize a second activity consisting of multiple screens where new appointments may 
be entered by the user and existing appointments edited.

When we created the ComposeDemo project, Android Studio created a single initial activity for our app, named 
it MainActivity, and generated some code for it in the MainActivity.kt file. This activity contains the first screen 
that will be displayed when the app is run on a device. Before we modify the code for our requirements in the 
next chapter, it is worth taking some time to review the code currently contained within the MainActivity.kt file.

The file begins with the following line (keep in mind that this may be different if you used your own domain 
name instead of com.example):
package com.example.composedemo

This tells the build system that the classes and functions declared in this file belong to the com.example.
composedemo package which we configured when we created the project. 

Next are a series of import directives. The Android SDK comprises a vast collection of libraries that provide the 
foundation for building Android apps. If all of these libraries were included within an app the resulting app 
bundle would be too large to run efficiently on a mobile device. To avoid this problem an app only imports the 
libraries that it needs to be able to run:
import android.os.Bundle

import androidx.activity.ComponentActivity

import androidx.activity.compose.setContent

import androidx.compose.foundation.layout.fillMaxSize

import androidx.compose.material3.MaterialTheme

import androidx.compose.material3.Surface

import androidx.compose.material3.Text

.

.

Initially, the list of import directives will most likely be “folded” to save space. To unfold the list, click on the 
small disclosure button indicated by the arrow in Figure 3-15 below:
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Figure 3-15
The MainActivity class is then declared as a subclass of the Android ComponentActivity class:
class MainActivity : ComponentActivity() {

.

.

}

The MainActivity class implements a single method in the form of onCreate(). This is the first method that is 
called when an activity is launched by the Android runtime system and is an artifact of the way apps used to be 
developed before the introduction of Compose. The onCreate() method is used here to provide a bridge between 
the containing activity and the Compose-based user interfaces that are to appear within it:
override fun onCreate(savedInstanceState: Bundle?) {

    super.onCreate(savedInstanceState)

    setContent {

        ComposeDemoTheme {

.

.

        }

    }

}

The method declares that the content of the activity’s user interface will be provided by a composable function 
named ComposeDemoTheme. This composable function is declared in the Theme.kt file located under the app 
-> <package name> -> ui.theme folder in the Project tool window. This, along with the other files in the ui.theme 
folder defines the colors, fonts, and shapes to be used by the activity and provides a central location from which 
to customize the overall theme of the app’s user interface.

The call to the ComposeDemoTheme composable function is configured to contain a Surface composable. 
Surface is a built-in Compose component designed to provide a background for other composables:
ComposeDemoTheme {

    // A surface container using the 'background' color from the theme

    Surface(

        modifier = Modifier.fillMaxSize(),

        color = MaterialTheme.colorScheme.background

.

.

}

In this case, the Surface component is configured to fill the entire screen and with the background set to the 
standard background color defined by the Android Material Design theme. Material Design is a set of design 
guidelines developed by Google to provide a consistent look and feel across all Android apps. It includes a theme 
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(including fonts and colors), a set of user interface components (such as button, text, and a range of text fields), 
icons, and generally defines how an Android app should look, behave and respond to user interactions. 

Finally, the Surface is configured to contain a composable function named Greeting which is passed a string 
value that reads “Android”:
ComposeDemoTheme {

    // A surface container using the 'background' color from the theme

    Surface(

        modifier = Modifier.fillMaxSize(),

        color = MaterialTheme.colorScheme.background

    ) {

        Greeting("Android")

    }

}

Outside of the scope of the MainActivity class, we encounter our first composable function declaration within 
the activity. The function is named Greeting and is, unsurprisingly, marked as being composable by the @
Composable annotation:
@Composable

fun Greeting(name: String, modifier: Modifier = Modifier) {

    Text(

        text = "Hello $name!",

        modifier = modifier

    )

}

The function accepts a String parameter (labeled name) and calls the built-in Text composable, passing through 
a string value containing the word “Hello” concatenated with the name parameter. The function also accepts an 
optional modifier parameter (a topic covered in the chapter titled “Using Modifiers in Compose”). As will soon 
become evident as you work through the book, composable functions are the fundamental building blocks for 
developing Android apps using Compose. 

The second composable function declared in the MainActivity.kt file reads as follows:
@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

    ComposeDemoTheme {

        Greeting("Android")

    }

}

Earlier in the chapter, we looked at how the Preview panel allows us to see how the user interface will appear 
without having to compile and run the app. At first glance, it would be easy to assume that the preview rendering 
is generated by the code in the onCreate() method. In fact, that method only gets called when the app runs 
on a device or emulator. Previews are generated by preview composable functions. The @Preview annotation 
associated with the function tells Android Studio that this is a preview function and that the content emitted by 
the function is to be displayed in the Preview panel. As we will see later in the book, a single activity can contain 
multiple preview composable functions configured to preview specific sections of a user interface using different 
data values.
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In addition, each preview may be configured by passing parameters to the @Preview annotation. For example, 
to view the preview with the rest of the standard Android screen decorations, modify the preview annotation so 
that it reads as follows:
@Preview(showSystemUi = true)

Once the preview has been updated, it should now be rendered as shown in Figure 3-16:

Figure 3-16

3.8 Preview updates
One final point worth noting is that the Preview panel is live and will automatically reflect minor changes made 
to the composable functions that make up a preview. To see this in action, edit the call to the Greeting function 
in the GreetingPreview() preview composable function to change the name from “Android” to “Compose”. Note 
that as you make the change in the code editor, it is reflected in the preview. 

