Android Studio
Iguana

Essentials

Kotlin Edition .A.

publishing

Android Studio Iguana
Essentials

Kotlin Edition

Android Studio Iguana Essentials — Kotlin Edition
ISBN: 978-1-951442-87-3
© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Payload
-

Find more books at https://www.payloadbooks.com.

https://www.payloadbooks.com

Contents

Table of Contents

L INEFOAUCHION ccuveneiniiiiiiiiinniniiiintitcstntcaesst sttt saesae st s st sstssb e st s e ssbesst s b s bes st sobesaes bt sonssnesabesnesnesanens 1
1.1 Downloading the Code SAMPIEScccureueereiriureneiriirieireireereireerei ettt sesseseens 1
L2 FEEADACK ... vttt ettt bttt ettt st et b 1
L3 BITALA et 2
1.4 AULROTS WANLEd.cucvivicireieicireteicict ettt st ettt 2
2. Setting up an Android Studio Development ENVironment............coccvvveeesrinrinnsensensesnisnssnssessessesscsnessesens 3
2.1 SyStem TeQUITEIMENLS.cuvuiuiieiriiciiierict et sa et et se s 3
2.2 Downloading the Android Studio package ... 3
2.3 Installing Android StUAIO.........ceurvcrierecrirecrece e eaeene 4
2.3.1 Installation 0n WINAOWScccueureerirrieriireeireeees et sssseesessseesesssessesssasesens 4
2.3.2 Installation 0n MACOSccvveiireceiericireeeree et ese e ese s sse s aeesns 4
2.3.3 Installation 0N LINUX......ccccvuureeueureerierieneireeneiseeenessesessssesesssasesessessssesssssssessssssesssssssessessssens 5
2.4 The Android Studio SEtUP WIZArdccc.evveeurircucininiciriceireeieineciereeietseae ettt eeseseeneaes 5
2.5 Installing additional Android SDK packagesc..cceeeueeeerreueererieenerneeeeneeeenseeeseneesenessesenne 6
2.6 Installing the Android SDK Command-line TOOLS........c..cceveueururerriueererniemrerneenrenneeereneeeneneeeenne 9
2.6.1 WINAOWS 8.1 .ttt ettt seses ettt st ses e ettt seaes et neas 10
2.6.2 WINAOWS 10 c.ceeiniieciieeeciceeeenieeee i ese s s sse s sse s sse s sse s ssessssssessesens
2.6.3 WINAOWS 11 .ot sse s ese s s sse s sse s s s s sesens
2.0.4 LINUX oottt
2.6.5mMACOS.....oiii s

2.7 Android Studio memory management
2.8 Updating Android Studio and the SDK
2.9 SUMMATY c.eoviieiiiiriceicneeresesesesessessienenes

3. Creating an Example Android App in Android Studio..........ocevevieviivinenriniiniisiniinenneniiniininenennennisnenne 15

3.1 ADOUL the PIOJECL c.ceucvueuicicicireieiciretseetreieeetnei ettt sttt sttt sttt
3.2 Creating a New ANdroid ProjJecCt.......ccvevcreereneiniireneineinineiniiseeneiseesessesessessesessessesessessesesesscsenns
3.3 Creating an ACHVILY ..cccccuiiiiiiiiiiiiic e
3.4 Defining the Project and SDK Settingscecveureurercurerrereirirrereerernenesnerseessessesessessesessessescssesscsenns
3.5 Enabling the New Android Studio Ulcccevenrrcinenencininecneinceneiseeineisesessessesessessesessesscsenne
3.6 Modifying the EXample APPLiCAtion......c.ccocureurereuriereciremreeineineetresseessessesessessesessessesessessesessesscsenns
3.7 Modifying the User INtErfacec.oeveureueeveireeneneiniineeineinecneiseenessee et sessese s ssessesesesscsesns
3.8 Reviewing the Layout and Resource Files
3.9 Adding Interaction
3,10 SUMMATY ..ot

4. Creating an Android Virtual Device (AVD) in Android Studio

4.1 About Android Virtual Devices
4.2 Starting the Emulator...........ccccveueeecunennee.

4.3 Running the Application in the AVD ...t sesenessesennes
4.4 Running on Multiple DEVICES........c.ceuerreuemrerreremerreeeeeireeeneiseseeensesenesseseesessesessessesessessesessessesennes
4.5 Stopping a RUNNING APPICAtIONceveviueeerereeeieecereeeeetreeeeenresenessesensensese s s ssesensessesennes
4.6 Supporting Dark TREMIE..........c.ceverieeeeirereeeieeeeeeeeee et sese s s s ssesenasasesenaes

Table of Contents

4.7 Running the Emulator in a Separate Window...........ccecureueenerreeeenerreeenerneneenennerenensesensenseseesensenes 37
4.8 Removing the Device Frame........ccvuueevcirieinerneeeeireieetneeeeetseseesesseseesessesessessesessessesessessessssessenes 40
4.9 SUMMATY ..ottt bbb bbb bbb bbb bbbt 42

5. Using and Configuring the Android Studio AVD Emulator

5.1 The Emulator ENVIFONMENTc.cuiuiiicinimiieiieiiciceseise s sse s ssssassssssse s ssenas
5.2 EMUIAtor TOOIDAr OPLIONScucvueeeucereierciriereneireiseeiresseetsessesessessese st ssesessessesessessesssessessssesscas
5.3 Working in Zoom MOGEcucuuucieucinieeieiiiisissesessese e ssssessssss s ssenas
5.4 Resizing the EMulator WIndOoW.........cc.ccciiiiniiniceseicieee e ssenas
5.5 Extended COntrol OPHIONSc.cueecureurecireurecireineciresseeisesseessessesessesseessessesessessessssessesessessesessesscas
5.5.1 LoCation......ccoueveiiinnicrctcierccccieieiennes
5.5.2 Displays................
5.5.3 Cellular
5.5.4 Battery........c.....
5.5.5 Camera.................
5.5.6 PRONE ...t e s
5.5.7 Directional Pad.........ccccviuiiiiniiniicicicicicceieciciccse s
5.5.8 MICTOPRONE. ..ottt ettt ettt saees
5.5.9 FINGEIPIINT ..ottt
5.5.10 VIITUAL SEINISOLSoorvrivriiriiiicicicicicisise s ssesssaesase s s sse s saes
5.5.11 SHIAPSHOLS .c..cuveeieeriecireireecietreie ettt ses et seee ettt bbbt
5.5.12 Record and Playbackccccveecueureeeineineeciniinieeieineceiseieeeisesescisese s sessese s s sssssseseses
5.5.13 GOOGLE PLaYcouimiiiiiiiiicicic i
5.5.14 SEHHNGS ...oucviiiriiietic s
5.5.15 HEIP ettt ettt
5.6 Working with SNapshots..........c.cceiiiiniciiiic e
5.7 Configuring Fingerprint EMUlation ... sesenas
5.8 The Emulator in Tool Window Mode
5.9 Creating a Resizable Emulator...........cccccecuneuuee.
5.10 SUIMIMATY ..ottt s s

6. A Tour of the Android Studio USer INTEITACEcccecueeeeeerrvnrerrirereeeesrnreessssseessssssseessssssnessssssssssssssasssssssns

6.1 The WEICOME SCIEIcuvrevemreiercireiesctreeeeseereaseseseseese e aseseese e sees e sses s ssessaseseessseseas
6.2 The MENU BAT ...ttt neas
6.3 The Main WINAOWceveiriericieieicieieeenereeeireeee e sseseasessessssessesssessessssescns
6.4 The TOOL WINAOWS ..ot ssesessesseseaseseesssnesces
6.5 The TOOl WINAOW MENUScucvreuecreiiciieectreieeeaessesenessesesessesessessese e ssesessessessssessessasessesessesens
6.6 Android Studio Keyboard SHOTTCULSc.cecueurecurcrrecinirricireieeereieee e seesenenens
6.7 Switcher and Recent Files Navigationcccvceecureurercunerrencnniinenennerneeneneeensessesessessesessessesessesens
6.8 Changing the Android Studio TREeme ..o senens
0.9 SUITIMATY ..ottt bbb bbb bbb bbbt

7. Testing Android Studio Apps on a Physical Android Device

7.1 An Overview of the Android Debug Bridge (ADB).................

7.2 Enabling USB Debugging ADB on Android Devices...............
7.2.1 macOS ADB COnfIGUrationc.ccccuceeeririuniunimniineiieseiessesessesessessssesssssssssssssssesssssessssenas
7.2.2 Windows ADB CONfIgUIAation.c.cuuiuiuriuniunimniineieiseieiesessenessessssesssssssssesssssesssssessssenas
7.2.3 Linux adb Configuration ... sasssssssssssessssse e ssssenas

7.3 Resolving USB ConNection ISSUES ... sessessssssssssssse e sssssenas

ii

Table of Contents

7.4 Enabling Wireless Debugging on Android Devicesccccvueeereernerneecenerneemnennesensersecnsersesenne 67
7.5 Testing the adb CONNECtION ... eaeene 69
7.6 DeVICe MIITOTING. ..ottt 69
7.7 SUINIMIATY c.oininininiiiiiis iR bbb bbb bbb bbb as 69
8. The Basics of the Android Studio Code Editor..........cuieviienineninieniniientienineinteinieensessseessesessesenesens 71
8.1 The Android Studio EdItOr......c.cocuiveiiirieeieirienieireieecireireeseisee et bbb e secseens 71
8.2 Splitting the EdItor WINAOWc.ccuiuiiriiiinicicicicicicciiiescsisese e sse s 74
8.3 COde COMPLETION c.crveeuiiiinireieacireieeet ettt seb st b sttt bt bttt bbbt eae 74
8.4 Statement COMPLETIONc.eueuevicirerrieirtieeeirei ettt sttt b sttt bbbt eae 76
8.5 Parameter INfOrmationcocveueecureueencinireeeireinieireiseetseisee ettt st bbb sas 76

8.6 Parameter Name HiInts ... 76
8.7 COAE GENETALION «..cuveeuiireinetreieacireiseet sttt b sttt bttt bt sttt bttt st eae 76
8.8 COAE FOLAING.......ouieiieieieiiecciect ettt 78
8.9 Quick Documentation LOOKUPc.eccueveeeuriereneiriiricireineetseiseetsessee e tsessesessessesessessesesesecseens 79
8.10 Code REfOrMALtING.........cuuvuiuiuiiiiriiiireiciseicie st 79
8.11 Finding SAmMPle COde ... e ss s 80
8.12 LiVe TEIMIPLALES ..euvvreveeuererrincirereeneireteeet sttt sttt b st b sttt s ettt 80
813 SUMMATY ..ottt 81

9. An Overview of the Android Architectureocoevivnrnininrininnininiisssersesessees 83
9.1 The Android Software Stack
9.2 The LinUx Kernel.....c.ccueiiiiirieieiciriceercctetreci ettt sttt sese et sssesebeeneaes
9.3 Hardware Abstraction Layer
9.4 Android Runtime - ART..................

9.5 Android Libraries.......c.cccoecveveurureuenes
9.5.1 C/C++ Librariescc.cceeeeureueece

9.6 Application Framework....................

9.7 Applications

9.8 Summary........

10. The Anatomy of an ANdroid APP.....cccerueriirirnininniincniniininiieeisisecsisesesesesssesstsssssssssssssssessessns 87
10.1 ANATOId ACHVITIES ...ucvevuereveineireveietrereteiseeetetsesetset st sese et sese bbbt ses st sesessessesesaetsesesacs 87
10.2 ANdroid Fragments.........cccciiuiuiinciniencieicie e sesssssesasssssssssssssssnns 87
10.3 ANATOIA INTENLS ..cuvreeieicteineireeeietretetetseee et sese bbbt ses et ses et ses et ses et sesessetsesesaetsesesacs 88
10.4 Broadcast INTENLScuveueveeeireeeieireeetetsesetetsesetsetsesete s st sese st sesessessesessessesessessesessessesesssssesesacs 88
10.5 Broadcast RECEIVELSc.cueueueveieureueicireseietsesetsetsesetetsese e ssesesaetsesessessesessessesessessesessessesessessesesas 88
10.6 ANATOIA SEIVICES ...cvrevrenierineieeeieireietetreee et sese et ses et sese bbbt ses et seb et ses st sesesaetsesesacs 88
10.7 CONENt PIOVIALTScvueuireeineieveineireieieireeeieisesetsetsesetet st sese et seseeae s st sesessessesessessesesssssesesacs 89
10.8 The APPlication MAanifestcccveureueeeureeeieerereieireeeieiseseeessesetessesetessesesessesessessesessessesesessesesns 89
10.9 Application Resources
10.10 Application Context........ccoeereveenee
1011 SUIMNIMATY ¢ttt s st st b bbbt

11. An Introduction t0 KOtlncviiiniiniinninininiiiiiiniiniiiiiininiiieeesmssememssssssmemse 91
11.1 What 18 KOHN? ...ttt sese st tese sttt sttt seen 91
11.2 KOtHN QNA JAVA ..ttt vttt ess s se s sess et snsssesessesensesensesssesensnsssensesen 91
11.3 Converting from Java to KON c.....c.cocureeirrieeicineeeeineeeceeneecee e enseseesesseseesessesessessesenses 91
11.4 Kotlin and Android StUAIO «......c.cueeeeeurirceeinieieircieireeereecieeecisteee sttt sseese e esseessssesesees 92
11.5 Experimenting With KOtccccveeeiieiirieeinecereeereeieneeeeesene s nsesseseesessesensessesennes 92

iii

Table of Contents

11.6 Semi-COLonS iN KON c..cuvivieieieieceiectceeteeeeeeete ettt se s se e seneesessssesenesensesenes 93
11,7 SUIMIMATY oot bbbt 93

12. Kotlin Data Types, Variables, and Nullabilityccccoeererrirrrninsinnecsinninscninnenncninecncnennecsscsessscnes 95

12.1 KON Data TYPES...ccveveeirereireirieeieireieietsesetsetsesessetsesessessesessessesessessesesssssesessessesesssssesessessesesesseses
12.1.1 Integer Data TYPESccccuviiiiimciiiiiicn st sssnnes
12.1.2 Floating-Point Data TYPESccccuciriririniiniiiireiiseieeec e ssecseesesasssesssssssssessesessssesssaes
12.1.3 BOOLEAN Data TYPE....ceecucereerencirerrieereereeireiseetseisese bbbt ssebsese e ssesessesseae e seesesessens
12.1.4 Character Data TYPe....cocveeecereereneirierieiretseeiseisee et sessese bbbt e seeseseseens
12.1.5 String Data TYPe.....coviuiiirciiiiiiin s
12.1.6 Escape Sequences...........c.oceceecucucrerencnnencnce

12.2 Mutable Variables..........c.cccvcuvcucrvcucinineninnnnn.

12.3 Immutable Variables............cccccveuvcuveicrieinininennes

12.4 Declaring Mutable and Immutable Variables

12.5 Data Types are ODJectscocveuruveunemeererreeercrrennne

12.6 Type Annotations and TYPe INFErencecocveeureueireireeeineirceeieireeeieeseeeeetseseeeeseseeetsesesessenes

12.7 NUILADIE TYPE..ouvriviriirieeieirieeicireicieiseecitesese sttt tee s ssese s ese e sese bbb s ssaesssees

12.8 The Safe Call OPEratorccveueueeeereeceiirieeieerisetseeseseaeesesestesesessesesessssesesssssssesssssssesessssesssses

12.9 NOt-NUIL ASSEITION. ..ot e sse st saes

12.10 Nullable Types and the let FUNCHONc.cviuriueinieriecieiriecitiseeeieiseieeeiseseesessesesessesessesseaesseaees

12.11 Late Initialization (TAteinit)ceceeveverereriieieeereerereeeeeeeerereseesesese v esesese et sssseseseseseseaens

12.12 THe EIVIS OPEIAtOrc.vueuieeiierieeieeriecitiseeeeeeseseteeseseasessesesssisesessesese s sssesessssssaesssssssesasssssesssnes

12.13 Type Casting and Type ChecKingccccueuiriininiincincincicieie e sssesesees

12,14 SUINIMATY ..ottt bbb bbb en s

13. Kotlin Operators and EXPressionscc.eeeeeiniriceneisiencsninnenscsstssessssssssscsssssssssssssessssssesssssesssssssases 105

13.1 Expression Syntax in KOtHI........cccceeiercinireeeceeeeeeeeeenee s ssesessennens

13.2 The Basic Assignment Operator..........c.ceeee..

13.3 Kotlin Arithmetic Operators........c..ceceveveeenee.

13.4 Augmented Assignment Operators..................

13.5 Increment and Decrement Operators

13.6 EQUALItY OPEIAtOISuvuvermieeeerriereecnieeeeniensenseeensesseeensesesensesesessessessssesesssessesssessessssessesesnesens

13.7 Boolean Logical OPEratorscccueecuiuercriuemereeemseresemesesessessesessessesesessesessessesessessesessesens

13.8 RANEE OPEIAtOroviiiiiiiicci bbb

13.9 BitWiSe OPEIatorS......cccoviriiviviuiiririnreieicectntiereestttstese ettt sae ettt se s et ss s s e ssassenenen
13.9.1 Bitwise INVEISIONccoiiiiiiiiiiiiiiii s
13.9.2 Bitwise AND ...
13.9.3 Bitwise OR...cuoiiiiiiiiiiiiic s
13.9.4 Bitwise XOR ..o
13.9.5 Bitwise Left Shift......c.oceueireeineireccirecrecctreeereee ettt seseesessesessensesessesenes
13.9.6 Bitwise Right Shift........ccocriemiireeeineirceeirecereceiee et seseesessesessessesensessenes

13.10 SUIMIMATY ..ottt bbb bbb ns

14. KOtlin CONEIOL FLOWceiiiiiieeiieiiieeeeeiirneeeecesseeeeesssssseessssseseessssssseesssssssessssssssessssssssesssssssessssssssessssanssens 113

iv

14.1 Looping Control flOW ...t ssesssssssss s saes 113
14.1.1 The Kotlin for-ii StAtEIMENT.......c.cueureueeeureeeireireeeieireaeeetreseeesseseseesesessessesesessesesessesesessenes 113
14.1.2 THE WHILE LOOP .ceeueeeveeneireeeeeireeeieireeeeeisesetetseseese st sesesses s st sesessessesessstsesesasssesesnsssenes 114
14.1.3 The do ... WHILELOOD ..cevueveeicireeeieireeeieireieeeiseeete ettt sese bttt sese et sese st sese st sene 115
14.1.4 Breaking from LOOPSc.cc.cuuiiuirimiiiiiiscisisee e s ssesss s ssse s ssssesaes 115

Table of Contents

14.1.5 The continue StAtEIMENLc.c.eveureueererreueeerrereeenserenessesesessesessessesessessesessessesessessesessessesesses 116
14.1.6 Break and Continue Labels.........c.occoveeeinieneineeineireeeneeeenneeeneseeesseseesessesensessesennes 116
14.2 Conditional Control FIOW........ccccveeeureerirreceiirieniieenieeeensseeeensesessesssasssessssssesssssssessessssens 117
14.2.1 Using the if EXPIESSIONSccvvuevueureueemerreeemerreeeeenseaenesseseesesseseesessesessessesessessessssessesessessesenses 117
14.2.2 Using if ... else ... EXPIESSIONSc.euevmereueurcrreeeeerreaenenrerensesseseesessesessessesensessesessessesessessesennes 118
14.2.3 Using if ... else if ... EXPIESSIONSc.cvueveueuerreeemcrrerenerreremensesensessesensessesensessesessessesessessesennes 118
14.2.4 Using the when Statementcocueueecrreeecrreeeeerrerenerrereeenseseesesseseesessesensessesessessesessessesenses 118
14.3 SUIIMATY oottt bbb bbbt 119

15. An Overview of Kotlin Functions and Lambdascccccueeeerrreeieciireeeeciiieeeeeesssneeeesssssseessssssssessssnnene 121

15.1 What is @ FUNCHONTovuimiiiiiiiireieic et saees 121
15.2 How to Declare a Kotlin Function.........c.ccccecueece
15.3 Calling a Kotlin Function..........cccccecveveneuneivcrncenes
15.4 Single Expression FUnctions............cececuveuvcencuncenee
15.5 Local FUNCHONSouvuieiieiiiicirceiisesiseeieneenes
15.6 Handling Return VAlUes ..ot ss s sesssnsens
15.7 Declaring Default FUunction Parameters...........c.ccccuceeiueiuriuniunenieserseesenseese e ssesaessesssssssens
15.8 Variable Number of Function Parametersccoeeerinininieneneenerseesesseiesensesaessesessasaens
15.9 Lambda EXPIeSSIONSc.eueuueueueeniereeeiniirieeieesiseseesesesseesesesssasesesssesssesssssssesssasssesssssssesnsssssesnssssaess
15.10 Higher-order FUNCHONSc.ocviuiiiuiicicicieiciciiecieeicicssesesse s ss s ssesssssssens
1511 SUIMNIMATY c.cuiiiiiiiiiiiicteie ettt et s bbb nais

16. The Basics of Object Oriented Programming in Kotlin

16.1 What 18 a0 ODJEC? ...evuiieciciectreciireceteee et ese s sse s s s ssesssssnscssssssacns 127
16.2 What is a Class?.......cccccovvviuviurinnnen.
16.3 Declaring a Kotlin Class.................
16.4 Adding Properties to a Class..........
16.5 Defining Methodscccccveeevcrnecencrnecnncrnecnnennne
16.6 Declaring and Initializing a Class Instance
16.7 Primary and Secondary Constructors..................
16.8 Initializer BIOCKS.........cccoeuviririririiiiiicincicicians
16.9 Calling Methods and Accessing Properties
16.10 CUSLOM ACCESSOLS ...oucvreirirrircterisese sttt s bbbt b et ansees
16.11 Nested and Inner Classes ... sssssssssssssssens
16.12 COmMPANION ODJECES......vuevmireeerrirrieerniereeerereeereeseeestesesesssasssensssessesssasssesssssssessasssesssssssesssssssens
16.13 SUIMIMATY ..cuviiiiiiiiciirri s bbb bbb bbb bbbt

17. An Introduction to Kotlin Inheritance and Subclassing

17.1 Inheritance, Classes and SUDCIASSESo.veueereereeeeeeeeeeeteeeeeeeeeeeeteeeeeteseeeeeseseesseesestesesseesessessesseseens
17.2 SUDCIASSING SYNTAX «...cucvuriuriiiiiiiiiciiiseieic et
17.3 A Kotlin Inheritance Example........cccoocevvcureueencnnee.

17.4 Extending the Functionality of a Subclass
17.5 Overriding Inherited Methods...........ccccovcviuvcuncence
17.6 Adding a Custom Secondary Constructor
17.7 Using the SavingsAccount Classcocveuveuncunce

17.8 SUIMIMATY w.ceeiiiiiiciit ettt

18. An Overview of Android View Binding.........cocceevirnseninrisinnsininininniinininnininiminesesses 143

18.1 FINA VIEW DY I ettt sse s ese s esesssssnscsasassacns 143
18.2 VIEW BINAING ..oeevuiiecinieeeicirectreectteeee et ese s ese s sse s sse e s sssasssasassscsnsssssns 143

Table of Contents

19. Understanding Android Application and Activity Lifecycles

18.3 Converting the AndroidSample Project.......ccvcecriemrerniemerneeeenneensereensersesenessesensenens 144
18.4 Enabling VIeW Binding.........cccoueeeeuiueeciniueeerieenerieeeeneienenesese e ssessesessessessssessesesesens 144
18.5 USing VIEW BINAINGccviueeermiurecriereciiieeeneeeeeseeeeseneie e sese s s s ssesssessesessessesessensens 144
18.6 ChOOSING AN OPHIOIL c..eveeruerreereieerireeeireesereeeese e ssese e ese s s s s seesesseseesesseseens 146
18.7 View Binding in the BooK EXamples.........cccvvueueriericrniuemnerniceereceeneeneneeeessesessessesenenens 146
18.8 Migrating a Project to View BInding.......cccccvveeeunieecrniemncrniceneceeneeneneenersesensessesensenens 146
18.9 SUMMIATY ..ot 147

19.1 Android Applications and Resource Management...............c.ocucucuerceeeenimneusemseusemseesenssesensens
19.2 Android Process Statesccocucucucueieereemnirsinenseisenseesenseens
19.2.1 Foreground Process
19.2.2 Visible Process
19.2.3 Service Process
19.2.4 Background Process
19.2.5 EMPLY PIOCESS ...ocvviiiiiiicciiici i
19.3 Inter-Process DEPendenciescocureueuneerieeeniereueuneinesestenesessesesessssesesssssssessessssessessssesseses
19.4 The ACtIVILY LIfECYCLe. .ottt eaees
19.5 The ACHVILY SEACK.....c.vueuiirieeieiriecicirtecitisei ettt sese st ese bbb ssses
19.6 ACHIVILY STAESoviiieieiiiciciciitctt et
19.7 Configuration CRANGESccocuuciieiiiiiiiieieisesise et saes
19.8 Handling State Change.........c.cccuuciieiieiieiiiisisesise e ssessssssss s saees
19.9 SUMMIATY ..ttt bbb n s

20. Handling Android Activity State Changes..........cocoeruireireirenisisniseisnnininisssssenisnsniseesssssee

20.1 New vs. Old Lifecycle Techniques.........c.cec...
20.2 The Activity and Fragment Classes..................
20.3 Dynamic State vs. Persistent State....................
20.4 The Android Lifecycle Methods..........ccccruueue.
20.5 Lifetimesccvvviviereiinciciiciiccncecnnns
20.6 Foldable Devices and Multi-Resume
20.7 Disabling Configuration Change ReStartsc.ceccereureeriureerirreerniuneernieeeenessesenesssensesees
20.8 Lifecycle Method LImitatiOns......ccceeeeiureeeriereemirreemeeneseniesesenseesesesessesesssssssesessssesessssenesees
20.9 SUMMIATY w.tiiiiiiii bbb bbb bbbt

21. Android Activity State Changes by EXample.........ccouvvuevinirruininrennucniinnenncnininnscninnencsisesscseseee

21.1 Creating the State Change Example Projectoocvivuvincincicincieinieinieeseseseseseseesenees 163
21.2 Designing the User INTErfaceccccucicirininiiriiniinciseiciseie e sssssesaes 164
21.3 Overriding the Activity Lifecycle Methodsccocviuniuiincincincincieiciniricncsescsse s 165
21.4 Filtering the Logcat Panel..........cc.ccccuiiiiiininiicirccec e saes
21.5 Running the Application.........ccccccceeeveriuniunn.

21.6 Experimenting with the Activity
21.7 SUIMMATY c.iiiiiiiiicccce ettt et n st

22. Saving and Restoring the State of an Android ACtivity.......cooevvveireirnrninisisnnninininnnenecnsene 171
22.1 Saving Dynamic STate ... 171
22.2 Default Saving of User INterface Statecveeurecrierecenierecniereenneiseensieeeesesensesesssseneses 171
22.3 The BUNAIe Class ..o s sssssss s sssesaees 172
22.4 SaVINEG The SEALE.....c.cvuireeeeerreeeieireeeetreeeet et ese st sse st ese st sae s sae e nsesasaes 173
22.5 ReStOTING the SLAeccvivreeeiiricieireceireet ettt ss s nsesasaes 174

vi

Table of Contents

22.6 Testing the APPLICAtION.ccuevirrieeieireeeeireecetreeeetreee et sese s sese st sesensessesennes 174
22.7 SUIMIMATY ..ottt bbb bbb bbb bbb 174

23. Understanding Android Views, View Groups and Layoutscc.ceeeeerrersuencsrerscsensensucssessecssessennes 175

23.1 Designing for Different Android DeviCes.........cccueuuriniuniuriniiniiniineisciserseiesesenseseesssssesesens
23.2 VIEWS A VIEW GIOUPS ..cuvrevnenirereineirereinetreeetetsesetsetsesetsessesessessesessessesessessesesssssesessessesessessesesnes
23.3 Android Layout Managerscceeueuruiurcucenemeumeiensesieiesiasesssssessssse s ssesssssesssssssssssssssns
23.4 The VIEW HIETATCRYcouiviiiieciiircecicireeccircictctreeetct ettt ettt sese st s et ses st sesenaes
23.5 Creating User INTErfaces.........ocoouiuiuiureiiincincicieieieiiecieissesscssssse e sse s sasssssssns
23,6 SUIMIMATY ...ttt e bbb

24. A Guide to the Android Studio Layout Editor Tool

24.1 Basic vs. Empty Views Activity Templates................
24.2 The Android Studio Layout Editorc..cceceunee...
24.3 DeSIGN MOME......ouirieiireecieireeectreiectreee ettt seas e sese s sese st sese s sese sttt sese s seaenaes
24.4 The Palette ...
24.5 Design Mode and Layout VIEWS........c..ceeeureeeererreeeeerreeemersenemessesemessesemsessesessessesessessessssessesesses
24.6 NIGHE MOAE ...ttt sese s se st sese st sese st st sesenssssesennes
24.7 C0de MOE......ccoiiiniiiiici e
24.8 SPLIt MOAE ...ttt sttt sttt een
24.9 SttiNG AITTIDULES.....c..vucveeeeeieececrreeeeetrere ettt sese s sese st se st sese st s ssessesensessesenac
24.10 TIANSOTINS coucvvieiiiiecr bbb
24.11 Tools VisiDility TOZEIES.....c.cuevmirrieercrriecrerreeceerreeeietreeeeensene s nsessesessessesessessesensessesensessesenses
24.12 Converting VIEWS.....ccciiiiiiiiiiiiiiiisi s sasans
24.13 Displaying Sample Dataccocveeenerrecrreerecrnennes

24.14 Creating a Custom Device Definition
24.15 Changing the Current Device
24.16 Layout Validation...........ccccveueeee.

24.17 SUINIMATY ..ottt b bbb

25. A Guide to the Android ConstraintLayouLt.........c.cceuevverrecninsinnecnininncncssinsnesisissscsesessscsessessessessee

25.1 How ConstraintLayout WOTKS........c.ccveueueureueineureeeineireeeieeneeeieisesesetsesessessesessessesessessesessessesesne
25.1.1 CONSLIANES ...cuviieiiictii e
25.1.2 MAATZINS ...oiuiuitititctcteiciiie ittt bbbttt
25.1.3 Opposing CONSLIANES.cvuimiiiiiiiiiciii s sa s
25.1.4 Constraint Biascccoceuiiiiiiiiiiiciii s
25.1.5 CRAINS ...t st e
25.1.6 Chain SEYLES....cueueiieicireeeicireieieirei ettt bttt

25.2 Baseline AIGNMENL......c.couciiiiiiiriiiireieseie e siess s sae e

25.3 Configuring Widget DIMENSIONS..........ccvcucucucuumeieiaiieieseiissesesssese e ssessessesssssessssssssssns

25.4 Guideline Helperccccocvevcunerneneen.

25.5 Group Helper.......coceevcnevnevcenernennn.

25.6 Barrier Helper........coocveuvcvcenennennen.

25.7 Flow Helper........cocoveureveunerncncenernennn.

25.8 RatiOS ..ccvveverriiiiicieees

25.9 ConstraintLayout AAVANTAZESc.ccrcuiurcecucuimeienieeieieseeesssesessssse e s sssssesssssesssssns

25.10 ConstraintLayout AVAIlADILILY.......ccocreveereureeeeneireieieireeeieineeeieiseee et sesete st sesessessesessessesenaes

25.11 SUIMMATY c.viiiiiiiticeietei ettt bbb

26. A Guide to Using ConstraintLayout in Android Studiocevvevviveiseisnnnininncsnnnnenenncnncnnenene 207

Table of Contents

26.1 Design and Layout VIEWS.........c.ccueureeeeiereeriineeneinesesesseeessessesesssssesessssssessssssesssssssesssssssesssses 207
26.2 AUtOCONNECE MOAE ... aes 209
26.3 Inference MOde.........covuiiiiiiiiiii s 209
26.4 Manipulating Constraints Manually..........ccccecereniirecrninncineeeeneeeneeeeeseseeseneens 209
26.5 Adding Constraints in the INSPeCtOrccvuvveuiurecrnierecrireeieeeiseenreeeeseee e esenseneees 211
26.6 Viewing Constraints in the Attributes Window........c..cecevirecnirrecrninecrnienecnneeeeeneeeneneens 211
26.7 Deleting CONSTIAINESc..cueeermeereeererreeerseereeerseeseeessessesesssssesesstasesesstssssesssssssestssssessessssessssssesssees 212
26.8 Adjusting ConStraint Biasc.eceeeureeeieriernierieniiriereeseeereeeeeneieesesesesesssessessessssesssssseseses 213
26.9 Understanding ConstraintLayout Margins...........ceccveeeeeenierecriereerniuneerneeeeensessesenesssensesees 213
26.10 The Importance of Opposing Constraints and Biascecccveurecuneurecrnierevcrneereserneneeenneeens 215
26.11 Configuring Widget DImMeNSIONS.c.eveeerreemiereemimreeerieseenseesesessessesesssssssessessssesessssenesees

26.12 Design Time Tools Positioning............c........
26.13 Adding Guidelines..........c..cceveureuevrerreeeererrerennes
26.14 Adding Barrierscceeveevverreeeenerreeeenerrenennes
26.15 Adding @ GIoup......c.occeverreueererrereeerreeeerenrenennes
26.16 Working with the Flow Helper..........cccccoeuuunee
26.17 Widget Group Alignment and Distribution
26.18 Converting other Layouts to ConstraintLayOouLt.........cccuueecuirreemniurecrnieeeensesemeressnenseeens 225
26.19 SUIMIMATY eviiiiiiiic bbb bbb bbb 225

27. Working with ConstraintLayout Chains and Ratios in Android Studioccecevevvevviveivenvenncnennnne 227

27.1 Creating @ CRaiN........c.ccviuiiiicicciciceceecieciese s aes
27.2 Changing the Chain StYle ... saes
27.3 Spread Inside Chain StYle........c.oveureeeiiirieiniinicieiseicieiseecieeseie st sses e ses s seses
27.4 Packed Chainl StYLe.....ccuiireeeiiriicieirecitircci ettt eses
27.5 Packed Chain Style With Bias.......ccoceeeuiureciniinieiniinicireisecieiseeeeisesesseisesessessesessessesesessssessses
27.6 Weighted CRaiN ..o ss s sees
27.7 Working with Ratios...
27.8 SUMMATY ..ottt

28. An Android Studio Layout Editor ConstraintLayout Tutorial

28.1 An Android Studio Layout Editor Tool EXampleccccuueecuiurecrniurecrnieneenneeeeeneeeneneens
28.2 Preparing the Layout Editor ENVIrONnmentc..cecceeeeceiurecmierecnniurecrnieeeenseseesenessnseneeens
28.3 Adding the Widgets to the User INterface.........ccocvveeeureceiurecrirrecrniurecrnieeeeneeeeeneeseenseeens
28.4 Adding the CONSIIAINEScevueureeererreeceiirieriereeneeseeeseseeeesseee e sseesesessasesessasssesssssssessssssesssns
28.5 Testing the LAYOULccueureeeeirieeerreeeeieeiet e sse e s ssasssesssssssesssasssesnsanes
28.6 Using the Layout INSPECLOT c......vucuueveeeemierieerirreeentesesesesseeesssasesenstasesesssasesesssssssesessssesssssssesesees
28.7 SUIMMATY w.uiiiiiiiii bbb bbb bbb bbbt

29. Manual XML Layout Design in Android Studioccecevevruivuinrernucninnenncninninnncninecncninecseneneene

29.1 Manually Creating an XIML Layoutccceueiuririuniiniencreeneieieneieseisessessesssesssssesssssesssssessees
29.2 Manual XML vs. Visual Layout Design
29.3 SUIMMATY ..ttt bbb ettt b s s

30. Managing Constraints using Constraint Sets........ccccoueeienieniiiniinniicieniennsnceee e

30.1 Kotlin Code vs. XML Layout Files..........cccverueirrieeneireeeerreieeernereiennesenenseseeessesessessesenensenes
30.2 Creating VIEWS.....coiiiiiiiiicciii bbb
30.3 VIEW ALTIDULES.....cuvreeeecreeeerereecietreeeeet et seae s sese s s ese s s ssese s ssesessessesesssssesessesenen
30.4 ConSLIaINt SELS.....cuimiiiiiiiiiiic s

30.4.1 Establishing CONNECtiONS........c.cccureerecurerrenemrerrecirerreenseneeensessesesessesessessesesessesessessesesenens

viii

Table of Contents

30.4.2 Applying Constraints t0 @ LaYOULc.oceveeueuerernieemerieeneneieneneeeeesesensessesessensesessesseseens 248
30.4.3 Parent Constraint CONNECIONS.........covieveriereiictecc et 248
30.4.4 Sizing CONSLIAINEScciuiiiiiiiiiic b 249
30.4.5 Constraint Biascoocvvieriiirciiiiictect s 249
30.4.6 Alignment CONSLIAINESccvuereerirercrirererieersereeerseneeensesesensessesessessesessessesessessesssessescens 249
30.4.7 Copying and Applying Constraint Sets........ceeemereemerriemerreeerereenensesensensesessesseneens 249
30.4.8 ConstraintLayout Chainscccveecrieeecrnieeeneeeeeee e ssesessessesessesesens 249
30.4.9 GUIAEINES ... 250
30.4.10 Removing Constraints........cooviiiimiiiiiiiiiii s 250
30.4.11 SCALNG.c..ouvieerireecetrecrtre et s s e 250
30.4.12 ROTATIONcetiiietiettct sttt 251
30.5 SUMMATY ..o bbb 251
31. An Android ConstraintSet Tutorial...........cccoueueerieenintininiiiniennenccese et aese s 253
31.1 Creating the Example Project in Android Studioccceeviuiuniiniencrncincincincicicicieceeeeneinns 253
31.2 Adding VIews t0 @n ACHVILY ...c..ccuiuriuieriuiircicicieieieiie e sae s ssessssaens 253
31.3 Setting VIew AttrIDULES.........cooiuiuiiiiiicccccc e 254
31.4 Creating VIeW IDS.....ccoviiiiiiiiic s 255
31.5 Configuring the CONStraint Set........ocviuiurcincincieueicieieieeiicsisesse e sse s ssesassaes 256
31.6 Adding the EdItText VIEWccoiuiuiuiiniiniincincicieieicicisiesei e sse s s sssssses 257
31.7 Converting Density Independent Pixels (dp) to Pixels (PX).....c.ccoereuveurerncerercmeccieerinininnes 258
318 SUMMATY ..ottt bbb

32. A Guide to Using Apply Changes in Android Studio.......ccecververveninniseisnsenininninnnnnenencsssesenenes

32.1 Introducing APpLY Changes..........cccveeeureeenerneeeenerreeemernenemessesesessesessessesessessesessessesessessesesses
32.2 Understanding Apply Changes Options................