More significant changes will require a build and refresh before being reflected in the preview. When this is 
required, Android Studio will display the following “Out of date” notice at the top of the Preview panel and a 
Build & Refresh button (indicated by the arrow in Figure 3-17):

Figure 3-17
Simply click on the button to update the preview for the latest changes. Occasionally, Android Studio will fail to 
update the preview after code changes. If you believe that the preview no longer matches your code, hover the 
mouse pointer over the Up-to-date status text and select Build & Refresh from the resulting menu, as illustrated 
in Figure 3-18:
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Figure 3-18

The Preview panel also includes an interactive mode that allows you to trigger events on the user interface 
components (for example, clicking buttons, moving sliders, scrolling through lists, etc.). Since ComposeDemo 
contains only an inanimate Text component at this stage, it makes more sense to introduce interactive mode in 
the next chapter.

3.9 Bill of Materials and the Compose version
Although Jetpack Compose and Android Studio appear to be tightly integrated, they are two separate products 
developed by different teams at Google. As a result, there is no guarantee that the most recent Android Studio 
version will default to using the latest version of Jetpack Compose. It can, therefore, be helpful to know which 
version of Jetpack Compose is being used by Android Studio. This is declared in a Bill of Materials (BOM) 
setting within the build configuration files of your Android Studio projects.

To identify the BOM for a project, locate the Gradle Scripts -> libs.versions.toml file (highlighted in the figure 
below) and double-click on it to load it into the editor:

Figure 3-19
With the file loaded into the editor, locate the composeBom entry in the [versions] section:
[versions]

.

.

composeBom = "2023.08.00"
.

.
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In the above example, we can see that the project is using BOM 2023.08.00. With this information, we can use 
the BOM to library version mapping web page at the following URL to identify the library versions being used 
to build our app:

https://developer.android.com/jetpack/compose/bom/bom-mapping

Once the web page has loaded, select the BOM version from the menu highlighted in Figure 3-20 below. For 
example, the figure shows that BOM 2023.08.00 uses version 1.5.0 of the Compose libraries:

Figure 3-20
At the time of writing, Android Studio Iguana defaults to BOM 2023.08.00, while the latest stable BOM version 
is 2024.03.00, which maps to Jetpack Compose 1.6.4. Therefore, when working with the projects in this book, 
you should edit the composeBom entry in the Gradle Scripts -> libs.versions.toml and upgrade the BOM version 
to at least 2024.03.00.

Library versions and dependencies will be covered in greater detail in the “A Guide to Gradle Version Catalogs” 
chapter.

3.10 Summary
In this chapter, we have created a new project using Android Studio’s Empty Activity template and explored some 
of the code automatically generated for the project. We have also introduced several features of Android Studio 
designed to make app development with Compose easier. The most useful features, and the places where you 
will spend most of your time while developing Android apps, are the code editor and Preview panel.

While the default code in the MainActivity.kt file provides an interesting example of a basic user interface, it 
bears no resemblance to the app we want to create. In the next chapter, we will modify and extend the app by 
removing some of the template code and writing our own composable functions.

https://developer.android.com/jetpack/compose/bom/bom-mapping
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Chapter 13

13. Kotlin Operators and Expressions
So far, we have looked at using variables and constants in Kotlin and also described the different data types. 
Being able to create variables is only part of the story, however. The next step is to learn how to use these 
variables in Kotlin code. The primary method for working with data is in the form of expressions.

13.1 Expression syntax in Kotlin
The most basic expression consists of an operator, two operands, and an assignment. The following is an example 
of an expression:
val myresult = 1 + 2

In the above example, the (+) operator is used to add two operands (1 and 2) together. The assignment operator (=) 
subsequently assigns the result of the addition to a variable named myresult. The operands could have easily 
been variables (or a mixture of values and variables) instead of the actual numerical values used in the example.

In the remainder of this chapter, we will look at the basic types of operators available in Kotlin.

13.2 The Basic assignment operator
We have already looked at the most basic of assignment operators, the = operator. This assignment operator 
simply assigns the result of an expression to a variable. In essence, the = assignment operator takes two operands. 
The left-hand operand is the variable to which a value is to be assigned and the right-hand operand is the value 
to be assigned. The right-hand operand is, more often than not, an expression that performs some type of 
arithmetic or logical evaluation or a call to a function, the result of which will be assigned to the variable. The 
following examples are all valid uses of the assignment operator:
var x: Int // Declare a mutable Int variable

val y = 10 // Declare and initialize an immutable Int variable

 

x = 10 // Assign a value to x

x = x + y // Assign the result of x + y to x

x = y // Assign the value of y to x

13.3 Kotlin arithmetic operators
Kotlin provides a range of operators for creating mathematical expressions. These operators primarily fall into 
the category of binary operators in that they take two operands. The exception is the unary negative operator (-) 
which serves to indicate that a value is negative rather than positive. This contrasts with the  subtraction 
operator (-) which takes two operands (i.e. one value to be subtracted from another). For example:
var x = -10 // Unary - operator used to assign -10 to variable x

x = x - 5 // Subtraction operator. Subtracts 5 from x

The following table lists the primary Kotlin arithmetic operators:

Operator Description
-(unary) Negates the value of a variable or expression
* Multiplication
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/ Division
+ Addition
- Subtraction
% Remainder/Modulo

Table 13-1
Note that multiple operators may be used in a single expression.

For example:
x = y * 10 + z - 5 / 4

13.4 Augmented assignment operators
In an earlier section, we looked at the basic assignment operator (=). Kotlin provides several operators designed 
to combine an assignment with a mathematical or logical operation. These are primarily of use when performing 
an evaluation where the result is to be stored in one of the operands. For example, one might write an expression 
as follows:
x = x + y

The above expression adds the value contained in variable x to the value contained in variable y and stores the 
result in variable x. This can be simplified using the addition augmented assignment operator:
x += y

The above expression performs the same task as x = x + y but saves the programmer some typing.