32.3 Using Apply Changes..........coccvvureerneerecrneerecrnenns

32.4 Configuring Apply Changes Fallback Settings
32.5 An Apply Changes Tutorial

32.6 Using Apply Code Changes

32.7 Using Apply Changes and Restart Activity...........

32.8 USING RUN APD .ottt
32.9 SUMMATY ..ot

33. A Guide to Gradle Version Catalogs........c..ccecceirirreininsennininnecnininnenisissscscsessssesessscsessessessesee

33.1 Library and Plugin Dependencies.............ccucuvcunueicuinimniuniniineisiesesseisesesessessessessesssssssssssns
33.2 Project Gradle Build File.......ccviurueiiineeiirieicnceicireieiciseieecisesetctsesesset st sesessessesessessesennes
33.3 Module Gradle Build Files.............ccoiiiniiiniiniiciieicieinieicesisesise e ssessesssassses
33.4 Version Catalog File..........coiiicccceicicsiie e sse s
33.5 Adding DePendenciesccuuiuriuiureuieserceneneieieisesaeisssaeassssessssse e ssessssssssssesssssnns
33.6 Library Updates
33.7 SUMMATY ..ottt e

34. An Overview and Example of Android Event Handling

34.1 Understanding Android EVENtS.........c..cceureeecireeencrneeemenneeenenerenetseeensessesensessesensessesessessesenses
34.2 Using the android:0nClick RESOUICE.........c.vuvirreeeecrreeeierreeeeireeenetreeeeenreeensesseseesesseseesessesenses
34.3 Event Listeners and Callback Methodsccccvecrreecnerniecineeeeinieereeeseeeeesseseeessesennes
34.4 An Event Handling EXAMPIec.ceveueeenerrieerncineeeetreeenneeeeeiseseeetsesensessesessessesensessesensessesenses
34.5 Designing the User INEIfaceccveureueeeureeeeneireeeeerrieenenneneeeisesenetsesessessesensessesessessesensesseseeses
34.6 The Event Listener and Callback Method...........cccecuriuemnernecmcireceneinieerreenenseeeeesseseeensenennes

ix

Table of Contents

34.7 Consuming EVENLSccccoviiiiiiiiiiiiiii s 273
34.8 SUIMMATY ..ottt bbb bbb bbb 274

35. Android Touch and Multi-touch Event Handlingcccceeevininnuininenncninnennecninnenncscnsecsscsesseenes

35.1 Intercepting TOUCh EVENLSc.cuiiiiciiciciiiiiiieicsise et
35.2 The MOtIONEVENE ODJECT ...euvuivreviriirieeieireeeireireeeieiseeeteisesetetsesetsetsesetsessesessessesessessesesessesesssssenes
35.3 Understanding TOUCh ACHONS.........cccuuiririiiiiiiriiseisise e sesesseaes
35.4 Handling Multiple TOUCKEScocuiiiiiiciciiiiicircsse e
35.5 An Example Multi-Touch APplCAtionc.vceevveereeeereereeeineereeeieireeeieiseseeeesesesetsesessessesesessenes
35.6 Designing the Activity User INtErface ..o
35.7 Implementing the Touch Event Listener
35.8 Running the Example Application...................

35.9 SUIMMATY ..ottt bbb

36. Detecting Common Gestures Using the Android Gesture Detector Classcocceucveerensensesscsncsunsennes

36.1 Implementing Common Gesture DeteCtion..........ccueureeererreeeererrereererrereesenseseeessesensessesensessenes 281
36.2 Creating an Example Gesture Detection Projectcoecnecencrreeeenerneeenenneeesennenensennenes 282
36.3 Implementing the LiStener Class........cocvueuerreueeerreeeererreremenreeemerseseeensesenesseseesessesessessesessessenes 282
36.4 Creating the GestureDetectorCompat INStance.........coceeveureeeererreeeererreeeererreemsersesensensesensensenes 284
36.5 Implementing the onTouchEvent() Method..........ccoeveerreeeeneinecineineeereeenreeeenresenennenes 284
36.6 Testing the APPLICAtION.......ccocueueeirrieeeeireeceeireeeetreeeeet et ssese e ssese e sesessessesensesenes 285
36.7 SUIMIMATY ..ottt 285

37. Implementing Custom Gesture and Pinch Recognition on Androidcccceeeeevervcncnnecnncnerncnnes

37.1 The Android Gesture Builder Application
37.2 The GestureOverlayView Class..........cocvevnenee.

37.3 Detecting Gestures..........ccoeveeuruvencininincesenencnnns

37.4 Identifying Specific GeStUIEScccucmrumrurimrimniiirerserereeenns
37.5 Installing and Running the Gesture Builder Application
37.6 Creating @ Gestures File ..o
37.7 Creating the EXample PrOJECT........ccccuiiiciiiiiirinircitse et ssasessenes
37.8 Extracting the Gestures File from the SD Cardcocoocveiniinciicincicicninencssecseenes
37.9 Adding the Gestures File to the Project ...
37.10 Designing the User INterfaceccocuuciciririuniiniiiiircnisceicee e sesesessesessenes
37.11 Loading the Gestures File ... ssecsssesssssesssesssesessasessenes
37.12 Registering the Event LISteNer ..ot ssessessesssssesssesssesesssssessssnes
37.13 Implementing the onGesturePerformed Method.............cccvcuviuvciciciiininisiniiircncncenes
37.14 Testing the APPLICAtION. ..o
37.15 Configuring the GestureOVerlayVIew..........cccoiriienerneincensieienseceieeisesesesesssesesssesesssenes
37.16 Intercepting GeSTUIES........ccveviiimeiiiiieiici e aas
37.17 Detecting Pinch Gestures..........ccccecveuerureunnn.
37.18 A Pinch Gesture Example Project..................
37.19 SUMMATY ..ottt et bbb

38. An Introduction to Android Fragments.......c.ccvivuernrnsinisisisnsenisisisssesesesesnesssesesesssssssssesnes

38.1 What is @ Fragment?ccccecuveeeveiniernerneieeeineeeetreeeeesseseeessesessessesessessesessessesessessesessessesessessenes 297
38.2 Creating @ Fragment ...t 297
38.3 Adding a Fragment to an Activity using the Layout XML File.......ccocceceereernerreeencrreenrcnnenee 298
38.4 Adding and Managing Fragments in Codecoceveureuemnerreeenerrercenerneeenennenensensesensensesensensenes 300
38.5 Handling Fragment EVENLSccocuveeeerriueecineeeieireeietneeeeenreseeeneseesessesessessesensessesessessesessessenes 301

Table of Contents

38.6 Implementing Fragment COMMUNICALION.c.vueverreueeerrerenerrenenetreeenserseneesessesenesseseesessesenses 301
38.7 SUMMATY ..ot bbb 303
39. Using Fragments in Android Studio - An Example.........coccovvnivininncninnnncncnnenncnennenncseneescsennes 305
39.1 About the Example Fragment APpPLiCationcccucuiriuniuriuniiniinieneesciseiseieneseceessesessaesesenns 305
39.2 Creating the EXample PrOJECt.........ocviuiuiincincinciieiciieieseicisise et sae s ssessssans 305
39.3 Creating the First Fragment Layout..........cccocuvcuueieieininininineseese e ssessessessessessscnns 305
39.4 Migrating a Fragment to View BINdingcccccuoeueieininininininiscncscisceicieseseecesaesesens 307
39.5 Adding the Second Fragment...........cccocuvuncicincicieieininieeicsisesese e ssssssssans 308
39.6 Adding the Fragments t0 the ACHIVIYc.ccocuvciiieiiciriniicrcincee e 309
39.7 Making the Toolbar Fragment Talk to the ACtIVItYccccecviriuniniineincineiscicicciciecececncnes 310

39.8 Making the Activity Talk to the Text Fragmentccccoeceininninerncincincenceeieccieseeecnens 313
39.9 Testing the Application
39.10 SUMMATY ...oviiiiiccirccenene

40. Modern Android App Architecture with JetpacK......cccoceveereiriricisirsnncnsiniciininecscsesseseeeesaeeneene 315

40.1 What is ANdroid JEtPACK?ccueurereeririeieinecirireecinetieiseci ettt sttt e sessesesees 315
40.2 The “Old” ATCRITECTULE....cecvuiveeerreireeeeeeriereteee ettt saessaensesssaesse s ssesssansns
40.3 Modern Android ArChiteCtUIe........ccvvicuiurecrierecretreeeeceeeeeeeeeee s ese s s saenaens
40.4 The ViewModel COMPONENL ..ucuveuieririuciriereirieeeirecietsieiesseaeeesseseseeesessssesessessaesseaesessesessssesesees
40.5 The LiveData COMPONENLc.ouviueureerrireuerrinerctrtresetseseaetsesesessesesessesesesesessssesesstsssessencsessescsessesesess
40.6 VIeWMOdel SAVEA SLALe......cccueeerirreeeriiricieeetee it sssense s s ssaesacsssasnscns
40.7 LiveData and Data Binding........c.cceeeeureemiureerirneeniireenineeneeeeeesessssesesessesssessessesessesessssens
40.8 ANAroid LIFECYCLESecvuvreeeirieeceieecieirectee ettt ese s sse s s s sasasasnscns
40.9 Repository Modules...........ccocereuenee

40.10 SUMMATY ..o

41. An Android ViewModel Tutorial

41.1 ADOUL the PIOJECT cueueueuiiiecicireecicireicttireietetseee ettt sttt esaeen
41.2 Creating the ViewModel Example PrOjJect.........ccccuiriiuniiniiniincineinciecieeeecseceesseessesssaens
41.3 Removing Unwanted Project EIements...........ccccucuciriurininiineiniincneiseeieseenseesecsesseesssseseens
41.4 Designing the Fragment Layoul...........ccocvcucuuciricininininisesse e ssessessseessesssssesaens
41.5 Implementing the VIew MoOdel..........ccocuiuiiiiiiiiciiriinscsceee e csesssasesesaens
41.6 Associating the Fragment with the View Model
41.7 Modifying the Fragmentcccociunuiinciniincicicieieiiiesciciseisessse e s ssss s ssessssssssens
41.8 Accessing the VieWMOodel Data..........coccuucuciciiiiieiisesessse e ssessssssaens
41.9 TeSting the PrOJEC.......ccciuiuiiiiiiciiciccc e
41,10 SUIMIMATY ¢ttt s et s et bebnas

42. An Android Jetpack LiveData Tutorial...........ccceeueeuenneee.

42.1 LiveData - A Recapcccevevevverercccnnne.
42.2 Adding LiveData to the ViewModel....
42.3 Implementing the Observer..................
42.4 SUINIMATY oot a bbb bbb bbbt

43. An Overview of Android Jetpack Data Binding........ccceeueeueerernursinsenncninninscsinsinscnensecscsesseessceeens

43.1 An Overview of Data BINAINg ..o ssesasessaens
43.2 The Key Components of Data Bindingc.ccccuocuciririninininincneseieeieeeeiseceesseeaseseseens
43.2.1 The Project Build COnfiguration............cccucucucicirinieniuniniseneeseseese e ssessesasssesesenns
43.2.2 The Data Binding Layout File..........cccocouioiiiiiinininiiscesceceeeseisecsessesasssesasens

xi

Table of Contents

43.2.3 The Layout File Data EIementcccocveueeerrereerernieeenerneneeenreeeeenseneeensesemensesensessesensessenes 333
43.2.4 The Binding ClasSescvuueuerreueererreuemerriremerrerenesseseeesseseeessesessessesessessesessessesessessesessessenes 334
43.2.5 Data Binding Variable Configuration...........c.ceveureeeenerreeemnerreeeenerrereenensenenensesensessesensensenes 334
43.2.6 Binding EXpressions (One-Way)........ccocveeeeureeeererneeeenerseremsensesemessesemsessesessessesessessesessessenes 335
43.2.7 Binding EXpressions (TWO-Way)........ccccverreeeernireenerneemnenneneeenseseeensesesessesensesseseesessenes 336
43.2.8 Event and Listener Bindingscccveeureeeenerreemnerneeeinerneenenreeenenseeeeensesenessesensessesensessenes 336
43.3 SUMMATY wooniiiiiiii bbb bbb bbbt 337
44. An Android Jetpack Data Binding Tutorial..........cccevevvinvinrininsenncninnenncninninnscnineescnisesscseeeene 339
44.1 Removing the Redundant Code............ccouriiiiinininciincceicieceieeeesesesesssese s

44.2 Enabling Data Bindingccccccceeueivininiunenn.
44.3 Adding the Layout Element
44.4 Adding the Data Element to Layout File

44.5 Working with the Binding Class..........c.cc.c......
44.6 Assigning the ViewModel Instance to the Data Binding Varlable ... 343
44.7 Adding Binding EXPIeSSIONSc.ccuceuerimriuniuniurimiiseiieseseesese e ssssesssssesssssssssessssesssssessees 344
44.8 Adding the Conversion Method ... ses 344
44.9 Adding a Listener BINdingcccccuoiuiririnininininciseiciscie e ssssesaes 345
44.10 TeStING the APP....cuiuieriiiieicicic e e 345
4411 SUINIMATY c.viiiiiiiccceee sttt et esen s 345
45. An Android ViewModel Saved State Tutorial..........cccouvueevinuiineiiniiiiciicciicscecceescesenns 347
45.1 Understanding ViewModel State SaVINg..........ccvvureeuiureeriurecrirneeriineesieesessesensesessssenesees
45.2 Implementing ViewModel State SAVINGc.oveueureeemirreerirrienierieneieeereeeeesesensesssssseneses
45.3 Saving and Restoring State..........ccveeevcereeemrerreeemnerrenemrenresensensenes

45.4 Adding Saved State Support to the ViewModelDemo Project
45.5 SUMMATY wooniiiiiiii bbb bbb bbbt b b

46. Working with Android Lifecycle-Aware COmMPONENLS........cccceeererruesenserscsensiesscssessresessessesssessessacsne 351
46.1 LIECYCIE AWATEIIESS ...ceovuvreeeaeirieeieireeeesteseeetees et sese st seae sttt bsase s seaesassees 351
46.2 LIECYCIE OWIIELScuvreviairieincireieieeseaeiseiseeetee et sese sttt bttt ssseen 351
46.3 LIECYCLE ODSEIVETScuuvuieeiacerieeieireeeistiseietees e tetsese s sese sttt sase s snssees 352
46.4 Lifecycle States and EVENLS......c.oevcureueuiurieeiniinieeineineieiseiseietseeseseseesesesssssesesssssesessssssessssssessses 352
46.5 SUIMMATY ...ttt bbbttt s s s 353
47. An Android Jetpack Lifecycle Awareness Tutorialcocevevuivuiseisnnnininisnnninincsnnnencnncneenes

47.1 Creating the Example Lifecycle PrOJECt.........covceuiureeenierieenierienireeeneieeeneeeeeneeeeseseseeseneees
47.2 Creating a Lifecycle ODSEIVET......c.cvciriciiereciiiricitireeeetieeneseeeessasesesssessesssssssessasssessses
47.3 AAdIng the ODSEIVET ...ttt sse e s sasaes
47 .4 Testing the Observer...........cccocveenereeererreennes
47.5 Creating a Lifecycle Owner..........ccocveeeverreennee
47.6 Testing the Custom Lifecycle Owner...............
47.7 SUMMATY .o

48. An Overview of the Navigation Architecture Component

48.1 Understanding Naviation........cc.ccuccucueeeeemriurimniurimiiseiiesesseessessesse s ssssessssssssssssssessssesssssessees
48.2 Declaring a Navigation HOSt.........cc.ccucuiiriininiiniircicicce e saes
48.3 The Navigation GIaph ..o sse s s saes
48.4 Accessing the Navigation Controller...........ouiininincinicicieeieeeseesesesssisessese s
48.5 Triggering a Navigation ACtiON ...

xii

Table of Contents

48.6 Passing ATGUIMENTS.....ccccviiiimiiiiiiiiiic bbbt 366
48.7 SUIIMATY .ottt b bbb bbbt 366

49. An Android Jetpack Navigation Component Tutorialcocceevrerveciinrinscnsinsnncnsennnscnensecscnenn 367
49.1 Creating the NavigationDemo Project..........cccirininineinincnesesseeseenseeseceessesssssesaens

49.2 Adding Navigation to the Build Configuration..........cccceeveuneuniercrneincincincreieicieceieeseeeeaens
49.3 Creating the Navigation Graph Resource File.........ccccooeuniiininininincincncccceceieeneees
49.4 Declaring a Navigation HOSt.........c.ccvcuiirciiiciciciciciciicesesse e ssesssssesaens
49.5 Adding Navigation Destinations...........c.ccecucucuceriuririmniuiiseseseseesese e ssesssssessssssaens
49.6 Designing the Destination Fragment Layouts..........ccccueiriuneuniirerneincrncecneneneisecesseesseseeaens
49.7 Adding an Action to the Navigation Graph..............

49.8 Implement the OnFragmentInteractionListener
49.9 Adding View Binding Support to the Destination Fragments
49.10 Triggering the ACHONccceuuiuriiiririineicece e
49.11 Passing Data Using Safeargs
49.12 SUIMIMATY ..cuiiiiiiieiiictt ettt et b bbb snes

50. An Introduction to MotionLayouLt........c.civivnininininininisniieiiisinsieisssssiesssssssememese 381

50.1 An Overview of MOtIONLAYOULcc.ocuevverrerreerrerecireieecrereeereseese e sessesesseseesenns
50.2 MOtIONLAYOULoviiiiiiicc s
50.3 MOTIONSCONE ..ottt bbb saeaes
50.4 Configuring CONSLIAINISELSc.eueerirrererrerreeireireetrereeeeereesesseseesessesseseseseesesessesessessesessessesenns
50.5 CUStOM AtTTDULES c...ouvviiicicii s
50.6 Triggering an ANIMationN.........ccoceuriiiiinicriinieiiiciicere et sesssaes
50.7 Arc Motion
50.8 Keyframes........coceverreeemerreenrernenenne

50.8.1 Attribute Keyframes.................

50.8.2 Position Keyframes...................
50.9 Time Linearitycccoeceueeuvuvcrervennaes
50.10 KeyTrigger......cccoovuervinieuruncrernennnns
50.11 Cycle and Time Cycle Keyframes
50.12 Starting an Animation from Code...........ceeeururererrirrenerriineneineneerereenereensesseseasesseseseseesenns
50.13 SUMMATY ..ottt bbb bbb

51. An Android MotionLayout Editor Tutorial..........cccccevvvrninvinnernininncncnninncncninncsenessscsennesscsesnee 393

51.1 Creating the MotionLayoutDemo Projectccuiniuniireniincineinerscieieeeseisecsesaesesesssesens
51.2 ConstraintLayout to MotionLayout Conversion
51.3 Configuring Start and End CONStraintsceueeriueiunemneererienessessessesenessessessessessesssssssesenns
51.4 Previewing the MotionLayout ANimation.........cccceeueeuiurimiurerienerseesereseneesessesaessessesssssesesens
51.5 Adding an ONCHCK GESLULEcucuiueiuiiiiiieneiiisese st sae s sssaseaes
51.6 Adding an Attribute Keyframe to the Transition
51.7 Adding a CustomAttribute to a Transition...........
51.8 Adding Position Keyframes
51.9 SUMMATY ..coovniiicciciiiiriricccanene

52. A MotionLayout KeyCycle TUtOrialcccovverririnuisuisnseninisnisinininisnisnienesisnsnieieensssssememe 407

52.1 An Overview of Cycle KeYIramescccvueveureurercirineneineineneinerneennenseesessesessessesesessesessessesenne 407
52.2 Using the Cycle EQItOr ...t ssesessessesessessesessessesenns 411
52.3 Creating the KeyCycleDemo Project..........ccocururercurirreeenerneneineineennerneenresseensessesessessesessessesenne 412
52.4 Configuring the Start and End Constraints.........cccveeeeeereurereererrerernernesennersesensesseensessesessessesenne 412
xiii

Table of Contents

52.5 Creating the CYCles ...ttt ssesessessesessessesessessesessessesessesseses
52.6 Previewing the ANIMAationccceeureeeerreeeecrneeeecireeeeerreeeeenreseeessesessessesensessesessessesessessesessessenes
52.7 Adding the KeyFrameSet to the MotionSCenecccveeeverreeeeerreecenerreeceeireeeerreeeesensenenenenes
52.8 SUIMMATY ...ttt

53. Working with the Floating Action Button and Snackbar

53.1 The Material DeSIGN........ccocuiuiuiuiieicicicieiiiiiieiseisi et sse s
53.2 The Desig LIDIATYccoiuiuiiniiiicicicicieccieiiciciseisese e sse s sass s
53.3 The Floating Action Button (FAB) ..o esecieieeieesesesesssesesssesessenes
53.4 The SNACKDAT ..ot
53.5 Creating the Example Project..........ccccoeuuneunce.
53.6 Reviewing the Project........ccccccceveverinincnnenn.
53.7 Removing Navigation Features.............cccco......
53.8 Changing the Floating Action Button
53.9 Adding an Action to the Snackbar...................
53.10 SUMMATY c..onieieiiiiitti bbbt

54. Creating a Tabbed Interface using the TabLayout Componentcocceerersensesesrcsensensessessessessesenses 425

54.1 An Introduction to the VIEWPAZEI2ccocveevirreeeeneireeeenerreieeenreneeesseeeeesseseesessesessessesensessenes 425
54.2 An Overview of the TabLayout COMPONENLc.ceeverreeemerrereeerrereererrerenenseseeessesensessesensessenes 425
54.3 Creating the TabLayoutDemo Project.......ccoeureeenerreeemnerreeenernereienrereeenseseesenseseesessesenessenes 426
54.4 Creating the First Fragment.......ccccveerreeeecrneeeenerneeeneineeenenreieeenseseeessesensessesessessesesessesesessenes 426
54.5 Duplicating the Fragments...........c..eereecrneeencrneeeeeineeeneeeeenseseeessesessessesessessesessessesessessenes 428
54.6 Adding the TabLayout and VIEWPAGeI2..........cccocureueurerreeemnerreeeeernenceerneeenenreseeesseseesensesenensenes 429
54.7 Performing the Initialization Tasks
54.8 Testing the Application........cccveeeeeeurervercererrenene

54.9 Customizing the TabLayout........c.ccocceceeurerenee.

54.10 SUMMATY ..ot

55. Working with the RecyclerView and CardView Widgets.......cccecevuvvenenieniiniisensenenencsinensenenesnennens

55.1 An Overview Of the ReCYCIEIVIEW......c.vueiiureeeiniirieeicireieieineteteiseeetetsese st tsesesetsesesessenes
55.2 An Overview Of the CardVIEWccvcureicireeeincireeeineireeeieineeeeeisesetetsesesetsesesetsesessessesessssenes
55.3 SUIMIMATY ..ottt bbb

56. An Android RecyclerView and CardView Tutorial.........ccecrervrenrenisisisnsnsenisnisnsensenescsscssesennes

56.1 Creating the CardDemo ProJect........cocvecureeeecrreeceneireeeeenreieeerseseeesseseesensesessessesessesseseesessenes
56.2 Modifying the Basic ViewWs ACtiVIty PrOJECtcovevveurieemnerreeeenerreecierreeeeeireeeenseseeensenenenenes
56.3 Designing the CardVIEW LayOULcccoeeureeecrreeeneineeeeeneeeerereeensesenesseseesessesessessesensessenes
56.4 Adding the ReCYCIEIVIEW......c.cuevciiueieireiecireeccireeeietreeeeneie s ssessesessessesessessesensessenes
56.5 Adding the Image Files........cccoocvevernerrercrrernenncn.
56.6 Creating the RecyclerView Adapter.................
56.7 Initializing the RecyclerView Component
56.8 Testing the Application........cccvcveeeurervercererrenene
56.9 Responding to Card Selections...........cccreuneeee.
56.10 SUMMATY ..ot bbb bbb

57. Working with the AppBar and Collapsing Toolbar Layouts

57.1 The Anatomy Of AN APPBATc.cveuiueireirieeicirceeereeterce ettt ettt sese st seseseasenes
57.2 The EXAMPLE PIOJECTvuuiuiniriecicireieicireteictseeetetseeetetsese et seb et sesetse s ssessese st sesesaessesesasssenes
57.3 Coordinating the RecyclerView and Toolbarccocviuviincincincinciciniccencssseseiseeenes

Xiv

Table of Contents

57.4 Introducing the Collapsing Toolbar LayouLccc.ceeeeureurercererrecenernerennerneennenneenressesensessesenne 450
57.5 Changing the Title and Scrim ColOrc.oceeeueurercirirreeireineerereerereee e sereesenne
57.6 SUIMIMATY ..ottt bbb

58. An Overview Of ANAIOid INTENLSeeeeeeiriieeeeeerrreeeeeirseeeessssseeeessssseeessssssseeesssssssessssssasessssssssessssssssssns

58.1 AN OVErview Of INENLScocuuiiciciciciciiiccieic et
58.2 EXPIICIE INTENES ..cvueveuiereieireeeeciretetetset sttt tes sttt sttt
58.3 Returning Data from an ACHVILYcccccuriririnininiinccccise e sasssesesenes
58.4 TMPLICIE INTENES c.cvuverieveineireteicireieeetset sttt sttt seb sttt sttt bbbt
58.5 USING INtEN FILETS.......cviiiiiicicicicieici it sse s sse s ssssssses
58.6 Automatic Link Verification
58.7 Manually Enabling Links................
58.8 Checking Intent Availability
58.9 SUMMATY ...coviuiiiiiiiiriririccanene

59. Android Explicit Intents - A Worked Example

59.1 Creating the Explicit Intent Example Applicationc..ceceeureurecrnerrencrnernenennemreenrenseennereeeenne 465
59.2 Designing the User Interface Layout for MainACtiVItYcccveueeverrerrerernernecmnenneenrenneenrereenenne 465
59.3 Creating the Second ACtiVItY Class.......ccveueeveureurerciriireerrerneeinerneensereeeneseeesseseesessessesesessesenne 466
59.4 Designing the User Interface Layout for SeCONAACHIVILYc.cvverrerccrrerrcrcrnerrecnrerrecnnernenenne 467
59.5 Reviewing the Application Manifest Filec.ccccvurenirencininencneinecnerneeneneensessesensereesenne 467
59.6 Creating the INTENt.......c.cccureeerciriieicireeeerereereee e seese s ssesesseseeaens 468
59.7 Extracting Intent Data ... 469
59.8 Launching SecondActivity as @ Sub-ACtVItY.......cccveueererrerrererrernencrnerecrereeeeeeeeesseenereeaenne 470

59.9 Returning Data from a Sub-Activity
59.10 Testing the Application

59.11 SUMMATY ..ottt bbb
60. Android Implicit Intents — A Worked EXampleccccoeevuirrinrerninsinncncnsennucninensucsessessscsesssessesesnes 473
60.1 Creating the Android Studio Implicit Intent Example Projectcocecuvcuvcueecucerincncnnas 473
60.2 Designing the User INTerfacecoviuuviincincincineieicieisinecciseese e ssessessesesssns 473
60.3 Creating the Implicit INENtcc.ccuiuiiriiiiiciciciccic st 474
60.4 Adding a Second Matching ACHVILYc.ccvcucucucuricieininircisese e 474
60.5 Adding the Web View to the Ul.........ccocuiiiiiiiniiicceinincnccese e 475
60.6 Obtaining the Intent URL.......ccccoiiiiiiiiinciniciieiciecsieseicsese e sse s ssesssssns 475
60.7 Modifying the MyWebView Project Manifest Fileccccocviniuniinerncincineincincicicieceeeenennns 477
60.8 Installing the MyWebView Package on a Device..........ccocvuuriiunimnienerneinceneeeneiencieessssesanens 478
60.9 Testing the APPLICALION.cuuiuiuiiiiiircicrcic et 479
60.10 Manually Enabling the LinKccccoiiniinciniccinieceiseese e ssessessessessssssses 479
60.11 Automatic Link Veriflcationcocouvcuvcincincincicieicieiniccciseese e ssessesse s 481
60.12 SUIMIMATY ..ottt ettt 483
61. Android Broadcast Intents and Broadcast RECEIVErs..........couuerievinriiniieniieiicincnsceceseeneseans 485

61.1 An Overview of Broadcast INENTS.........ccceueeerreeeeerreeemerrenenerrenemetsesensessesensessesensessesensessesenses 485
61.2 An Overview of Broadcast RECEIVETSc.vueuirreueeerriueeerreeeieirerenetsenensessesensessesensessesensessesenses 486
61.3 Obtaining Results from @ Broadcast.........c..ceeureeencrreeenerneemcineeeecineeenensenenesseseesessesenessesense 487
61.4 Sticky Broadcast INTENLScccureeerrerreremrerreeeeenneeeeerseeeeensesensessesessessesessessessssessesessessesessesseserses 487
61.5 The Broadcast Intent EXaMPIe.......c.cvecueineneirirecininicinineeeineeieiseeeeseesetseesesseess e ssesessssesesees 487
61.6 Creating the Example APPliCation.......cccvcueueeerreeeeerrieemerneneneerenensetsesensessesensessesensessesessessesenses 488
61.7 Creating and Sending the Broadcast INtent........cccocureueuerreeemnerreeernerneenerreenensesenerseseeessenennes 488

XV

Table of Contents

61.8 Creating the Broadcast RECEIVETcouuueuerriercrrieeieireeenenreieeesseseeensesensesseseesessesessessesensessenes 489
61.9 Registering the Broadcast RECEIVEToucuiureeriureceiireceieeeeneieesesseeeseseseese s ssensens 490
61.10 Testing the Broadcast EXAMPLEc.ccvvueecrreueenerreeeeneerieeeeneieeereseeesseseesesseseesessesessessesenessenes 490
61.11 Listening for System Broadcasts.........c..eeureernerreeenerneeemnerneeeerrereeensesenenseseesessesessessesenessenes 491
61,12 SUMMATY ..t 491
62. An Introduction to Kotlin Coroutines............cccvueerenueenieerinesineiinseinnieenissessssesnssssssssssssessssessssesenns 493
62.1 WHat are COTOULIINES? ...uuvuevireieeeineireseisetseseesetseseesetsesetsetsesessetsebessessesesaessesessessesesssssesessessesessesseses 493
62.2 Threads VS. COTOULINESc.cueueveieereeeeerreeeesetresetetsesetsetsesesetsesessetsesetsessesessessesesssssesessessesessesseses

62.3 COTOULINE SCOPE......oviiiiiiiiccc it
62.4 Suspend FUnCtions.......c.coceeveevevrecenerneceneunennne

62.5 Coroutine Dispatchers.........ocveureeenernercerernenenn.

62.6 Coroutine Builders.........cccccoeueucininininininnnn.

62.7 JODS e
62.8 Coroutines - Suspending and Resuming
62.9 Returning Results from a COrOULINEc.ccuiiuiuriuiiiriiiisecicic e
62.10 USING WItNCONTEXLouvriiiiirciciciciciie it
62.11 Coroutine Channel COMMUNICAtIONcuuruiuiuriuiiiriiiirereieee e sesssesessenes
62.12 SUMIMATY ..ottt

63. An Android Kotlin Coroutines TULOLIAl..........cceevvveeererrrneeerersineeessssneessssssneesssssssessssssssesssssssssssssssssssss

63.1 Creating the Coroutine Example Application.........ccocveeeverreeeererreeeenerreeennenresenenseseesensenensennenee
63.2 Designing the USer INTErfacec.veueureueercrreeemnerreeeeeireeenenreeeeessesenessesesenseseesessesessessesessessenes
63.3 Implementing the SEEKBAT ...t sesessessesensenenes
63.4 Adding the Suspend Function........ccccocvvecuneunnce.
63.5 Implementing the launchCoroutines Method....
63.6 Testing the App
63.7 SUMMATY ...oooviiiiririiiir s

64. AN OVverview Of ANAIOId SEIVICES.....ccovvtierrrereeeirrreetecirsseeeeesssseeeessssseseesssssassessssssssesssssssessssssssessssssssens

64.1 INEENE SEIVICE c..uviiiiiiiiieiic s s
64.2 BOUINA SEIVICE.....curumimiiriiiiiiiteicie ettt s et
64.3 The ANAtOMY Of @ SEIVICE c.uvuvrviiireieieireieicireteeeireietet et seb et sese bbbt sebe et sebe et sesesaetsenes
64.4 Controlling Destroyed Service Restart OPtions...........cceueueurcenceceemsccmneeemnesssesesssesesssesesseenes
64.5 Declaring a Service in the Manifest File..........ccococviiinininciniincinciecccieccsncssesesseseseenes
64.6 Starting a Service Running on System Startup.........cccoevivicinnincicccc
64.7 SUIMIMATY ..ottt bbb

65. Android Local Bound Services - A Worked EXample.........cccceccevirnuricinirnnicnninnecsncnneenscsscssessscssesenns

65.1 Understanding Bound SeIVICES........cccouurueucrreeeeerrieeeneirieeeetreieeeneseeenseseesenseseesessesessessesenessenes
65.2 Bound Service Interaction Options.................
65.3 A Local Bound Service Example..........c.c..c......
65.4 Adding a Bound Service to the Project
65.5 Implementing the Binderccccveuvevcrnernence.
65.6 Binding the Client t0 the SeIVICe ... eensenes
65.7 Completing the EXAMPLe.......c.occveuieeerrieeeeinieeeteeeeetereeenseseeessesessessesessessesessessesessessesessessenes
65.8 Testing the APPLICAtION.....c.ccvcueueeirreeeeireeeeireeeetreeeet e sese e ssese et sesessessesensesenes
65.9 SUIMMATY ..ot

66. Android Remote Bound Services - A Worked Example

Xvi

Table of Contents

66.1 Client to Remote Service COMMUNICAIONcueuvucrriueeerrieenerrerenetrenenerreeenenseseesesseseesessesenses 519
66.2 Creating the Example APPliCation.......cccocueueeerreeeeerreeemernenenetrerenetsesensessesensessesenessesensessesenses 519
66.3 Designing the User INEIfaceccveueuererrieemerreeeeerrieeerneeeeetseseeessesensessesessessesensessesensessesense 519
66.4 Implementing the Remote BouUnd Service..........coveurueenerreemneireeeeneinienerreenensenensesseseeensesennes 519
66.5 Configuring a Remote Service in the Manifest File..........cooereneinencrneenenecneneeenreeennes 521
66.6 Launching and Binding to the Remote Service..........ceveureemeireeeeneireeeeerreeenenreeenerseseesensenennes 521
66.7 Sending a Message to the Remote SEIVICecvueuerrieeeerreeemneireeeeireeeerreeeeenseseeesseseesensesennes 523
66.8 SUMMATY ..ottt bbb 523

67. An Introduction t0 KOtLN FLOWccccueieeiiietieeiiieeeeninseeeesssseeeeessssseseessssssseessssssssssssssasessssssssessssssssssns 525

67.1 Understanding FLOWS.........c.cceuiuiiiinciiincicicieieieie et sse s s ssssssns
67.2 Creating the Sample Project
67.3 Adding the Kotlin Lifecycle Library ...
67.4 Declaring a FIow.........cccoocovcuvincuncincrncnnee
67.5 Emitting Flow Data.......ccccccoeuunnee.
67.6 Collecting FLOW Diata ..o sse s s ssesssssns
67.7 Adding a FIOW BUSTET ...t
67.8 Transforming Data with Intermediariesccccococueirinirinineninescseseiese e 530
67.9 Terminal FIOW OPEIatorsc.cocuveeeueureeeeeereveineireseietseseiessesesessesessessesessessesessessesessessesessessesesns
67.10 FIOW FIAttening........c.coueuuiuriiiiiiiirciiiscicsescieie st
67.11 Combining Multiple FIOWScccviuiuiincinciciieicieieieseicissisessese e ssesaesssssssssns
67.12 Hot and Cold FIOWS ...t sae s ssesassses
67.13 SLALEFLOW ...ttt
67.14 ShAT@AFIOW.......ouiieeecicic et
67.15 SUIMIMATY ..ottt et

68. An Android SharedFlow Tutorial

68.1 About the Projectoceeveurevceniurecrneerecrnieencrnennn
68.2 Creating the SharedFlowDemo Project
68.3 Adding the Lifecycle Libraries........cc.ccoeerrvurrcreneee
68.4 Designing the User Interface Layout...
68.5 Adding the List ROW LaAYOULcceuevirrieeeeireeceeireieieireeenensenensesseseesessesensessesensessesessessesensessesenses
68.6 Adding the RecyclerVIew Adapter.......ccoouecurieenerreeemerneneneireeenetsesensessesensessesenessesessessesenses
68.7 Adding the VIEWMOELc..couimieeieiricieiriceinecieireeeeeie et ssesessessesessessesensessesenses
68.8 Configuring the VieWMOodeIPTOVIEr..........ccvvurueecrrieeenerreeeneireeenetreeenensenenessesenesseseesessesenses
68.9 Collecting the FLOW ValUes.........c.occeurieieirieeieinieieirecenneeeeiseseeetsesensessesensessesessessesensessesense
68.10 Testing the SharedFIOWDEMO APPc.cvereuemerreeeeerrieeeerreeenerrereeesseaeesesseseesessesessesseseesessesenses
68.11 Handling Flows in the Background..........cccoeveeirceineencneereereeeneeeesseseeensenennes
68.12 SUIMIMATY ..ottt bbb bbb

69. An Overview of Android SQLite Databases

69.1 Understanding Database Tables....
69.2 Introducing Database Schema
69.3 Columns and Data Types
69.4 Database ROWSccccoeucuriniunennce
69.5 Introducing Primary Keysccvuruniincincineieieieieinieeicisisesssse e ssessssssssssssns

69.6 WHAt 1S SQLILE? ...ceueueiriieeieireeeietretetet ettt sebe et sesetse bbbt sese bbbt bbbt st bbb sebesaetsesesncs 550
69.7 Structured Query Language (SQL)cccuvuuneunueiemeiniiniiiiiiseissesessessese s ssessessesssssesssssns 550
69.8 Trying SQLite on an Android Virtual Device (AVD)cccocvimiuninerncincineercrcieicneeeineeenens 551

xvii

Table of Contents

70. An Android SQLite Database Tutorial

71. Understanding Android Content Providers

72. An Android Content Provider Tutorial

Xviii

69.9 ANAroid SQLItE ClaSSES.......c.euivverieereierereerereeeteeereseeteseesesessesessesestessseesesessessnsesessssssessesesesensesens 552
69.9.1 CUISOT ..ttt sttt et s ettt bbbttt st s s se sttt eseseseseseatnsaenesenens 553
69.9.2 SQLIEDAADASEeceveveeeeeeeeeteeeereeee ettt ettt es et be s ese e sene et ese e tenereneeneneerens 553
69.9.3 SQLItEOPENHELIPETvueeieniiricieireeieireciereets ettt ettt st seaees 553
69.9.4 CONtENEVAIUES.ovimeirireecieiiiciricieireete ettt sttt sttt s seaees 554

69.10 The Android Room Persistence LIDIary..........cvccreeenerreeenerneecenerneeenenneseesenseseesensesensensenee 554

69.11 SUMMATY ..ot bbb bbb 554

70.1 About the Database EXaAMPIe........cocueuveureueieireeeineireeeieireeeieiseseietsesetetsesessessesesetsesesessesesssseses
70.2 Creating the SQLDemo Project...........cccceunee.
70.3 Designing the User interfacecccccoeuuneunce.
70.4 Creating the Data Model.........ccccccoeuririuninnnen.
70.5 Implementing the Data Handler
70.6 The Add Handler Method..........ccccccecvuuriuniunnen.
70.7 The Query Handler Methodccvcueueiriueicineeeineiriieicineieieineeeeetsesetetseseseesesesetsesesessesessssenes
70.8 The Delete Handler Methodc.cccuiiiiiiniiciscecie e ssesessenes
70.9 Implementing the Activity Event Methods
70.10 Testing the APPLICAtION. ..ot
70.11 SUMMATY ..ottt

71.1 What is @ Content PrOVIAEI?.......oouviiieeiiiriereeeceeeete ettt sssse s s ssassses s s ssananene 563
71.2 The CoNtent PLOVIAETc.ccueuivieeieieteiciecicrie ettt es et asas bbb ssas s s bbb snananene

71.2.1 onCreate()cu.......