Numerous augmented assignment operators are available in Kotlin. The most frequently used of which are 
outlined in the following table:

Operator Description
x += y Add x to y and place result in x
x -= y Subtract y from x and place result in x
x *= y Multiply x by y and place result in x
x /= y Divide x by y and place result in x
x %= y Perform Modulo on x and y and place result in x

Table 13-2

13.5 Increment and decrement operators
Another useful shortcut can be achieved using the Kotlin increment and decrement operators (also referred to 
as unary operators because they operate on a single operand). Consider the code fragment below:
x = x + 1 // Increase value of variable x by 1

x = x - 1 // Decrease value of variable x by 1

These expressions increment and decrement the value of x by 1. Instead of using this approach, however, it is 
quicker to use the ++ and -- operators. The following examples perform the same tasks as the examples above:
x++ // Increment x by 1

x-- // Decrement x by 1

These operators can be placed either before or after the variable name. If the operator is placed before the 
variable name, the increment or decrement operation is performed before any other operations are performed 
on the variable. For example, in the following code, x is incremented before it is assigned to y, leaving y with a 
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value of 10:
var x = 9

val y = ++x

In the next example, however, the value of x (9) is assigned to variable y before the decrement is performed. After 
the expression is evaluated the value of y will be 9 and the value of x will be 8.
var x = 9

val y = x--

13.6 Equality operators
Kotlin also includes a set of logical operators useful for performing comparisons. These operators all return a 
Boolean result depending on the result of the comparison. These operators are binary operators in that they work 
with two operands.

Equality operators are most frequently used in constructing program control flow logic. For example, 
an if statement may be constructed based on whether one value matches another:
if (x == y) {

      // Perform task

}

The result of a comparison may also be stored in a Boolean variable. For example, the following code will result 
in a true value being stored in the variable result:
var result: Boolean

val x = 10

val y = 20

 

result = x < y

Clearly 10 is less than 20, resulting in a true evaluation of the x < y expression. The following table lists the full 
set of Kotlin comparison operators:

Operator Description
x == y Returns true if x is equal to y
x > y Returns true if x is greater than y
x >= y Returns true if x is greater than or equal to y
x < y Returns true if x is less than y
x <= y Returns true if x is less than or equal to y
x != y Returns true if x is not equal to y

Table 13-3

13.7 Boolean logical operators
Kotlin also provides a set of so-called logical operators designed to return Boolean true or false values. These 
operators both return Boolean results and take Boolean values as operands. The key operators are NOT (!), 
AND (&&), and OR (||).

The NOT (!) operator simply inverts the current value of a Boolean variable or the result of an expression. For 
example, if a variable named flag is currently true, prefixing the variable with a ‘!’ character will invert the value 
to false:
val flag = true // variable is true
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val secondFlag = !flag // secondFlag set to false

The OR (||) operator returns true if one of its two operands evaluates to true, otherwise, it returns false. For 
example, the following code evaluates to true because at least one of the expressions on either side of the OR 
operator is true:
if ((10 < 20) || (20 < 10)) {

        print("Expression is true")

}

The AND (&&) operator returns true only if both operands are evaluated to be true. The following example will 
return false because only one of the two operand expressions evaluates to true:
if ((10 < 20) && (20 < 10)) {

      print("Expression is true")

}

13.8 Range operator
Kotlin includes a useful operator that allows a range of values to be declared. As will be seen in later chapters, 
this operator is invaluable when working with looping in program logic.

The syntax for the range operator is as follows:
x..y

This operator represents the range of numbers starting at x and ending at y where both x and y are included 
within the range (referred to as a closed range). The range operator 5..8, for example, specifies the numbers 5, 
6, 7, and 8.

13.9 Bitwise operators
As previously discussed, computer processors work in binary. These are essentially streams of ones and zeros, 
each one referred to as a bit. Bits are formed into groups of 8 to form bytes. As such, it is not surprising that we, 
as programmers, will occasionally end up working at this level in our code. To facilitate this requirement, Kotlin 
provides a range of bit operators. 

Those familiar with bitwise operators in other languages such as C, C++, C#, Objective-C, and Java will find 
nothing new in this area of the Kotlin language syntax. For those unfamiliar with binary numbers, now may be 
a good time to seek out reference materials on the subject to understand how ones and zeros are formed into 
bytes to form numbers. Other authors have done a much better job of describing the subject than we can do 
within the scope of this book.

For this exercise, we will be working with the binary representation of two numbers. First, the decimal number 
171 is represented in binary as:
10101011

Second, the number 3 is represented by the following binary sequence:
00000011

Now that we have two binary numbers with which to work, we can begin to look at the Kotlin bitwise operators:

13.9.1 Bitwise inversion
The Bitwise inversion (also referred to as NOT) is performed using the inv() operation and has the effect of 
inverting all of the bits in a number. In other words, all the zeros become ones and all the ones become zeros. 
Taking our example 3 number, a Bitwise NOT operation has the following result:
00000011 NOT
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========

11111100

The following Kotlin code, therefore, results in a value of -4:
val y = 3

val z = y.inv()

 

print("Result is $z")

13.9.2 Bitwise AND
The Bitwise AND is performed using the and() operation. It makes a bit-by-bit comparison of two numbers. Any 
corresponding position in the binary sequence of each number where both bits are 1 results in a 1 appearing in 
the same position of the resulting number. If either bit position contains a 0 then a zero appears in the result. 
Taking our two example numbers, this would appear as follows:
10101011 AND

00000011

========

00000011

As we can see, the only locations where both numbers have 1s are the last two positions. If we perform this in 
Kotlin code, therefore, we should find that the result is 3 (00000011):
val x = 171

val y = 3

val z = x.and(y)

 

print("Result is $z")

13.9.3 Bitwise OR
The bitwise OR also performs a bit-by-bit comparison of two binary sequences. Unlike the AND operation, the 
OR places a 1 in the result if there is a 1 in the first or second operand. Using our example numbers, the result 
will be as follows:
10101011 OR

00000011

========

10101011

If we perform this operation in Kotlin using the or() operation the result will be 171:
val x = 171

val y = 3

val z = x.or(y)