71.2.2 query() coceveeeneeee

71.2.3 insert()cooevue.

71.2.4 update()

71.2.5 delete()

71.2.6 getType() ..conv....
71.3 The Content URI
71.4 The CoNtent RESOLVETceuevivierieierereieeiirtete ettt sese s st s st ssasssesesesesessasssesesesesessasasene
71.5 The <provider> Manifest EIEMentccceveveurireeirinincininecinieerineecsceieseesesseseeessesesesseseseenes
71,6 SUIMIMATY ..o bbb bbb bbb

72.1 Copying the SQLDEMO PrOJECt.......ccccuuuiriuiuiiiiriiiireiiiseeiese e ssesssssssssesasesssesesssssesssenes
72.2 Adding the Content Provider Packagecccoueiriuiiuriiniincrniincincicieeccnieeeescisessesessseseseenes
72.3 Creating the Content Provider Class.........cccuiiiriniinciniincineieieieceieesesssesesssesesssssesseenes
72.4 Constructing the Authority and Content URI..........ccocvinuniincincineineicinieinisenesssenssisenneenes
72.5 Implementing URI Matching in the Content Provider..........
72.6 Implementing the Content Provider onCreate() Method
72.7 Implementing the Content Provider insert() Method
72.8 Implementing the Content Provider query() Method
72.9 Implementing the Content Provider update() Method
72.10 Implementing the Content Provider delete() Method.........ccocuocucucirinininininincnincincnes
72.11 Declaring the Content Provider in the Manifest File..........ccccocoeieiiinininininininciincncns
72.12 Modifying the Database Handler...........ccccooiiiinininciciscieicceieesesesesessesesssesesseenes
72.13 SUIMIMATY ..ottt bbbt

...

...

Table of Contents

73. An Android Content Provider Client Tutorial..........cccoouvuiveniieniieninennienniieiieiensseesseesseenesenns 579
73.1 Creating the SQLDemMOCHENt PIOJECT......cecvmrmrrreracrieieieeireieinenseesenessenessensessensensssssscsscsnes 579
73.2 Designing the USer INtErfacecocueverererueeeeeunieneineiiirereeseseeseesessessensessessensesssssssssssssscsnes 579
73.3 Accessing the COntent PrOVIAETc.c.cceeeereereenerneiniineniieeiseesensessensensessensssssssssssssscsnes 579
73.4 Adding the Query PermiSsion.........c.ceecunurivciriirenciriirecireeecreneeenereeeseseese e sseseesenns 580
73.5 Testing the PrOJECt........c.ocuiiiciiiricreccree e 581
73.6 SUIMIMATY ..ottt st 581
74. The Android Room Persistence LIDIarycccvvivnnninisnnnnnininnnnininnncnsseememes 583
74.1 Revisiting Modern App ArchiteCturec..c.ececureureceneerenceneineneirerneeenerseesnessesessessesessessesessessesenne 583

74.2 Key Elements of Room Database PersiStenCe........cocvuveureurercereurecerernererrerseeenesseseasessesessessesenne 583
74.2.1 REPOSILOTY ...t bbb 584
74.2.2 ROOIM DiatabDaSecuvureucerirrieciiieeiciireieieeeecieieese st s ssese e sese s esessessesessessesssncsscsens 584
74.2.3 Data Access Object (DAQ)cuucurrreeuierecrieeeeiseieeeseseesessesessessesessessesessessesessessessssesseseens 584
74.2.4 ENHEES ..ot 584
74.2.5 SQLILE DALADASE ..ottt sttt ettt aenesteneaes 584

74.3 Understanding ENtiIes........c.eecureerercireerencineenineineinecieiseetnesseeesessesessessesessessesessessesesessesessesseseens 585

74.4 Data ACCESS ODJECES c.cuvreuerriricrrerricireieeeiressee et tsessese et ssese e ssese e ssesessessesesseseeasens 587

74.5 The ROOIM DAtabaseccocueuecrreurecireineneireineeineineetsessesetsessesessessesessessesessessesessessesesnessesesesscsesns 588

74.6 THE REPOSIOTY cocvreveeuirivecirericireisectretseetsessesetsessesetsessesessessesessessesessessese e seesesseseessnesesesnesscanens 589

74.7 In-MeMOTY DAtaDaSESc.cvrevercriricireireeireineeireiseetreisesetsessese et ssese e ssese e ssesessessesesnesseaens 590

74.8 Database INSPECLOT.......cuecvcureuecrreiricireireetsesseetsessesetsessesessessesessessesessessesessessesessessesessessesessesseaens 590

74.9 SUIMIMATY ..ottt bbb bbb 591

75. An Android TableLayout and TableROW TUtorialcccecveererruiiinsenncnsennenncsensecsscssessscsesssessessesnes 593

75.1 The TableLayout and TableRow Layout VIEWS...........ccccviuveecurimrencmnimnecmnerneenneeeeeseneeenseneenenne 593

75.2 Creating the Room Database Projectc.......

75.3 Converting to a LinearLayout.........cccccecevricunnnnce.

75.4 Adding the TableLayout to the User Interface

75.5 Configuring the TableROWSccocoveurerrerrerrerrennen

75.6 Adding the Button Bar to the Layout ...

75.7 Adding the ReCYClerVIEW........cc.cuviiiiiinciriiricreiecreecceeeeee e eaenns

75.8 Adjusting the Layout Marginsc.c..c.eecurerencuremrencunemneeenenneeeseseeesseseeseseseesesseseesessessesessessssenns

75.9 SUIMIMATY ..ot

76. An Android Room Database and Repository Tutorial..........cccccevcverveevuenensecninennecnensennecssensncsscsennne 601

76.1 About the ROOMDEMO PrOJECt......ccuiuerciriuricireirecireireeireiseetreisee s ssessesessesseseasessesessessesenns

76.2 Modifying the Build CONfiGUIAtiON.......cccveurevcureuecireireeirerrecireineetnersesessessesessessesessessesessessesenne
76.3 BUIlding the ENILY ...c.oceevvcireeeicinieicineieecireirecneiseetseisesetsessesetse e ssessese e ssesessessesesnessesessesscsens
76.4 Creating the Data Access Object...
76.5 Adding the Room Database...........
76.6 Adding the Repositoryc........
76.7 Adding the ViewModel
76.8 Creating the Product Item Layout ...
76.9 Adding the RecyclerVIeW AdapPter........cocvvevcureerercireerencireinercirerneeinesseessessesessessesessessesessessesenns
76.10 Preparing the Main ACHVILY ..c..c.cvcureerercirerrereireinecineineetnesseetsessesessessesessessesessessesessessesessessesenns
76.11 Adding the BUtton LISTENErS.......ccocriueercurevrercrreurecireineeiresseeesessesessessesessessesessessesessessesessessesenns
76.12 Adding LiveData ODSEIVETSc.ccocueurereurerrererreureetreineeesessesessessesessessesessessesessessesesessesessessesenns
76.13 Initializing the ReCYCIEIVIEW....c.ccocuiurercireiricireiecineisecireisectreisee ettt ssesesessesesessesens

Xix

Table of Contents

76.14 Testing the ROOMDEIMO APDcucvreueerreeeecrrereieireeeeetsereeesseeeesesseseesesseseesessesessessesessessesesessenes 614
76.15 Using the Database INSPECTOrcceueueecrreeeecrrieereireeeerrereeesseseeessesensesseseesessesessessesessessenes 614
76.16 SUMIMATY ..ot 615

77. Video Playback on Android using the VideoView and MediaController Classes........c.ccouerucereruennes
77.1 Introducing the Android VideoView Classccocviuriniinciniincincineieicicieeecesisessesesssesenseenes

77.2 Introducing the Android MediaController Classococuvcuvuvercmcirinenieeiresiesenseesenseenes
77.3 Creating the Video Playback EXamplecccouiiiiininiinciniincicieecceieeecnesisesssesessseseseenes
77.4 Designing the VideoPlayer Layoutcccccuiiiiiiriniincieiciseieneesecieesesssesesesesssesesssssessssnes
77.5 Downloading the Video File..........cociiiiiiicisccciceee e
77.6 Configuring the VideoView.........ccoocveuvincrneincrncnnce
77.7 Adding the MediaController to the Video View...
77.8 Setting up the onPreparedListenerccccocunee
77.9 SUMMATY ..ot

78. Android Picture-in-Picture MOde..........c.couueeiieiieiniiiicinceicnisenssesessssessssssessssssssssessssesesss
78.1 Picture-in-Picture FEAtUIESs.........coveviiivevicteictcct s 623
78.2 Enabling Picture-in-Picture Mode..........cvcureueencireeeeneireeeeerreeeeenereeenneseeesseseeessesessessesensessenes 624
78.3 Configuring Picture-in-Picture Parametersccccocveeeverreeeererrereerernerensensesensensesemsessesensessenee 624
78.4 Entering Picture-in-Picture Mode........c..cveueueeerreeeneinieeeenreieeerneneeenseseeenseseeessesessessesenessenes 625
78.5 Detecting Picture-in-Picture Mode Changesccccveeureeeenerreecenerreeemnenneneesenreseesensenensensenee 625
78.6 Adding Picture-in-Picture ACHONScoveverreeererreeeierreeenerreeeeeteeeesensesensensesensessesessessesessessenes 625
78.7 SUIMIMATY ..ottt bbb bbb bbb bbb bbbt 626

79. An Android Picture-in-Picture Tutorial...........coeeverirerinerinierinieeninenineinteinssessssessssessssessssessssesenns
79.1 Adding Picture-in-Picture Support to the Manifest...........cccocvcuecuvcuciorininininisineseneneenes 627
79.2 Adding a Picture-in-Picture Button
79.3 Entering Picture-in-Picture Mode............ccceceu....
79.4 Detecting Picture-in-Picture Mode Changescccvivuveuncenincineecinineniessessesessesenseenes 629
79.5 Adding a Broadcast RECEIVET ..ot 629
79.6 Adding the PiP ACHON........coiuiiiicicicicicicieccicien et 630
79.7 Testing the Picture-in-Picture ACHONccccueiuiniuiiireniineieiscise e sessesessenes 633
79.8 SUIMIMATY ..ottt 633

80. Making Runtime Permission Requests in Android..........ccocevevuiruisensnneniniseisnsnininncsnenencncnsene
80.1 Understanding Normal and Dangerous Permissions............cceeuveeeererreeeererreeemserreseesensenensennenee 635
80.2 Creating the Permissions EXample Project...........ccvereernerreeeenernereenerneeennennenensenseseesessesensensenee
80.3 Checking for @ PErmISSIONc.ceueueeerreeeeetreeeeetreeeeetsereeenseseesessesessensesensessesensessesessessesessessenes
80.4 Requesting Permission at RUNtIME.........ccoiiiiiiiiiiiiiiiies

80.5 Providing a Rationale for the Permission Request
80.6 Testing the Permissions App
80.7 SUIMMATY ..ottt bbb

81. Android Audio Recording and Playback using MediaPlayer and MediaRecordercccceueuveneene.
81.1 Playing AUGIO «..ccucvuuimieiiiiiiiicicie s 643
81.2 Recording Audio and Video using the MediaRecorder Class..........cccccceueeurimnrrirniercrniencrncenes 644
81.3 About the EXamPle PrOJECtc.ciueueiriireeeieireieieireieicineeeietseeeeetsesetetsesessessesesetsesessessesessssneses 645
81.4 Creating the AUdIOADPDP PrOJECt.......ccucuiuiiiiiiciircse e 645
81.5 Designing the User INterface ..o 645
81.6 Checking for Microphone Availability..........ccccceiniiininiincniinciscccccieceesessessceenes 646

Table of Contents

81.7 InitialiZing the ACHVILYccocveercrreeeeirereeereecereeeeet e ssese et sese s sese et sesensessesensessesenses 647
81.8 Implementing the record Audio() Method..........ccvcueuemerreemneireeecireereeereeeetseeeeensenennes 648
81.9 Implementing the stopAudio() Method........cccvceeiieneineecneereecreeereeeeseeeee e 648
81.10 Implementing the playAudio() method.........c.occeeureeeineecireeeireecreeereeeeseeeee e 649
81.11 Configuring and Requesting PErmiSSiONsccecureueeerreuemerreeemerremenerrenenessesensessesensessesenses 649
81.12 Testing the APPLICAtION.....c.vcvirrieeeerreeeeeireeeeireeeet et sese e sese s sesessessesensessesenses 651
81.13 SUIMMATY ..ttt bbb bbb bbb 651
82. An Android Notifications TUtorialcceeeereeniieninieniniiintienienineeeteesisessssesessessssesessesessssenes 653
82.1 An Overview of NOtHICAtIONS.cviuiuiiiireicicieieicii it sae s 653
82.2 Creating the NotifyDemo PIOJECtcvcuvcuiuvcicueiciiiinieniicisisesise e ssessesse s ssesassses 655
82.3 Designing the User INterface ..ot sssssesassses 655
82.4 Creating the Second ACHVILYccveuiiriiiincincicieieicie et 655
82.5 Creating a Notification Channelc.ccocvucinieiiiininiiineesecsee e 656
82.6 Requesting Notification PermiSsioncccuccucueecueiniuneuniiniineisiesesscisesesessessessessesssssesesssns 657
82.7 Creating and Issuing a NOtIfICAtIONc.cucucuciciecicieiieciccise e 660
82.8 Launching an Activity from @ NOtIICAtIONc.ccucuiuririeriiiiinciseccccee e 662
82.9 Adding Actions t0 @ NOTHICAONc.cucuieiiciciciciciie it 664
82.10 Bundled NOHHICAONS.coruiuiiiiiicicireicieie it sae e sssassses 664
82.11 SUIMMATIY ..ottt bbb 666
83. An Android Direct Reply Notification Tutorialcceeevevuirursnnninisensnnninininnnnincncnieeene 669
83.1 Creating the DirectReplY PrOJECtccvvueveriueeerreecicrreeienreeenetrereeetsesensenseaensessesensessesensessesenses 669
83.2 Designing the User INEIfaceccveueueeeureeeenerrieeeerreeeeerneeeneeseseeetsesensessesessessesensessesensessesenses 669
83.3 Requesting Notification PermiSSionc.vceeureeeererreeeererreremnernenenetrenensessesensessesensessesensessesenses 670

83.4 Creating the Notification Channel.........ccccoceereenerrienerneeereeeireeereeeessesenesseseeessesense 671
83.5 Building the RemoteInput ODJect.......ccvueuemcirieeineireeerreeereeeeetreeenesreieeessesensesseseesessesenses 672
83.6 Creating the PendingINtent...........cccvcureeeerreemnerneeeenerrieeenreeenerserenessesensessesensessesessessesensessesense 673
83.7 Creating the Reply ACHON.cocuveuererreeeeeirieeetreeeietreeeienseaeeessesessessese s ssesessessesessessesensessesenses 674
83.8 Receiving Direct Reply INPUL.....c..cccurieeieirieeeeinieceeireeienreeeeireseeetsenensessesessessesensessesessesseseeses 675
83.9 Updating the NOTACAIONc.cvcrrieererreeeieireecereeeeetreeeeensese s nsetsese s ssese s sesensessesensessesenses 676
83.10 SUIMMATY ..ttt bbb bbb bbb 677

84. Working with the Google Maps Android API in Android Studiocvevveveinnisnisnvencnncnnisenene 679

84.1 The Elements of the Google Maps Android APIcccovriininiineincincineencineieicieeeeeeneens
84.2 Creating the Google Maps PIOJEC.........c.ccucuucicucicieiinieiiccisesise s ssessesasssassaes
84.3 Creating a Google Cloud Billing ACCOUNLc.ccucuiiuinimriiiineeiseese e
84.4 Creating a New Google Cloud Project ...
84.5 Enabling the Google Maps SDK ..o ssessessessessssans
84.6 Generating a Google Maps APT Key........ccocuuuueiciininiiiniineeisesesese e ssessessessessesasssns
84.7 Adding the API Key to the Android Studio Project...
84.8 Testing the Application.........c.ccccucucuceciuceriuneurirsinennes
84.9 Understanding Geocoding and Reverse Geocoding..
84.10 Adding a Map to an Application.........c..ccccceereuveurennes
84.11 Requesting Current Location Permission...........
84.12 Displaying the User’s Current LOCAtIONcc.ccucueuuiniuiuriiniineiniiseseisereeesessessessessessesesens
84.13 Changing the Map TYPe......cccceuiriuiireiniincineieieieieiie s sse s s sssssssses
84.14 Displaying Map Controls to the USer ...t
84.15 Handling Map Gesture INteraction..........ocucucuueecuuinimniuiiieseisiesesseesese s ssessessessssssesssns

XXi

Table of Contents

84.15.1 Map ZoOming GESLUIES........couveueuririueiricriiericieiie ettt sssssesssaes 690
84.15.2 Map Scrolling/Panning GESLUIESc.cecureureerrerreemrerneemsersescnessesessessesessessesessessescssesens 691
84.15.3 MAP Tt GESLUIES..c..vvueurrineecirieeeirectetseaeieesee ettt bttt ettt seseeaens 691
84.15.4 Map ROtation GESLUIES.......c.ceiiririrrereriiininireieiettteterere et saese e ttsessese e sesesssssaesenenens 691
84.16 Creating Map MATKETS.........c.vcceerrieeeerreeeeeireeeeetreeeeetsesenesseseesessesessessesessessesessessesessessesessessenes 691
84.17 Controlling the Map CamMeIacccveureueeerreeemrerrereeerrereeesresemsesseseesessesessessesessessesessessesessesseses 692
84.18 SUMMATY ..o bbb 693
85. Printing with the Android Printing Frameworkcccccoveercvinrennucninninncsinninnncninnnescninecseseneene
85.1 The Android Printing ATrChIteCtULEcccouuiuiuiuriiiiirciiseecie et
85.2 The Print Service Plugins..........ccccccoeeureuriuncuncen.
85.3 Google Cloud Print.........ccccccoeueeveririncencnnenn.
85.4 Printing to Google Drive.........ccccccooviririuriunnnn.
85.5Save as PDF ...

85.6 Printing from Android Devices
85.7 Options for Building Print Support into Android Apps
85.7.1 Image PIiNtiNg......cccooviiiiiiiiieiiiiicce e
85.7.2 Creating and Printing HTML CONteNLtccecuiureuiercrncicicicneieeceeieeeisenssssesssesesssssessenses
85.7.3 Printing @ Web Page........cccocuiiiiiiiiiiicccccc e
85.7.4 Printing a Custom DOCUMENtcceviiiiiiciiic s
85.8 SUIMMATY ..ottt bbb

86. An Android HTML and Web Content Printing EXampleccevvrvnininnsnsninincsnsnenesscsscsennes

86.1 Creating the HTML Printing Example Applicationc..ceveureeeenerreeeenerreeenerreveesennenensennenes 703
86.2 Printing Dynamic HTML Content.........ccccceuecurinicrvinivenrinenenne

86.3 Creating the Web Page Printing Example
86.4 Removing the Floating Action Button
86.5 Removing Navigation Features..............ccccc......
86.6 Designing the User Interface Layout...........ccou......
86.7 Accessing the WebView from the Main Activity
86.8 Loading the Web Page into the WebView
86.9 Adding the Print Menu OPtiON.......ccccureeeecrreeeeerrieeeeireeenereeeeesseseeessesensessesessessesessesseseesessenes
86.10 SUMMATY ..ot

87. A Guide to Android Custom Document Printing........cccecevcvinrernuenrennenncnsinnnncnsinnecscnissecsesesseene

87.1 An Overview of Android Custom Document Printingccccccecueceorineninenenineseescrneens 713
87.1.1 CuStom Print AdApPLers......ccocveeeecereerecireerineireineetseiseetsessese s ssessesessessesessessesessessesssseseens 713
87.2 Preparing the Custom Document Printing Project.........cococvcvevcivcucioninenininenieneseenenneenas 714
87.3 Creating the Custom Print Adapter ... sseseseeaes
87.4 Implementing the onLayout() Callback Method...........ccoeuiuviiniivcincicinininiininisecscieenes
87.5 Implementing the onWrite() Callback Method ...
87.6 Checking a Page is in Range.......c.cccccecuvvuniuncen.
87.7 Drawing the Content on the Page Canvas.......
87.8 Starting the Print Jobcccccccvucininininininenn.
87.9 Testing the Application..
87.10 SUMMATY ...coeieiiiiit et bbb

88. An Introduction to Android APP LinKs.......ccceveerieiiniriiininninncnnininncntneseestsessessessesssssssssessseseesns

88.1 An Overview of Android APP LinKsccceveveurireeurinincinincecirineereeecseeeeseeiesseseeetsesesesseseseenes 727
88.2 ApP Link INtent FAltErs ...c.c.ococueurieeeireriieiricieineeieircactseectstseectseeae s tsesese s ssesese s ssesesesnes 727

xxii

Table of Contents

88.3 Handling App Link INENtSc.cvvuevcrrieeeerrieeeeineeeeetreeeeenreeenesseseesetsesensessesessessesensessesensessesenses 728
88.4 Associating the App With @ WEDSIte.......c.ccvevirreeeencrreeeeireecreectreeeerreee e sseseesensesennes 728
88.5 SUMMIATY ..ot 729

89. An Android Studio App Links TUtorialccccevuevuivinrecninsnnecnininncnininecnninenecsenessscsessessessesnee 731

89.1 About the EXamPLe APP c..cocveeeeiireeeieireeeieireieieireeetetseeetetsesessetsesessetsesessessesessessesessessesesssssesesaes
89.2 The Database SChema ..o
89.3 Loading and Running the Project ... ssessessesssssesessnns
89.4 Adding the URL Mapping........cccecveuiureuiuncunceemenmeienisanisssaesssssessssse s ssessssssssssesssssnns
89.5 Adding the Intent Filter..........ccooiiiiiiiiincinciceicicieceiee e
89.6 Adding Intent Handling Code.......
89.7 Testing the App.......cocvevirerveurcrneunernennas
89.8 Creating the Digital Asset Links File...
89.9 Testing the App Link.......cocoeevcuveuncnncnnce
89.10 SUIMMATY ..ottt bbb

90. An Android Biometric Authentication TUtOrial.........cccccceeeeervurerrerrieeeesessieeeesssneesssssseeesssssssesssssnsessses 741

90.1 An Overview of Biometric AUthentication.........cccecuveueererreeemerreeeenetneenerreenerserenersesenensesennes 741
90.2 Creating the Biometric Authentication Projectccocveerreemnerreemnerreeenerrenenrerseseesensenennes 741
90.3 Configuring Device Fingerprint Authenticationcccvecreeenerreeenerreennerneeesenseseesersenennes 742
90.4 Adding the Biometric Permission to the Manifest File........c.cocceeeureenerreneneeeneneecnerneennes 742
90.5 Designing the User INEIfaceccveueuererreeeenerreeeeerreeeeenrenenetseseeessesensessesensessesessessesensessesenses

90.6 Adding a Toast Convenience Methodccocvueeerrieenerneeenerreeeeineeeerreeeessesensesseseeensesenses

90.7 Checking the SECUTIity SEtNES.......ccoeureverrerrereererrieeierreieierrerenessesenessesensesseseesessesensessesessessesenses

90.8 Configuring the Authentication Callbacks
90.9 Adding the CancellationSignal......
90.10 Starting the Biometric Prompt....
90.11 Testing the Project........cccceeureuneuce.
90.12 SUIMIMATY ..ttt bbb bbb bbb

91. Creating, Testing, and Uploading an Android App Bundle...........cccoeveviivirvinenrenriniisinienenrennisiisenenne 749

91.1 The Release Preparation PrOCeSs........eeeeereeeeneireueineineeeeeisesesetsesessessesesessesessessesessessesesnes 749
91.2 ANdroid AP BUNAIES......ccueueiirieeiiirieeicireieicireeetctreieteisese ettt sese et sesessetses st sesenaes 749
91.3 Register for a Google Play Developer Console ACCOUNL...........ocvieeucircvsceceeieicieeieineeinennns 750
91.4 Configuring the App in the COnsole ..o 751
91.5 Enabling Google Play App SIgNiNg........c.ccvcuvcuvcucueinieinieniiiiiiseseesesseesese e ssesssssesssssns 752
91.6 Creating a Keystore File ... sssasses 752
91.7 Creating the Android App Bundle...........ccocuoiuiiiiiiiininiiiiiscccce e 753
91.8 Generating Test APK FILEScc.oiiiiiniiincicicieieicicieceei st ss s ssessssnes 755
91.9 Uploading the App Bundle to the Google Play Developer Console............ccccceuruueiuriuniuninnee 756
91.10 Exploring the App Bundle
91.11 Managing Testersccccovuruunnes
91.12 Rolling the App Out for Testing
91.13 Uploading New App Bundle Revisions

91.14 Analyzing the App Bundle File..........ccccecncuucece.
91,15 SUIMMATY ..ttt e
92. An Overview of Android In-App Billingcccevvuirurvnininrisinnninininiininininienecnses 763
92.1 Preparing a Project for In-App PUurchasingcccveveveenereeeneineenenneenenneeeresneeeensenennes 763
92.2 Creating In-App Products and SubScriptionsc..cceeveemrerreeeenerreeeenerreeenerneneesenseseesensenennes 763

Xxiii

Table of Contents

92.3 Billing Client InitialiZation.........ccocveeurerreeeeerreemnerreeceeireeeeenreeeeesseseeessesensessesensessesessessesessessenes 764
92.4 Connecting to the Google Play Billing Library........ccocceceereeenerreecenerreeeenenrereesenreneesessesensennenee 765
92.5 Querying Available PrOQUCLS........c.occueureeeecrreeeeeireecieireeeenreeeeeneseeensese s esensesensessesensessenes 765
92.6 Starting the PUurchase PTrOCESS..........cceureueeerreeeenerreecieineeeneneeeeenseseeesseseesessesessessesessessesesessenes 766
92.7 Completing the PUICRASEccvcuieieireiccirecetreceteeeenetee s nsese e ssesessessesensesenes 766
92.8 Querying Previous PUIChAses.c.occucureueecrreeeeneirieeeeireieenreeeeetseseeessesessessesessessesessesseseesessenes 767
92.9 SUIMMATY ..ottt 768

93. An Android In-App Purchasing Tutorialcccoeievininnininninncninnnncsiniinncnensenenisesseseeeene

93.1 About the In-App Purchasing Example Project
93.2 Creating the InAppPurchase Project..........cccccouc.c.
93.3 Adding Libraries to the Project........cccccecneuuce.
93.4 Designing the User Interface..........cccccecvuueunce.
93.5 Adding the App to the Google Play Store
93.6 Creating an In-App Product.......cccccceuvvuneunce.

93.7 ENabling LiCense TESLEISc.vcucuruemmcumiiimiaiiiisiisiseisese s sssssssssssssassssssse s sssesaseses
93.8 Initializing the Billing CHENc.ccueuiiciciiiiriiceseecte e sseae
93.9 QUETying the PrOQUCT........c.iuiiiiciciciciciciiccicicsi et
93.10 Launching the PUrchase FIOW ..o esecieseeiscsesesesssesessesessenes
93.11 Handling Purchase UPdAtes ... ssessssesssssesssesssesesssssessenes
93.12 Consuming the PrOdUCt ...
93.13 Restoring a Previous PUIChase ...t
93.14 TeStING the APP..cccimieiiiiiiiirccic et
93.15 TrOUDIESNOOLING «....oueveiiiiciic et
93,16 SUMIMATY ...oeieiiiiiiii ettt bbb

94. Accessing Cloud Storage using the Android Storage Access Framework..........cccecvuvvevrenrencrncncenes

94.1 The Storage Access Framework.........c..coccvvueace.
94.2 Working with the Storage Access Framework...
94.3 Filtering Picker File Listingsccccocovuvivririnnn.
94.4 Handling Intent Results.......ccccocveeernerrercrrerrennen.
94.5 Reading the Content of @ Filec.oceeecinieincinieeineeeeeeeeneeenseseesseseeensesesessesensessenes
94.6 Writing Content t0 @ Filec.occeuriecirieicireeereeeneeeieeeeseeensese s ssesessessesensessenes
94.7 Deleting @ File ...ttt eessese s ssesessessesessessesessessesessessesessesenes
94.8 Gaining Persistent Access t0 @ File.....ocvveuriecirieiniinieeeceecereeeeseeeneseeensesensenenes
94.9 SUIMMATY ...oiiiiiiiiiiii bbb bbb

95. An Android Storage Access Framework EXample........ccccooeverinrirnunninnnncninnnnncninniencninecscneneene

95.1 About the Storage Access Framework Example.........cococvcuviuncinincincicininenisincsssessiscnneenes
95.2 Creating the Storage Access Framework Example
95.3 Designing the User Interfaceccccocuocueivinenininenencrneenenns
95.4 Adding the Activity Launchers.........c.ccccceeuuce.

95.5 Creating a New Storage File........cccccccoeurrunenncen.

95.6 Saving to a Storage File
95.7 Opening and Reading a Storage File
95.8 Testing the Storage Access Application
95.9 SUIMMATY ..ottt bbbt

96. An Android Studio Primary/Detail Flow Tutorial...........ccccoevuvuiinuiiiiiineinncinceecciccnnscencnenns
96.1 The Primary/Detail FIOW.......c.occcveieeinieecireeetreeenetreneeenseseeessesesessesessessesessessesessessesessessenes 795

XXiv

Table of Contents

96.2 Creating a Primary/Detail FLOW ACHIVILYcocveueeerrieeeerreeeneireeneireneeenseeenessesensesseseesensesennes 796
96.3 Adding the Primary/Detail FIoW ACHVItYccccovveurerrieemrernereneireneeetreeenerseneeensesensesseseesessesennes 796
96.4 Modifying the Primary/Detail Flow Templateccceeureuemerreeemnerreemerreremsenserensesseseesessesennes 797
96.5 Changing the Content MOdeL.........cccvueueureueenerreeeenerrieienreeeneireeenetsesenenseseesessesensessesensessesenses 797
96.6 Changing the Detail Panec.c.oceveureeeeireeeeneinieieireeeenneeeeensesensetsesensessesessessesessessesensessesenses 799
96.7 Modifying the ItemDetailFragment Classcccveureueererreuemrerreremerreeenerrenenenseseesessesenessesenses 800
96.8 Modifying the ItemListFragment Class.........ccocveeurerreeeeerreeemrerreremetrenemenseseesessesenesseseesessesenses 801
96.9 Adding Manifest PErmiSSIONS.........ccoeueeeuerreeemerreeeeerreueeenseremessesemsessesensessesessessesensessesensessesense 801
96.10 RUNning the ApPliCation........cocueeeeerreeeenerreeeeeireeeierreeeeensesenessesessesseseesessesessessesessessesensessesenses 802
96.11 SUIMIMATY ..ttt bbb bbb bbb s 802

97. Working with Material Design 3 Themingccocevvcvennernucnsinninninsinnenininscseniesscsiseesesessesscseens 803
97.1 Material Design 2 vs. Material DeSig 3ccccocueurmrinimniininiineniiseseiseresessessessessesssssesessas
97.2 Understanding Material Design Theming
97.3 Material Design 3 Themingc.cccccoeeveuviurcrncunn.
97.4 Building @ Custom TREME..........cc.ccviuiiniiiicicicieieeeiecieeeeicse e sae s sasassaes
97.5 SUIMMATY ...ttt

98. A Material Design 3 Theming and Dynamic Color Tutorial........c.cecceuerurvrinisrisuisnsnenisesensensensene 807
98.1 Creating the ThemeDemo Projectcceereeencrreeeenerneeneireeeetreeenesseaeesesseseesessesensessesenses
98.2 Designing the User INEIfaceccveueuererreeeenerreeeeetrieeieireeeetseseesessesessesseseesessesensessesessessesense
98.3 BUilding @ NeW THEmIeccccvvuevirrieereirereeeireeeeetreeeesetseaeesessesensessesessessesensessesessessesessessesensessesense
98.4 Adding the Theme t0 the PrOJECtc.occeueeeeeireecenciriceireeereeeeetreeenesseaeesessesensessesessessesenses
98.5 Enabling Dynamic Color SUPPOItc.cvwuemirreeeererrieemerrenenenserenessenensessesensessesensessesensessesense

98.6 Previewing Dynamic Colors
98.7 SUMMATY ..o

99. An Overview of Gradle in Android Studio

99.1 An OVerview of Gradle ..o sa s
99.2 Gradle and Android StUAIO ...
99.2.1 Sensible Defaultscccciiiiiiniiiiccc e
99.2.2 DEPENAEIICIES. ...euveeereeeiaeiriecieereaciteseae sttt e bbbttt
99.2.3 BUIld VATTANTS ...t
99.2.4 Manifest ENIIEScucueiuiuiiiiiireiiisecesc e sse oo
99.2.5 APK SIGNING.....iiiiiiriiiiiiicini st
99.2.6 PrOGUATd SUPPOIL....eueuerieieciriireicitiricietseseireisese e s ssese e sese s sese e bsese s sseaens
99.3 The Property and Settings Gradle Build File.........ccccceuniiinininnininincscccccciececeenenas 816
99.4 The Top-level Gradle Build File.......ccoeeuiiriueiniinieeineirieicireecireieictneeeeciseeeeetseseeetsesesessesennes 817
99.5 Module Level Gradle Build Files...........ococvuivciniiiiiiniiisinccseciseiesese s 818
99.6 Configuring Signing Settings in the Build File.........cccccoouiiniiinininniniicccccieceeecnenes 820
99.7 Running Gradle Tasks from the Command Lineccccoceevininiinerncineincenceneieecieeeinenenns 821
99.8 SUMMIATY ...ttt et 822

XXV

Chapter 1

1. Introduction

Fully updated for Android Studio Iguana (2023.2.1) and the new UI, this book teaches you how to develop
Android-based applications using the Kotlin programming language.

This book begins with the basics and outlines how to set up an Android development and testing environment,
followed by an introduction to programming in Kotlin, including data types, control flow, functions, lambdas,
and object-oriented programming. Asynchronous programming using Kotlin coroutines and flow is also
covered in detail.

Chapters also cover the Android Architecture Components, including view models, lifecycle management,
Room database access, content providers, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the
ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers,
and direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App Links, Gradle build configuration, in-app
billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.payloadbooks.com/product/iguanakotlin/
The steps to load a project from the code samples into Android Studio are as follows:
1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at info@payloadbooks.com.

https://www.payloadbooks.com/product/iguanakotlin/

Introduction

1.3 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.payloadbooks.com/iguanakotlin

If you find an error not listed in the errata, please let us know by emailing our technical support team at info@
payloadbooks.com. They are there to help you and will work to resolve any problems you may encounter.

1.4 Authors Wanted
Payload Publishing is looking for authors.

Are you an aspiring author with a book idea in mind? When you publish with us, you’ll receive our full support
every step of the way. We offer guidance and technical and editorial assistance to help you bring your book
to life. Once your book is completed, we will publish and market it worldwide through our distribution and
channel partnerships while paying you higher royalties than traditional publishers.

Find out more at:
https://www.payloadbooks.com/authors-wanted
or email us at:

authors@payloadbooks.com

https://www.payloadbooks.com/iguanakotlin
https://www.payloadbooks.com/authors-wanted

Chapter 2

2. Setting up an Android Studio
Development Environment

Before any work can begin on developing an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE), including the Android Software Development Kit (SDK), the
Kotlin plug-in and the Open]JDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements

Android application development may be performed on any of the following system types:
« Windows 8/10/11 64-bit

« macOS 10.14 or later running on Intel or Apple silicon

« Chrome OS device with Intel i5 or higher

o Linux systems with version 2.31 or later of the GNU C Library (glibc)

o Minimum of 8GB of RAM

« Approximately 8GB of available disk space

« 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package

Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Iguana 2023.2.1
using the Android API 34 SDK (UpsideDownCake), which, at the time of writing, are the latest stable releases.