 

print("Result is $z")

13.9.4 Bitwise XOR
The bitwise XOR (commonly referred to as exclusive OR and performed using the xor() operation) performs a 
similar task to the OR operation except that a 1 is placed in the result if one or other corresponding bit positions 
in the two numbers is 1. If both positions are a 1 or a 0 then the corresponding bit in the result is set to a 0. For 
example:
10101011 XOR
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00000011

========

10101000

The result, in this case, is 10101000 which converts to 168 in decimal. To verify this we can, once again, try some 
Kotlin code:
val x = 171

val y = 3

val z = x.xor(y)

 

print("Result is $z")

When executed, we get the following output from print:
Result is 168

13.9.5 Bitwise left shift
The bitwise left shift moves each bit in a binary number a specified number of positions to the left. Shifting an 
integer one position to the left has the effect of doubling the value.

As the bits are shifted to the left, zeros are placed in the vacated rightmost (low-order) positions. Note also that 
once the leftmost (high-order) bits are shifted beyond the size of the variable containing the value, those high 
-order bits are discarded:
10101011 Left Shift one bit

========

101010110

In Kotlin the bitwise left shift operator is performed using the shl() operation, passing through the number of bit 
positions to be shifted. For example, to shift left by 1 bit:
val x = 171

val z = x.shl(1)

 

print("Result is $z")

When compiled and executed, the above code will display a message stating that the result is 342 which, when 
converted to binary, equates to 101010110.

13.9.6 Bitwise right shift
A bitwise right shift is, as you might expect, the same as a left except that the shift takes place in the opposite 
direction. Shifting an integer one position to the right has the effect of halving the value.

Note that since we are shifting to the right, there is no opportunity to retain the lowermost bits regardless of the 
data type used to contain the result. As a result, the low-order bits are discarded. Whether or not the vacated 
high-order bit positions are replaced with zeros or ones depends on whether the sign bit used to indicate positive 
and negative numbers is set or not.
10101011 Right Shift one bit

========

01010101

The bitwise right shift is performed using the shr() operation passing through the shift count:
val x = 171
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val z = x.shr(1)

 

print("Result is $z")

When executed, the above code will report the result of the shift as being 85, which equates to binary 01010101.

13.10 Summary
Operators and expressions provide the underlying mechanism by which variables and constants are manipulated 
and evaluated within Kotlin code. This can take the simplest of forms whereby two numbers are added using the 
addition operator in an expression and the result stored in a variable using the assignment operator. Operators 
fall into a range of categories, details of which have been covered in this chapter.
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Chapter 29

29. An Introduction to FlowRow and 
FlowColumn
The chapter entitled “Composing Layouts with Row and Column” used the Row and Column composables to 
present content elements uniformly within a user interface. One limitation of Row and Column-based layouts 
is that they are not well suited to organizing dynamic elements in terms of the quantity and sizes of the content. 
These composables are also less effective when designing layouts that are responsive to device screen orientation 
and size changes.

In this chapter, we will learn about the Flow layout composables and explore how they provide a more flexible 
way to organize content in rows and columns.

29.1 FlowColumn and FlowRow
The Row and Column composables work best when you know the number of items to be displayed and their 
respective sizes. This results in a spreadsheet-like layout with rows of aligned columns. The Flow layouts, 
however, are designed to flow content onto the next row or column when space runs out. These composables 
also discard the spreadsheet approach to organization, providing a more flexible approach to displaying items of 
varying sizes. Figure 29-1, for example, shows a typical FlowRow layout:

Figure 29-1
As we will explore later in this chapter, Flow layouts provide extensive options for configuring the layout and 
arrangement of child items, including weight, spacing, alignment, and the maximum number of items per row 
or column.

The FlowRow composable uses the following syntax:
FlowRow(

    modifier: Modifier = Modifier,

    horizontalArrangement: Arrangement.Horizontal,

    verticalArrangement: Arrangement.Vertical,

    maxItemsInEachRow: Int

) {

   // Content here
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}

Figure 29-2 shows an example FlowColumn layout:

Figure 29-2
The FlowColumn composable uses the following syntax:
FlowColumn(

    modifier: Modifier,

    verticalArrangement: Arrangement.Vertical,

    horizontalArrangement: Arrangement.Horizontal,

    maxItemsInEachColumn: Int,

) {

    // Content here

}

29.2 Maximum number of items
Without restrictions, the Flow layouts will fit as many items into a row or column as possible before flowing 
to the next one. The maximum number of items can be restricted using the maxItemsInEachColumn and 
maxItemsInEachRow properties of the FlowColumn and FlowRow. For example:
FlowRow(maxItemsInEachRow = 10) {

    // Flow items here

}

 

FlowColumn(maxItemsInEachColumn = 5) {

    // Flow items here

}

29.3 Working with main axis arrangement
Main axis arrangement defines how the flow items are positioned along the main axis of the parent Flow layout. 
For example, the horizontalArrangement property controls the arrangement of flow items along the horizontal 
axis of the FlowRow composable. Table 29-1 shows the effects of the various horizontalArrangement options 
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when applied to a FlowRow instance:

Arrangement.Start Arrangement.Center

Arrangement.End Arrangement.SpaceBetween

Arrangement.SpaceAround Arrangement.SpaceEvenly

Arrangement.spacedBy(10.dp)

Table 29-1
Similarly, the verticalArrangement property controls the positioning of flow items along the vertical access of the 
FlowColumn. The same arrangement options are available as those listed above, except that Arrangement.Start 
and Arrangement.End are replaced by Arrangement.Top and Arrangement.Bottom.

29.4 Understanding cross-axis arrangement
Cross-axis arrangement controls the arrangement of a flow layout on the opposite axis to the main flow. In 
other words, the verticalArrangement property controls the vertical positioning of FlowRow items, while 
horizontalArrangement does the same along the horizontal axis of FlowColumn items. Table 29-2 demonstrates 
the three horizontalArrangement options applied to a FlowColumn instance:
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Arrangement.Start Arrangement.Center Arrangement.End

Table 29-2

29.5 Item alignment
The alignment of items within individual rows or columns can be controlled by passing an alignment value to the 
align() modifier of the child items of a Flow layout. This is useful when the Flow items vary in height (FlowRow) 
or width (FlowColumn). The following code, for example, specifies bottom alignment for a FlowRow item:
FlowRow {

 repeat(6) {

            MyFlowItem(modifier = Modifier.align(Alignment.Bottom))
       }

}

The following table illustrates the effect of applying Alignment.Top, Alignment.CenterVertically, and Alignment.
Bottom to FlowRow items of varying height:

Alignment.Top Alignment.CenterVertically Alignment.Bottom

Table 29-3
Equivalent alignment effects can be achieved for FlowColumn items using Alignment.Start, Alignment.
CenterHorizontally, and Alignment.End

29.6 Controlling item size
Weight factors can be applied to individual Flow items to specify the size relative to the overall space available 
and the weights of other items in the same row or column. Weights are expressed as Float values and applied to 
individual Flow items using the weight() modifier. Consider, for example, a FlowRow containing a single item 
with a weight of 1f:
FlowRow {

    MyFlowItem(

        Modifier

            .weight(1f)
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        )

}

When the layout is rendered, the item will occupy all the available space because it is the only item in the row:

Figure 29-3
If we add a second item, also with a weight of 1f, the two items will share the row equally:

Figure 29-4
If we add a third item with a weight of 1f, each item would occupy a third of the space. However, suppose that 
the third item has a weight of 2f, giving us a weight combination of 1f, 1f, and 2f. In this case, the first two items 
occupy half of the available space, while the third occupies the other half:

Figure 29-5
To calculate an item’s when using weights, the Flow composables divide the amount of space remaining in the 
row or column by the total item weights, multiplied by the weight of the current item.

Another way to control the size of the items in a Flow layout is to use fractional sizing. Fractional sizing involves 
specifying the percentage of the overall space in a row or column that an item is to occupy. The fraction is declared 
as a Float value and applied to FlowRow and FlowColumn items using the fillMaxWidth() and fillMaxHeight() 
modifiers, respectively. For example:
FlowRow {

    MyFlowItem(Modifier.width(50.dp))

    MyFlowItem(Modifier.fillMaxWidth(0.7f))
    MyFlowItem(Modifier.width(50.dp))

}

Regardless of the sizes of the other items, the fractional item in the above code example will always occupy 70% 
of the row:

Figure 29-6
If there is insufficient room for the fractional item, items will flow onto the next row to make room:
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Figure 29-7

29.7 Summary
The FlowRow and FlowColumn composables are ideal for arranging groups of items of varying sizes and 
quantities into flexible rows and columns. When a Flow layout runs out of space to display items, the remaining 
content flows to the next row or column. Combined with an extensive collection of alignment, spacing, and 
arrangement options, these composables provide a flexible and easy layout solution for presenting content 
within apps.   
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Chapter 46

46. Working with ViewModels in 
Compose
Until a few years ago, Google did not recommend a specific approach to building Android apps other than to 
provide tools and development kits while letting developers decide what worked best for a particular project 
or individual programming style. That changed in 2017 with the introduction of the Android Architecture 
Components which became part of Android Jetpack when it was released in 2018. Jetpack has of course, since 
been expanded with the addition of Compose.

This chapter will provide an overview of the concepts of Jetpack, Android app architecture recommendations, 
and the ViewModel component.

46.1 What is Android Jetpack?
Android Jetpack consists of Android Studio, the Android Architecture Components, Android Support Library, 
and the Compose framework together with a set of guidelines that recommend how an Android App should be 
structured. The Android Architecture Components were designed to make it quicker and easier both to perform 
common tasks when developing Android apps while also conforming to the key principle of the architectural 
guidelines. While many of these components have been superseded by features built into Compose, the 
ViewModel architecture component remains relevant today. Before exploring the ViewModel component, it 
first helps to understand both the old and new approaches to Android app architecture.

46.2 The “old” architecture
In the chapter entitled “An Example Compose Project”, an Android project was created consisting of a single 
activity that contained all of the code for presenting and managing the user interface together with the back-end 
logic of the app. Up until the introduction of Jetpack, the most common architecture followed this paradigm 
with apps consisting of multiple activities (one for each screen within the app) with each activity class to some 
degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example an activity is destroyed 
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved 
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new 
activity for each app screen accessed by the user. 

46.3 Modern Android architecture
At the most basic level, Google now advocates single activity apps where different screens are loaded as content 
within the same activity. 

Modern architecture guidelines also recommend separating different areas of responsibility within an app into 
entirely separate modules (a concept called “separation of concerns”). One of the keys to this approach is the 
ViewModel component. 

46.4 The ViewModel component
The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the 
code responsible for displaying and managing the user interface and interacting with the operating system. 



408

Working with ViewModels in Compose

When designed in this way, an app will consist of one or more UI Controllers, such as an activity, together with 
ViewModel instances responsible for handling the data needed by those controllers.

A ViewModel is implemented as a separate class and contains state values containing the model data and 
functions that can be called to manage that data. The activity containing the user interface observes the model 
state values such that any value changes trigger a recomposition. User interface events relating to the model data 
such as a button click are configured to call the appropriate function within the ViewModel. This is, in fact, a 
direct implementation of the unidirectional data flow concept described in the chapter entitled “An Overview of 
Compose State and Recomposition”. The diagram in Figure 46-1 illustrates this concept as it relates to activities 
and ViewModels:

Figure 46-1
This separation of responsibility addresses the issues relating to the lifecycle of activities. Regardless of how 
many times an activity is recreated during the lifecycle of an app, the ViewModel instances remain in memory 
thereby maintaining data consistency. A ViewModel used by an activity, for example, will remain in memory 
until the activity finishes which, in the single activity app, is not until the app exits.