Android Studio is, however, subject to frequent updates, so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page, which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio, there may be differences
between this book and the software. A web search for “Android Studio Iguana” should provide the option to
download the older version if these differences become a problem. Alternatively, visit the following web page to
find Android Studio Iguana 2023.2.1 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

Setting up an Android Studio Development Environment

2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is performed.

2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation to
meet your requirements in terms of the file system location into which Android Studio should be installed and
whether or not it should be made available to other system users. When prompted to select the components to
install, ensure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11, this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS

Android Studio for macOS is downloaded as a disk image (.dmg) file. Once the android-studio-<version>-mac.
dmg file has been downloaded, locate it in a Finder window and double-click on it to open it, as shown in Figure
2-1:

Figure 2-1

To install the package, drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

4

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed, and execute the following command:

tar xvfz /<path to package>/android-studio-<version>-linux.tar.gz

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Therefore,

assuming that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory,
and execute the following command:

./studio.sh

2.4 The Android Studio setup wizard

If you have previously installed an earlier version of Android Studio, the first time this new version is launched,
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have
settings from a previous version and would like to import them into the latest installation, select the appropriate
option and location. Alternatively, indicate that you do not need to import any previous settings and click the
OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2

If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select
the Standard installation option before clicking Next.

Setting up an Android Studio Development Environment

Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click the Finish
button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen using your chosen Ul theme:

Figure 2-4
2.5 Installing additional Android SDK packages

The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

Setting up an Android Studio Development Environment

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Settings dialog
will appear as shown in Figure 2-5:

Figure 2-5

Google pairs each release of Android Studio with a maximum supported Application Programming Interface
(API) level of the Android SDK. In the case of Android Studio Iguana, this is Android UpsideDownCake (API
Level 34). This information can be confirmed using the following link:

https://developer.android.com/studio/releases#api-level-support

Immediately after installing Android Studio for the first time, it is likely that only the latest supported version
of the Android SDK has been installed. To install older versions of the Android SDK, select the checkboxes
corresponding to the versions and click the Apply button. The rest of this book assumes that the Android
UpsideDownCake (API Level 34) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo).
This ensures that the apps run on a wide range of Android devices. Within the list of SDK versions, enable
the checkbox next to Android 8.0 (Oreo) and click the Apply button. Click the OK button to install the SDK
in the resulting confirmation dialog. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

https://developer.android.com/studio/releases#api-level-support

Setting up an Android Studio Development Environment

Figure 2-6

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

« Android SDK Build-tools
 Android Emulator

« Android SDK Platform-tools
» Google Play Services

« Intel x86 Emulator Accelerator (HAXM installer)”

Google USB Driver (Windows only)
o Layout Inspector image server for API 31-34

"Note that the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based
Macs.

If any of the above packages are listed as Not Installed or requiring an update, select the checkboxes next to those
packages and click the Apply button to initiate the installation process. If the HAXM emulator settings dialog
appears, select the recommended memory allocation:

Setting up an Android Studio Development Environment

Figure 2-8

Once the installation is complete, review the package list and ensure that the selected packages are listed as
Installed in the Status column. If any are listed as Not installed, make sure they are selected and click the Apply
button again.

2.6 Installing the Android SDK Command-line Tools

Android Studio includes tools that allow some tasks to be performed from your operating system command
line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab, and locate the
Android SDK Command-line Tools (latest) package as shown in Figure 2-9:

Figure 2-9
If the command-line tools package is not already installed, enable it and click Apply, followed by OK to complete
the installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add
them to the system’s PATH environment variable.

Setting up an Android Studio Development Environment

Regardless of your operating system, you will need to configure the PATH environment variable to include the
following paths (where <path_to_android_sdk_installation> represents the file system location into which you
installed the Android SDK):

<path to android sdk installation>/sdk/cmdline-tools/latest/bin
<path to android sdk installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:

Figure 2-10

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1

1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from
the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of
icons, select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it, and click
the Edit... button. Using the New button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the following
entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin
C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering ¢md into the Run
dialog. Within the Command Prompt window, enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command-line options when executed.
Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:

10

Setting up an Android Studio Development Environment

'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10

Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.3 Windows 11

Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux

This configuration can be achieved on Linux by adding a command to the .bashrc file in your home directory
(specifics may differ depending on the particular Linux distribution in use). Assuming that the Android SDK
bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file would read as
follows:

export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS

Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:

/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory, it will be necessary to use the sudo command when creating the file.
For example:

sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management

Android Studio is a large and complex software application with many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded, it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

11

Setting up an Android Studio Development Environment

Figure 2-11

To view and modify the current memory configuration, select the File -> Settings... main menu option (Android
Studio -> Settings... on macOS) and, in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure
2-12 below:

Figure 2-12

When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the
currently loaded project. On the other hand, when a project is built and run from within Android Studio,
several background processes (referred to as daemons) perform the task of compiling and running the app.
When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an
open project, select the Tools -> SDK Manager... menu option from the main menu.

2.8 Updating Android Studio and the SDK

From time to time, new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

12

Setting up an Android Studio Development Environment

2.9 Summary

Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). This chapter covers the steps necessary to install these packages on Windows,
macO§, and Linux.

13

Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have explained how to configure an environment suitable for developing
Android applications using the Android Studio IDE. Before moving on to slightly more advanced topics, now
is a good time to validate that all required development packages are installed and functioning correctly. The
best way to achieve this goal is to create an Android application and compile and run it. This chapter will cover
creating an Android application project using Android Studio. Once the project has been created, a later chapter
will explore using the Android emulator environment to perform a test run of the application.

3.1 About the Project

The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also use one of the most basic Android Studio project templates. This simplicity allows us to introduce some key
aspects of Android app development without overwhelming the beginner by introducing too many concepts,
such as the recommended app architecture and Android architecture components, at once. When following
the tutorial in this chapter, rest assured that the techniques and code used in this initial example project will be
covered in much greater detail later.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

15

Creating an Example Android App in Android Studio

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity

The next step is to define the type of initial activity to be created for the application. Options are available to
create projects for Phone and Tablet, Wear OS, Television, or Automotive. A range of different activity types is
available when developing Android applications, many of which will be covered extensively in later chapters.
For this example, however, select the Phone and Tablet option from the Templates panel, followed by the option
to create an Empty Views Activity. The Empty Views Activity option creates a template user interface consisting
of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name uniquely identifies the application within the Android application ecosystem. Although this
can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your
domain name followed by the application’s name. For example, if your domain is www.mycompany.com, and the
application has been named AndroidSample, then the package name might be specified as follows:

com.mycompany.androidsample

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your

home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This minimum SDK will be used in most projects
created in this book unless a necessary feature is only available in a more recent version. The objective here is to

16

Creating an Example Android App in Android Studio

build an app using the latest Android SDK while retaining compatibility with devices running older versions of
Android (in this case, as far back as Android 8.0). The text beneath the Minimum SDXK setting will outline the
percentage of Android devices currently in use on which the app will run. Click on the Help me choose button
(highlighted in Figure 3-3) to see a full breakdown of the various Android versions still in use:

Figure 3-3

Finally, change the Language menu to Kotlin and select Kotlin DSL (build.gradle.kts) as the build configuration
language before clicking Finish to create the project.

3.5 Enabling the New Android Studio Ul

Android Studio is transitioning to a new, modern user interface that is not enabled by default in the Iguana
version. If your installation of Android Studio resembles Figure 3-4 below, then you will need to enable the new
UI before proceeding:

Figure 3-4
17

Creating an Example Android App in Android Studio

Enable the new Ul by selecting the File -> Settings... menu option (Android Studio -> Settings... on macOS) and
selecting the New UI option under Appearance and Behavior in the left-hand panel. From the main panel, turn
on the Enable new UI checkbox before clicking Apply, followed by OK to commit the change:

Figure 3-5

When prompted, restart Android Studio to activate the new user interface.

3.6 Modifying the Example Application

Once Android Studio has restarted, the main window will reappear using the new UI and containing our
AndroidSample project as illustrated in Figure 3-6 below:

Figure 3-6

The newly created project and references to associated files are listed in the Project tool window on the left side
of the main project window. The Project tool window has several modes in which information can be displayed.
By default, this panel should be in Android mode. This setting is controlled by the menu at the top of the panel
as highlighted in Figure 3-7. If the panel is not currently in Android mode, use the menu to switch mode:

18

Creating an Example Android App in Android Studio

Figure 3-7
3.7 Moditying the User Interface

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the Project tool window file hierarchy. Once located in the Project tool window,
double-click on the file to load it into the user interface Layout Editor tool, which will appear in the center panel
of the Android Studio main window:

Figure 3-8
In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A range of other
19

Creating an Example Android App in Android Studio

device options are available by clicking on this menu.

Use the System UI Mode button () to turn Night mode on and off for the device screen layout. To change
the orientation of the device representation between landscape and portrait, use the drop-down menu showing

the icon.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user
interface components that may be used to construct a user interface, such as buttons, labels, and text fields.
However, it should be noted that not all user interface components are visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel, which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-9:

Figure 3-9

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
called main and a TextView child object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to ensure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a
U-shaped icon. When disabled, the icon appears with a diagonal line through it (Figure 3-10). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-10

The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns, with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-11, for example, the Button view is currently selected within the Buttons category:

20

Creating an Example Android App in Android Studio

Figure 3-11

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-12

The next step is to change the text currently displayed by the Button component. The panel located to the right
of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected
component in the layout. Within this panel, locate the text property in the Common Attributes section and
change the current value from “Button” to “Convert’, as shown in Figure 3-13:

21

Creating an Example Android App in Android Studio

Figure 3-13

The second text property with a wrench next to it allows a text property to be set, which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing how a visual component and the layout
will behave with different settings without running the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer Constraints
button (Figure 3-14) to add any missing constraints to the layout:

Figure 3-14

It is important to explain the warning button in the top right-hand corner of the Layout Editor tool, as indicated
in Figure 3-15. This warning indicates potential problems with the layout. For details on any problems, click on
the button:

Figure 3-15
When clicked, the Problems tool window (Figure 3-16) will appear, describing the nature of the problems:

Figure 3-16
This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected

22

Creating an Example Android App in Android Studio

within the layout file. In our example, only the following problem is listed:
button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:

Hardcoded string "Convert", should use @string resource
The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This I18N message informs us that a potential issue exists concerning the future internationalization of the
project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an “N”
and has 18 letters in between). The warning reminds us that attributes and values such as text strings should be
stored as resources wherever possible when developing Android applications. Doing so enables changes to the
appearance of the application to be made by modifying resource files instead of changing the application source
code. This can be especially valuable when translating a user interface to a different spoken language. If all of the
text in a user interface is contained in a single resource file, for example, that file can be given to a translator, who
will then perform the translation work and return the translated file for inclusion in the application. This enables
multiple languages to be targeted without the necessity for any source code changes to be made. In this instance,
we are going to create a new resource named convert_string and assign to it the string “Convert”

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-17:

Figure 3-17

After selecting this option, the Extract Resource panel (Figure 3-18) will appear. Within this panel, change the
resource name field to convert_string and leave the resource value set to Convert before clicking on the OK
button:

Figure 3-18

23

Creating an Example Android App in Android Studio

The next widget to be added is an EditText widget, into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars” Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout, as shown in Figure 3-19:

Figure 3-19

Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

Figure 3-20
Repeat the steps to set the id of the TextView widget to textView, if necessary.

Add any missing layout constraints by clicking on the Infer Constraints button. At this point, the layout should
resemble that shown in Figure 3-21:

24

Creating an Example Android App in Android Studio

Figure 3-21
3.8 Reviewing the Layout and Resource Files

Before moving on to the next step, we will look at some internal aspects of user interface design and resource
handling. In the previous section, we changed the user interface by modifying the activity_main.xml file using
the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a user-friendly way to edit the
underlying XML content of the file. In practice, there is no reason why you cannot modify the XML directly to
make user interface changes, and, in some instances, this may actually be quicker than using the Layout Editor
tool. In the top right-hand corner of the Layout Editor panel are the View Modes buttons marked A through C
in Figure 3-22 below:

Figure 3-22

By default, the editor will be in Design mode (button C), whereby only the visual representation of the layout is
displayed. In Code mode (A), the editor will display the XML for the layout, while in Split mode (B), both the
layout and XML are displayed, as shown in Figure 3-23:

25

Creating an Example Android App in Android Studio

Figure 3-23

The button to the left of the View Modes button (marked B in Figure 3-22 above) is used to toggle between Code
and Split modes quickly.

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button, and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although complexity and content vary, all user
interface layouts are structured in this hierarchical, XML-based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel, with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/main"

android:layout width="match parent"

android:layout height="match parent"
tools:context=".MainActivity"
android:background="#££2438" >

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the layout color changes in real-time to match the new setting in the XML file. Note also that a small
red square appears in the XML editor’s left margin (also called the gutter) next to the line containing the color
setting. This is a visual cue to the fact that the color red has been set on a property. Clicking on the red square
will display a color chooser allowing a different color to be selected:

26

Creating an Example Android App in Android Studio

Figure 3-24

Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently, the XML should read as follows:
<resources>
<string name="app name">AndroidSample</string>
<string name="convert string">Convert</string>
<string name="dollars hint">dollars</string>
</resources>

To demonstrate resources in action, change the string value currently assigned to the convert_string resource to
“Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file in the editor
panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor
tool in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights, and
then press Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml
file and take you to the line in that file where this resource is declared. Use this opportunity to revert the string
resource to the original “Convert” text and to add the following additional entry for a string resource that will
be referenced later in the app code:
<resources>

<string name="app name">AndroidSample</string>

<string name="convert string">Convert</string>

<string name="dollars hint">dollars</string>

<string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor by clicking on the Open editor
link in the top right-hand corner of the editor window. This will display the Translation Editor in the main panel
of the Android Studio window:

27

Creating an Example Android App in Android Studio

Figure 3-25

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.9 Adding Interaction

The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button, the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can
be implemented in several ways and is covered in a later chapter entitled “An Overview and Example of Android
Event Handling”. Return the layout editor to Design mode, select the Button widget in the layout editor, refer to
the Attributes tool window, and specify a method named convertCurrency as shown below:

Figure 3-26

Next, double-click on the MainActivity.kt file in the Project tool window (app -> kotlin+java -> <package name>
-> MainActivity) to load it into the code editor and add the code for the convertCurrency method to the class file
so that it reads as follows, noting that it is also necessary to import some additional Android packages:

package com.example.androidsample

import android.os.Bundle

import androidx.activity.enableEdgeToEdge
import androidx.appcompat.app.AppCompatActivity
import androidx.core.view.ViewCompat

import androidx.core.view.WindowInsetsCompat

import android.view.View

28

Creating an Example Android App in Android Studio

import android.widget.EditText
import android.widget.TextView

class MainActivity : AppCompatActivity() {
override fun onCreate (savedInstanceState: Bundle?) {

super.onCreate (savedInstanceState)

fun convertCurrency (view: View) ({
val dollarText: EditText = findViewById(R.id.dollarText)
val textView: TextView = findViewById(R.id.textView)

if (dollarText.text.isNotEmpty()) {
val dollarValue = dollarText.text.toString().toFloat()
val euroValue = dollarValue * 0.85f
textView. text = euroValue.toString()
} else {
textView. text = getString(R.string.no_value_string)

}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewByld, passing through the id assigned within the layout file. A check is then made to ensure
that the user has entered a dollar value, and if so, that value is extracted, converted from a String to a floating
point value, and converted to euros. Finally, the result is displayed on the TextView widget.

If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters. In
particular, the topic of accessing widgets from within code using findByViewld and an introduction to an
alternative technique referred to as view binding will be covered in the chapter entitled “An Overview of Android
View Binding”.

3.10 Summary

While not excessively complex, several steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to ensure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly string values, and briefly touched on layouts. Next, we looked at the
underlying XML used to store Android application user interface designs.

Finally, an onClick event was added to a Button connected to a method implemented to extract the user input
from the EditText component, convert it from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

29

Chapter 12

12. Kotlin Data Types, Variables, and
Nullability

Both this and the following few chapters are intended to introduce the basics of the Kotlin programming
language. This chapter will focus on the various data types available for use within Kotlin code. This will also
include an explanation of constants, variables, typecasting, and Kotlin's handling of null values.

As outlined in the previous chapter, entitled “An Introduction to Kotlin” a useful way to experiment with the
language is to use the Kotlin online playground environment. Before starting this chapter, therefore, open a
browser window, navigate to https://play.kotlinlang.org and use the playground to try out the code in both this
and the other Kotlin introductory chapters that follow.

12.1 Kotlin Data Types

When we look at the different types of software that run on computer systems and mobile devices, from financial
applications to graphics-intensive games, it is easy to forget that computers are really just binary machines.
Binary systems work in terms of 0 and 1, true or false, set and unset. All the data sitting in RAM, stored on disk
drives, and flowing through circuit boards and buses are nothing more than sequences of 1s and 0s. Each 1 or 0
is referred to as a bit and bits are grouped together in blocks of 8, each group being referred to as a byte. When
people talk about 32-bit and 64-bit computer systems they are talking about the number of bits that can be
handled simultaneously by the CPU bus. A 64-bit CPU, for example, can handle data in 64-bit blocks, resulting
in faster performance than a 32-bit based system.

Humans, of course, don't think in binary. We work with decimal numbers, letters, and words. For a human
to easily (‘easily’ being a relative term in this context) program a computer, some middle ground between
human and computer thinking is needed. This is where programming languages such as Kotlin come into
play. Programming languages allow humans to express instructions to a computer in terms and structures we
understand and then compile that down to a format that can be executed by a CPU.

One of the fundamentals of any program involves data, and programming languages such as Kotlin define a set
of data types that allow us to work with data in a format we understand when programming. For example, if we
want to store a number in a Kotlin program we could do so with syntax similar to the following:

val mynumber = 10

In the above example, we have created a variable named mynumber and then assigned to it the value of 10. When
we compile the source code down to the machine code used by the CPU, the number 10 is seen by the computer
in binary as:

1010

Similarly, we can express a letter, the visual representation of a digit (‘0’ through to ‘9’), or punctuation mark
(referred to in computer terminology as characters) using the following syntax:

val myletter = 'c'

Once again, this is understandable by a human programmer but gets compiled down to a binary sequence for

the CPU to understand. In this case, the letter ‘¢’ is represented by the decimal number 99 using the ASCII
table (an internationally recognized standard that assigns numeric values to human-readable characters). When

95

https://play.kotlinlang.org/

Kotlin Data Types, Variables, and Nullability

converted to binary, it is stored as:
10101100011

Now that we have a basic understanding of the concept of data types and why they are necessary we can take a
closer look at some of the more commonly used data types supported by Kotlin.

12.1.1 Integer Data Types

Kotlin integer data types are used to store whole numbers (in other words a number with no decimal places). All
integers in Kotlin are signed (in other words capable of storing positive, negative, and zero values).