In addition to using ViewModels, the code responsible for gathering data from data sources such as web services 
or databases should be built into a separate repository module instead of being bundled with the view model. 
This topic will be covered in detail beginning with the chapter entitled “Room Databases and Compose”.

46.5 ViewModel implementation using state
The main purpose of a ViewModel is to store data that can be observed by the user interface of an activity. This 
allows the user interface to react when changes occur to the ViewModel data. There are two ways to declare the 
data within a ViewModel so that it is observable. One option is to use the Compose state mechanism which has 
been used extensively throughout this book. An alternative approach is to use the Jetpack LiveData component, 
a topic that will be covered later in this chapter. 

Much like the state declared within composables, ViewModel state is declared using the mutableStateOf group 
of functions. The following ViewModel declaration, for example, declares a state containing an integer count 
value with an initial value of 0:
class MyViewModel : ViewModel() {

 

    var customerCount by mutableStateOf(0)

}

With some data encapsulated in the model, the next step is to add a function that can be called from within the 
UI to change the counter value:
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class MyViewModel : ViewModel() {

 

    var customerCount by mutableStateOf(0)

 

    fun increaseCount() {

        customerCount++

    }

}

Even complex models are nothing more than a continuation of these two basic state and function building 
blocks.

46.6 Connecting a ViewModel state to an activity
A ViewModel is of little use unless it can be used within the composables that make up the app user interface. 
All this requires is to pass an instance of the ViewModel as a parameter to a composable from which the state 
values and functions can be accessed. Programming convention recommends that these steps be performed in a 
composable dedicated solely for this task and located at the top of the screen’s composable hierarchy. The model 
state and event handler functions can then be passed to child composables as necessary. The following code 
shows an example of how a ViewModel might be accessed from within an activity:
class MainActivity : ComponentActivity() {

    override fun onCreate(savedInstanceState: Bundle?) {

        super.onCreate(savedInstanceState)

        setContent {

            ViewModelWorkTheme {

                Surface(color = MaterialTheme.colorScheme.background) {

                    TopLevel()

                }

            }

        }

    }

}

 

@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

    MainScreen(model.customerCount) { model.increaseCount() }

}

 

@Composable

fun MainScreen(count: Int, addCount: () -> Unit = {}) {

    Column(horizontalAlignment = Alignment.CenterHorizontally,

        modifier = Modifier.fillMaxWidth()) {

        Text("Total customers = $count",

        Modifier.padding(10.dp))

        Button(

            onClick = addCount,

        ) {

            Text(text = "Add a Customer")
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        }

    }

}

In the above example, the first function call is made by the onCreate() method to the TopLevel composable 
which is declared with a default ViewModel parameter initialized via a call to the viewModel() function:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {
.

.

The viewModel() function is provided by the Compose view model lifecycle library which needs to be added to 
the project’s build dependencies when working with view models. This requires the following additions to the  
Gradle Scripts -> libs.version.tomi file: 
[versions]

activityCompose = "1.8.2"
.
.
[libraries]

androidx-lifecycle-viewmodel-compose = { module = "androidx.lifecycle:lifecycle-
viewmodel-compose", version.ref = "lifecycleRuntimeKtx" }
.

.

Once the library has been added to the version catalog, it must be added to the dependencies section of the 
Gradle Scripts -> build.gradle.kts (Module :app) file:
dependencies {

.

.

    implementation(libs.androidx.lifecycle.viewmodel.compose)
.
.

If an instance of the view model has already been created within the current scope, the viewModel() function will 
return a reference to that instance. Otherwise, a new view model instance will be created and returned. 

With access to the ViewModel instance, the TopLevel function is then able to obtain references to the view model 
customerCount state variable and increaseCount() function which it passes to the MainScreen composable:
MainScreen(model.customerCount) { model.increaseCount() }

As implemented, Button clicks will result in calls to the view model increaseCount() function which, in turn, 
increments the customerCount state. This change in state triggers a recomposition of the user interface, resulting 
in the new customer count value appearing in the Text composable.

The use of state and view models will be demonstrated in the chapter entitled “A Compose ViewModel Tutorial”.

46.7 ViewModel implementation using LiveData
The Jetpack LiveData component predates the introduction of Compose and can be used as a wrapper around 
data values within a view model. Once contained in a LiveData instance, those variables become observable to 
composables within an activity. LiveData instances can be declared as being mutable using the MutableLiveData 
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class, allowing the ViewModel functions to make changes to the underlying data value. An example view model 
designed to store a customer name could, for example, be implemented as follows using MutableLiveData 
instead of state:
class MyViewModel : ViewModel() {

 

    var customerName: MutableLiveData<String> = MutableLiveData("")

 

    fun setName(name: String) {

        customerName.value = name

    }

}

Note that new values must be assigned to the live data variable via the value property. 

46.8 Observing ViewModel LiveData within an activity
As with state, the first step when working with LiveData is to obtain an instance of the view model within an 
initialization composable:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

 

}

Once we have access to a view model instance, the next step is to make the live data observable. This is achieved 
by calling the observeAsState() method on the live data object:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

    var customerName: String by model.customerName.observeAsState("")
}

In the above code, the observeAsState() call converts the live data value into a state instance and assigns it to 
the customerName variable. Once converted, the state will behave in the same way as any other state object, 
including triggering recompositions whenever the underlying value changes.

The use of LiveData and view models will be demonstrated in the chapter entitled “A Compose Room Database 
and Repository Tutorial”. 

46.9 Summary
Until recently, Google has tended not to recommend any particular approach to structuring an Android app. 
That changed with the introduction of Android Jetpack which consists of a set of tools, components, libraries, 
and architecture guidelines. These architectural guidelines recommend that an app project be divided into 
separate modules, each being responsible for a particular area of functionality, otherwise known as “separation 
of concerns”. In particular, the guidelines recommend separating the view data model of an app from the code 
responsible for handling the user interface. This is achieved using the ViewModel component. In this chapter, 
we have covered ViewModel-based architecture and demonstrated how this is implemented when developing 
with Compose. We have also explored how to observe and access view model data from within an activity using 
both state and LiveData. 
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Chapter 61

61. An Overview of Android In-App 
Billing
In the early days of mobile applications for operating systems such as Android and iOS, the most common 
method for earning revenue was to charge an upfront fee to download and install the application. However, 
Google soon introduced another revenue opportunity by embedding advertising within applications. Perhaps 
the most common and lucrative option is now to charge the user for purchasing items from within the application 
after it has been installed. This typically takes the form of access to a higher level in a game, acquiring virtual 
goods or currency, or subscribing to premium content in the digital edition of a magazine or newspaper. 

Google supports integrating in-app purchasing through the Google Play In-App Billing API and the Play 
Console. This chapter will provide an overview of in-app billing and outline how to integrate in-app billing into 
your Android projects. Once these topics have been explored, the next chapter will walk you through creating 
an example app that includes in-app purchasing features.

61.1 Preparing a project for In-App purchasing
Building in-app purchasing into an app will require a Google Play Developer Console account, which was 
covered previously in the “Creating, Testing and Uploading an Android App Bundle” chapter. In addition, you 
must also register a Google merchant account and configure your payment settings. You can find these settings 
by navigating to Setup -> Payments profile in the Play Console. Note that merchant registration is not available 
in all countries. For details, refer to the following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app will then need to be uploaded to the console and enabled for in-app purchasing. The console will not 
activate in-app purchasing support for an app, however, unless the Google Play Billing Library has been added 
to the module-level build.gradle.kts file. When working with Kotlin, the Google Play Kotlin Extensions Library 
is also recommended: 
dependencies {

.

.

    implementation(libs.billing)
    implementation(libs.billing.ktx)
.

.

}

The corresponding entries in the libs.versions.toml file for the above libraries will read as follows:
[versions]

billing = "<latest version>"
.

.

[libraries]

https://support.google.com/googleplay/android-developer/answer/9306917
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billing = { module = "com.android.billingclient:billing", version.ref = "billing" 
}
billing-ktx = { module = "com.android.billingclient:billing-kStx", version.ref = 
"billing" }
.

.

Once the build files have been modified and the app bundle uploaded to the console, the next step is to add in-
app products or subscriptions for the user to purchase.

61.2 Creating In-App products and subscriptions
Products and subscriptions are created and managed using the options listed beneath the Monetize section of 
the Play Console navigation panel as highlighted in Figure 61-1 below:

Figure 61-1
Each product or subscription needs an ID, title, description, and pricing information. Purchases fall into 
the categories of consumable (the item must be purchased each time it is required by the user such as virtual 
currency in a game), non-consumable (only needs to be purchased once by the user such as content access), and 
subscription-based. Consumable and non-consumable products are collectively referred to as managed products.

Subscriptions are useful for selling an item that needs to be renewed on a regular schedule such as access to news 
content or the premium features of an app. When creating a subscription, a base plan is defined specifying the 
price, renewal period (monthly, annually, etc.), and whether the subscription auto-renews. Users can also be 
provided with discount offers and given the option of pre-purchasing a subscription.

61.3 Billing client initialization
A BillingClient instance handles communication between your app and the Google Play Billing Library. 
In addition, BillingClient includes a set of methods that can be called to perform both synchronous and 
asynchronous billing-related activities. When the billing client is initialized, it will need to be provided with a 
reference to a PurchasesUpdatedListener callback handler. The client will call this handler to notify your app 
of the results of any purchasing activity. To avoid duplicate notifications, it is recommended to have only one 
BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() method, passing through the current activity or 
fragment context. The purchase update handler is then assigned to the client via the setListener() method:
private val purchasesUpdatedListener =

    PurchasesUpdatedListener { billingResult, purchases ->
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        if (billingResult.responseCode ==

            BillingClient.BillingResponseCode.OK

            && purchases != null

        ) {

            for (purchase in purchases) {

                // Process the purchases

            }

        } else if (billingResult.responseCode ==

            BillingClient.BillingResponseCode.USER_CANCELED

        ) {

            // Purchase cancelled by user

        } else {

            // Handle errors here

        }

    }

 

billingClient = BillingClient.newBuilder(this)

    .setListener(purchasesUpdatedListener)

    .enablePendingPurchases()

    .build()

61.4 Connecting to the Google Play Billing library
After successfully creating the Billing Client, the next step is initializing a connection to the Google Play Billing 
Library. To establish this connection, a call needs to be made to the startConnection() method of the billing client 
instance. Since the connection is performed asynchronously, a BillingClientStateListener handler needs to be 
implemented to receive a callback indicating whether the connection was successful. Code should also be added 
to override the onBillingServiceDisconnected() method. This is called if the connection to the Billing Library is 
lost and can be used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the BillingClient instance will make a call to the 
onBillingSetupFinished() method which can be used to check that the client is ready: 
billingClient.startConnection(object : BillingClientStateListener {

    override fun onBillingSetupFinished(

        billingResult: BillingResult

    ) {

        if (billingResult.responseCode ==

            BillingClient.BillingResponseCode.OK

        ) {

            // Connection successful

        } else {

            // Connection failed 

        }

    }

 

    override fun onBillingServiceDisconnected() {

        // Connection to billing service lost

    }
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})

61.5 Querying available products
Once the billing environment is initialized and ready to go, the next step is to request the details of the products 
or subscriptions available for purchase. This is achieved by making a call to the queryProductDetailsAsync() 
method of the BillingClient and passing through an appropriately configured QueryProductDetailsParams 
instance containing the product ID and type (ProductType.SUBS for a subscription or ProductType.INAPP for 
a managed product):
val queryProductDetailsParams = QueryProductDetailsParams.newBuilder()

    .setProductList(

        ImmutableList.of(

            QueryProductDetailsParams.Product.newBuilder()

                .setProductId(productId)

                .setProductType(

                    BillingClient.ProductType.INAPP

                )

                .build()

        )

    )

    .build()

 

billingClient.queryProductDetailsAsync(

    queryProductDetailsParams

) { billingResult, productDetailsList ->

    if (!productDetailsList.isEmpty()) {

        // Process list of matching products

    } else {

        // No product matches found

    }

}

The queryProductDetailsAsync() method is passed a ProductDetailsResponseListener handler (in this case in 
the form of a lambda code block) which, in turn, is called and passed a list of ProductDetail objects containing 
information about the matching products. For example, we can call methods on these objects to get information 
such as the product name, title, description, price, and offer details.

61.6 Starting the purchase process
Once a product or subscription has been queried and selected for purchase by the user, the purchase process is 
ready to be launched. We do this by calling the launchBillingFlow() method of the BillingClient, passing through 
as arguments the current activity and a BillingFlowParams instance configured with the ProductDetail object 
for the item being purchased. 
val billingFlowParams = BillingFlowParams.newBuilder()

    .setProductDetailsParamsList(

        ImmutableList.of(

            BillingFlowParams.ProductDetailsParams.newBuilder()

                .setProductDetails(productDetails)

                .build()
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        )

    )

    .build()

 

billingClient.launchBillingFlow(this, billingFlowParams)

The success or otherwise of the purchase operation will be reported via a call to the PurchasesUpdatedListener 
callback handler outlined earlier in the chapter. 

61.7 Completing the purchase
When purchases are successful, the PurchasesUpdatedListener handler will be passed a list containing a Purchase 
object for each item. You can verify that the item has been purchased by calling the getPurchaseState() method 
of the Purchase instance as follows:
if (purchase.getPurchaseState() == Purchase.PurchaseState.PURCHASED) {

    // Purchase completed. 

} else if (purchase.getPurchaseState() == Purchase.PurchaseState.PENDING) {

    // Payment is still pending

}

Note that your app will only support pending purchases if a call is made to the enablePendingPurchases() method 
during initialization. A pending purchase will remain so until the user completes the payment process.

When the purchase of a non-consumable item is complete, it will need to be acknowledged to prevent a refund 
from being issued to the user. This requires the purchase token for the item which is obtained via a call to the 
getPurchaseToken() method of the Purchase object. This token is used to create an AcknowledgePurchaseParams 
instance together with an AcknowledgePurchaseResponseListener handler. Managed product purchases and 
subscriptions are acknowledged by calling the BillingClient’s acknowledgePurchase() method as follows:
billingClient.acknowledgePurchase(acknowledgePurchaseParams, 

                             acknowledgePurchaseResponseListener);

val acknowledgePurchaseParams = AcknowledgePurchaseParams.newBuilder()

    .setPurchaseToken(purchase.purchaseToken)

    .build()

 

val acknowledgePurchaseResponseListener = AcknowledgePurchaseResponseListener {

    // Check acknowledgement result

}

 

billingClient.acknowledgePurchase(

    acknowledgePurchaseParams,

    acknowledgePurchaseResponseListener

)

For consumable purchases, you will need to notify Google Play when the item has been consumed so that it 
is available to be repurchased by the user. This requires a configured ConsumeParams instance containing a 
purchase token and a call to the billing client’s consumePurchase() method: 
val consumeParams = ConsumeParams.newBuilder()

    .setPurchaseToken(purchase.purchaseToken)

    .build()
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coroutineScope.launch {

    val result = billingClient.consumePurchase(consumeParams)

 

    if (result.billingResult.responseCode == 

                     BillingClient.BillingResponseCode.OK) {

        // Purchase successfully consumed

    }

}

61.8 Querying previous purchases
When working with in-app billing it is a common requirement to check whether a user has already purchased a 
product or subscription. A list of all the user’s previous purchases of a specific type can be generated by calling 
the queryPurchasesAsync() method of the BillingClient instance and implementing a PurchaseResponseListener. 
The following code, for example, obtains a list of all previously purchased items that have not yet been consumed:
val queryPurchasesParams = QueryPurchasesParams.newBuilder()

    .setProductType(BillingClient.ProductType.INAPP)

    .build()

 

billingClient.queryPurchasesAsync(

    queryPurchasesParams,

    purchasesListener

)

.

.

private val purchasesListener =

    PurchasesResponseListener { billingResult, purchases ->

 

        if (!purchases.isEmpty()) {

            // Access existing active purchases

        } else {

            // No 

        }

    }

To obtain a list of active subscriptions, change the ProductType value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for each product, make a call to the BillingClient 
queryPurchaseHistoryAsync() method:
val queryPurchaseHistoryParams = QueryPurchaseHistoryParams.newBuilder()

    .setProductType(BillingClient.ProductType.INAPP)

    .build()

 

billingClient.queryPurchaseHistoryAsync(queryPurchaseHistoryParams) { 
billingResult, historyList ->

    // Process purchase history list

}
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An Overview of Android In-App Billing

61.9 Summary
In-app purchases provide a way to generate revenue from within Android apps by selling virtual products and 
subscriptions to users. In this chapter, we have explored managed products and subscriptions and explained 
the difference between consumable and non-consumable products. In-app purchasing support is added to 
an app using the Google Play In-app Billing Library and involves creating and initializing a billing client on 
which methods are called to perform tasks such as making purchases, listing available products, and consuming 
existing purchases. The next chapter contains a tutorial demonstrating the addition of in-app purchases to an 
Android Studio project.
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