Kotlin provides support for 8, 16, 32, and 64-bit integers (represented by the Byte, Short, Int, and Long types
respectively).

12.1.2 Floating-Point Data Types

The Kotlin floating-point data types can store values containing decimal places. For example, 4353.1223 would
be stored in a floating-point data type. Kotlin provides two floating-point data types in the form of Float and
Double. Which type to use depends on the size of value to be stored and the level of precision required. The
Double type can be used to store up to 64-bit floating-point numbers. The Float data type, on the other hand, is
limited to 32-bit floating-point numbers.

12.1.3 Boolean Data Type

Kotlin, like other languages, includes a data type to handle true or false (1 or 0) conditions. Two Boolean constant
values (true and false) are provided by Kotlin specifically for working with Boolean data types.

12.1.4 Character Data Type

The Kotlin Char data type is used to store a single character of rendered text such as a letter, numerical digit,
punctuation mark, or symbol. Internally characters in Kotlin are stored in the form of 16-bit Unicode grapheme
clusters. A grapheme cluster is made of two or more Unicode code points that are combined to represent a single
visible character.

The following lines assign a variety of different characters to Character type variables:
val myCharl = 'f'

val myChar?2
val myChar3 = 'X'

Characters may also be referenced using Unicode code points. The following example assigns the X’ character
to a variable using Unicode:

val myChar4 = '\u0058"'

Note the use of single quotes when assigning a character to a variable. This indicates to Kotlin that this is a Char
data type as opposed to double quotes which indicate a String data type.

12.1.5 String Data Type

The String data type is a sequence of characters that typically make up a word or sentence. In addition to providing
a storage mechanism, the String data type also includes a range of string manipulation features allowing strings
to be searched, matched, concatenated, and modified. Double quotes are used to surround single-line strings
during an assignment, for example:

val message = "You have 10 new messages."

Alternatively, a multi-line string may be declared using triple quotes

val message = """You have 10 new messages,

96

Kotlin Data Types, Variables, and Nullability

5 old messages
and 6 spam messages."""
The leading spaces on each line of a multi-line string can be removed by making a call to the trimMargin()
function of the String data type:
val message = """You have 10 new messages,
5 old messages

and 6 spam messages.""".trimMargin ()

Strings can also be constructed using combinations of strings, variables, constants, expressions, and function
calls using a concept referred to as string interpolation. For example, the following code creates a new string
from a variety of different sources using string interpolation before outputting it to the console:

val username = "John"

val inboxCount = 25

val maxcount = 100

val message = "S$Susername has $inboxCount messages. Message capacity remaining is
${maxcount - inboxCount} messages"
println (message)

When executed, the code will output the following message:

John has 25 messages. Message capacity remaining is 75 messages.

12.1.6 Escape Sequences

In addition to the standard set of characters outlined above, there is also a range of special characters (also
referred to as escape characters) available for specifying items such as a new line, tab, or a specific Unicode value
within a string. These special characters are identified by prefixing the character with a backslash (a concept
referred to as escaping). For example, the following assigns a new line to the variable named newline:

var newline = '\n'

In essence, any character that is preceded by a backslash is considered to be a special character and is treated
accordingly. This raises the question as to what to do if you actually want a backslash character. This is achieved
by escaping the backslash itself:

var backslash = "\\'

The complete list of special characters supported by Kotlin is as follows:

« \n - Newline

« \r - Carriage return

« \t - Horizontal tab

o \\ - Backslash

« \” - Double quote (used when placing a double quote into a string declaration)

« \’ - Single quote (used when placing a single quote into a string declaration)

« \$ - Used when a character sequence containing a $ is misinterpreted as a variable in a string template.

« \unnnn - Double byte Unicode scalar where nnnn is replaced by four hexadecimal digits representing the
Unicode character.

97

Kotlin Data Types, Variables, and Nullability
12.2 Mutable Variables

Variables are essentially locations in computer memory reserved for storing the data used by an application.
Each variable is given a name by the programmer and assigned a value. The name assigned to the variable
may then be used in the Kotlin code to access the value assigned to that variable. This access can involve either
reading the value of the variable or, in the case of mutable variables, changing the value.

12.3 Immutable Variables

Often referred to as a constant, an immutable variable is similar to a mutable variable in that it provides a named
location in memory to store a data value. Immutable variables differ in one significant way in that once a value
has been assigned it cannot subsequently be changed.

Immutable variables are particularly useful if there is a value that is used repeatedly throughout the application
code. Rather than use the value each time, it makes the code easier to read if the value is first assigned to a
constant which is then referenced in the code. For example, it might not be clear to someone reading your Kotlin
code why you used the value 5 in an expression. If, instead of the value 5, you use an immutable variable named
interestRate the purpose of the value becomes much clearer. Immutable values also have the advantage that if the
programmer needs to change a widely used value, it only needs to be changed once in the constant declaration
and not each time it is referenced.

12.4 Declaring Mutable and Immutable Variables

Mutable variables are declared using the var keyword and may be initialized with a value at creation time. For
example:

var userCount = 10
If the variable is declared without an initial value, the type of the variable must also be declared (a topic that will

be covered in more detail in the next section of this chapter). The following, for example, is a typical declaration
where the variable is initialized after it has been declared:

var userCount: Int

userCount = 42

Immutable variables are declared using the val keyword.

val maxUserCount = 20

As with mutable variables, the type must also be specified when declaring the variable without initializing it:

val maxUserCount: Int

maxUserCount = 20

When writing Kotlin code, immutable variables should always be used in preference to mutable variables
whenever possible.

12.5 Data Types are Objects

All of the above data types are objects, each of which provides a range of functions and properties that may
be used to perform a variety of different type-specific tasks. These functions and properties are accessed using
so-called dot notation. Dot notation involves accessing a function or property of an object by specifying the
variable name followed by a dot followed in turn by the name of the property to be accessed or function to be
called.

A string variable, for example, can be converted to uppercase via a call to the toUpperCase() function of the
String class:

val myString = "The quick brown fox"

98

Kotlin Data Types, Variables, and Nullability
val uppercase = myString.toUpperCase ()

Similarly, the length of a string is available by accessing the length property:
val length = myString.length

Functions are also available within the String class to perform tasks such as comparisons and checking for the
presence of a specific word. The following code, for example, will return a true Boolean value since the word
“fox” appears within the string assigned to the myString variable:

val result = myString.contains ("fox")

All of the number data types include functions for performing tasks such as converting from one data type to
another such as converting an Int to a Float:

val myInt = 10

val myFloat = myInt.toFloat()

A detailed overview of all of the properties and functions provided by the Kotlin data type classes is beyond the
scope of this book (there are hundreds). An exhaustive list for all data types can, however, be found within the
Kotlin reference documentation available online at:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/
12.6 Type Annotations and Type Inference

Kotlin is categorized as a statically typed programming language. This essentially means that once the data
type of a variable has been identified, that variable cannot subsequently be used to store data of any other type
without inducing a compilation error. This contrasts to loosely typed programming languages where a variable,
once declared, can subsequently be used to store other data types.

There are two ways in which the type of a variable will be identified. One approach is to use a type annotation at
the point the variable is declared in the code. This is achieved by placing a colon after the variable name followed
by the type declaration. The following line of code, for example, declares a variable named userCount as being
of type Int:

val userCount: Int = 10
In the absence of a type annotation in a declaration, the Kotlin compiler uses a technique referred to as type
inference to identify the type of the variable. When relying on type inference, the compiler looks to see what type

of value is being assigned to the variable at the point that it is initialized and uses that as the type. Consider, for
example, the following variable declarations:

var signalStrength = 2.231

val companyName = "My Company"

During compilation of the above lines of code, Kotlin will infer that the signalStrength variable is of type Double
(type inference in Kotlin defaults to Double for all floating-point numbers) and that the companyName constant
is of type String.

When a constant is declared without a type annotation it must be assigned a value at the point of declaration:
val bookTitle = "Android Studio Development Essentials"

If a type annotation is used when the constant is declared, however, the value can be assigned later in the code.
For example:

val iosBookType = false

val bookTitle: String

99

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

Kotlin Data Types, Variables, and Nullability

if (iosBookType) {

bookTitle = "i0S App Development Essentials"
} else {

bookTitle = "Android Studio Development Essentials"
}
12.7 Nullable Type

Kotlin nullable types are a concept that does not exist in most other programming languages (except for the
optional type in Swift). The purpose of nullable types is to provide a safe and consistent approach to handling
situations where a variable may have a null value assigned to it. In other words, the objective is to avoid the
common problem of code crashing with the null pointer exception errors that occur when code encounters a
null value where one was not expected.

By default, a variable in Kotlin cannot have a null value assigned to it. Consider, for example, the following code:

val username: String = null

An attempt to compile the above code will result in a compilation error similar to the following:

Error: Null cannot be a value of a non-null string type String

If a variable is required to be able to store a null value, it must be specifically declared as a nullable type by
placing a question mark (?) after the type declaration:

val username: String? = null

The username variable can now have a null value assigned to it without triggering a compiler error. Once a
variable has been declared as nullable, a range of restrictions is then imposed on that variable by the compiler

to prevent it from being used in situations where it might cause a null pointer exception to occur. A nullable
variable, cannot, for example, be assigned to a variable of non-null type as is the case in the following code:

val username: String? = null

val firstname: String = username

The above code will elicit the following error when encountered by the compiler:

Error: Type mismatch: inferred type is String? but String was expected

The only way that the assignment will be permitted is if some code is added to check that the value assigned to
the nullable variable is non-null:

val username: String? = null
if (username != null) {
val firstname: String = username

}

In the above case, the assignment will only take place if the username variable references a non-null value.

12.8 The Safe Call Operator

A nullable variable also cannot be used to call a function or to access a property in the usual way. Earlier in this
chapter, the toUpperCase() function was called on a String object. Given the possibility that this could cause a
function to be called on a null reference, the following code will be disallowed by the compiler:

val username: String? = null

val uppercase = username.toUpperCase ()

The exact error message generated by the compiler in this situation reads as follows:

100

Kotlin Data Types, Variables, and Nullability

Error: (Only safe (?.) or non-null asserted (!!.) calls are allowed on a nullable
receiver of type String?

In this instance, the compiler is essentially refusing to allow the function call to be made because no attempt
has been made to verify that the variable is non-null. One way around this is to add some code to verify that
something other than null value has been assigned to the variable before making the function call:
if (username != null) {

val uppercase = username.toUpperCase ()
}
A much more efficient way to achieve this same verification, however, is to call the function using the safe call
operator (represented by ?.) as follows:

val uppercase = username?.toUpperCase ()

In the above example, if the username variable is null, the toUpperCase() function will not be called and execution
will proceed at the next line of code. If, on the other hand, a non-null value is assigned the toUpperCase()
function will be called and the result assigned to the uppercase variable.

In addition to function calls, the safe call operator may also be used when accessing properties:

val uppercase = username?.length

12.9 Not-Null Assertion

The not-null assertion removes all of the compiler restrictions from a nullable type, allowing it to be used in
the same ways as a non-null type, even if it has been assigned a null value. This assertion is implemented using
double exclamation marks after the variable name, for example:

val username: String? = null

val length = username!!.length

The above code will now compile, but will crash with the following exception at runtime since an attempt is
being made to call a function on a nonexistent object:

Exception in thread "main" kotlin.KotlinNullPointerException

Clearly, this causes the very issue that nullable types are designed to avoid. Use of the not-null assertion is
generally discouraged and should only be used in situations where you are certain that the value will not be null.

12.10 Nullable Types and the let Function

Earlier in this chapter, we looked at how the safe call operator can be used when making a call to a function
belonging to a nullable type. This technique makes it easier to check if a value is null without having to write
an if statement every time the variable is accessed. A similar problem occurs when passing a nullable type as an
argument to a function that is expecting a non-null parameter. As an example, consider the times() function of
the Int data type. When called on an Int object and passed another integer value as an argument, the function
multiplies the two values and returns the result. When the following code is executed, for example, the value of
200 will be displayed within the console:

val firstNumber = 10

val secondNumber = 20

val result = firstNumber.times (secondNumber)

print (result)

The above example works because the secondNumber variable is a non-null type. A problem, however, occurs if
the secondNumber variable is declared as being of nullable type:

101

Kotlin Data Types, Variables, and Nullability

val firstNumber = 10

val secondNumber: Int? = 20

val result = firstNumber.times (secondNumber)

print (result)
Now the compilation will fail with the following error message because a nullable type is being passed to a
function that is expecting a non-null parameter:

Error: Type mismatch: inferred type is Int? but Int was expected

A possible solution to this problem is to write an if statement to verify that the value assigned to the variable is
non-null before making the call to the function:

val firstNumber = 10

val secondNumber: Int? = 20

if (secondNumber !'= null) ({
val result = firstNumber.times (secondNumber)
print (result)

}

A more convenient approach to addressing the issue, however, involves the use of the let function. When called
on a nullable type object, the let function converts the nullable type to a non-null variable named it which may
then be referenced within a lambda statement.
secondNumber?.let {

val result = firstNumber.times (it)

print (result)

}

Note the use of the safe call operator when calling the let function on secondVariable in the above example. This
ensures that the function is only called when the variable is assigned a non-null value.

12.11 Late Initialization (lateinit)

As previously outlined, non-null types need to be initialized when they are declared. This can be inconvenient
if the value to be assigned to the non-null variable will not be known until later in the code execution. One way
around this is to declare the variable using the lateinit modifier. This modifier designates that a value will be
initialized with a value later. This has the advantage that a non-null type can be declared before it is initialized,
with the disadvantage that the programmer is responsible for ensuring that the initialization has been performed
before attempting to access the variable. Consider the following variable declaration:

var myName: String
Clearly, this is invalid since the variable is a non-null type but has not been assigned a value. Suppose, however,

that the value to be assigned to the variable will not be known until later in the program execution. In this case,
the lateinit modifier can be used as follows:

lateinit var myName: String

With the variable declared in this way, the value can be assigned later, for example:

myName = "John Smith"

print ("My Name is " + myName)

Of course, if the variable is accessed before it is initialized, the code will fail with an exception:

102

Kotlin Data Types, Variables, and Nullability

lateinit var myName: String
print ("My Name is " + myName)

Exception in thread "main" kotlin.UninitializedPropertyAccessException: lateinit
property myName has not been initialized

To verify whether a lateinit variable has been initialized, check the isInitialized property on the variable. To do
this, we need to access the properties of the variable by prefixing the name with the “:” operator:
if (::myName.isInitialized) {

print ("My Name is " + myName)

)
12.12 The Elvis Operator

The Kotlin Elvis operator can be used in conjunction with nullable types to define a default value that is to be
returned if a value or expression result is null. The Elvis operator (?:) is used to separate two expressions. If the
expression on the left does not resolve to a null value that value is returned, otherwise the result of the rightmost
expression is returned. This can be thought of as a quick alternative to writing an if-else statement to check for
a null value. Consider the following code:
if (myString != null) {

return myString
} else {

return "String is null"

}

The same result can be achieved with less coding using the Elvis operator as follows:

return myString ?: "String is null"

12.13 Type Casting and Type Checking

When compiling Kotlin code, the compiler can typically infer the type of an object. Situations will occur,
however, where the compiler is unable to identify the specific type. This is often the case when a value type is
ambiguous or an unspecified object is returned from a function call. In this situation, it may be necessary to let
the compiler know the type of object that your code is expecting or to write code that checks whether the object
is of a particular type.

Letting the compiler know the type of object that is expected is known as type casting and is achieved within
Kotlin code using the as cast operator. The following code, for example, lets the compiler know that the result
returned from the getSystemService() method needs to be treated as a KeyguardManager object:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as KeyguardManager
The Kotlin language includes both safe and unsafe cast operators. The above cast is unsafe and will cause the app

to throw an exception if the cast cannot be performed. A safe cast, on the other hand, uses the as? operator and
returns null if the cast cannot be performed:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as? KeyguardManager
A type check can be performed to verify that an object conforms to a specific type using the is operator, for
example:
if (keyMgr is KeyguardManager) {
// It is a KeyguardManager object

103

Kotlin Data Types, Variables, and Nullability

12.14 Summary

This chapter has begun the introduction to Kotlin by exploring data types together with an overview of how to
declare variables. The chapter has also introduced concepts such as nullable types, typecasting and type checking,
and the Elvis operator, each of which is an integral part of Kotlin programming and designed specifically to
make code writing less prone to error.

104

Chapter 19

19. Understanding Android
Application and Activity Lifecycles

In earlier chapters, we learned that Android applications run within processes and comprise multiple components
in the form of activities, services, and broadcast receivers. This chapter aims to expand on this knowledge by
looking at the lifecycle of applications and activities within the Android runtime system.

Regardless of the fanfare about how much memory and computing power resides in the mobile devices of
today compared to the desktop systems of yesterday, it is important to keep in mind that these devices are
still considered to be “resource constrained” by the standards of modern desktop and laptop-based systems,
particularly in terms of memory. As such, a key responsibility of the Android system is to ensure that these
limited resources are managed effectively and that the operating system and the applications running on it
remain responsive to the user at all times. To achieve this, Android is given complete control over the lifecycle
and state of the processes in which the applications run and the individual components that comprise those
applications.

An important factor in developing Android applications, therefore, is to understand Android’s application and
activity lifecycle management models of Android, and how an application can react to the state changes likely to
be imposed upon it during its execution lifetime.

19.1 Android Applications and Resource Management
The operating system views each running Android application as a separate process. If the system identifies that

resources on the device are reaching capacity, it will take steps to terminate processes to free up memory.

When determining which process to terminate to free up memory, the system considers both the priority and
state of all currently running processes, combining these factors to create what is referred to by Google as
an importance hierarchy. Processes are then terminated, starting with the lowest priority and working up the
hierarchy until sufficient resources have been liberated for the system to function.

19.2 Android Process States

Processes host applications, and applications are made up of components. Within an Android system, the
current state of a process is defined by the highest-ranking active component within the application it hosts. As
outlined in Figure 19-1, a process can be in one of the following five states at any given time:

149

Understanding Android Application and Activity Lifecycles

Figure 19-1
19.2.1 Foreground Process

These processes are assigned the highest level of priority. At any one time, there are unlikely to be more than one
or two foreground processes active, which are usually the last to be terminated by the system. A process must
meet one or more of the following criteria to qualify for foreground status:

« Hosts an activity with which the user is currently interacting.
 Hosts a Service connected to the activity with which the user is interacting.

« Hosts a Service that has indicated, via a call to startForeground(), that termination would disrupt the user
experience.

« Hosts a Service executing either its onCreate(), onResume(), or onStart() callbacks.

« Hosts a Broadcast Receiver that is currently executing its onReceive() method.

19.2.2 Visible Process

A process containing an activity that is visible to the user but is not the activity with which the user is interacting
is classified as a “visible process”. This is typically the case when an activity in the process is visible to the user,
but another activity, such as a partial screen or dialog, is in the foreground. A process is also eligible for visible
status if it hosts a Service that is, itself, bound to a visible or foreground activity.

19.2.3 Service Process

Processes that contain a Service that has already been started and is currently executing.

19.2.4 Background Process

A process that contains one or more activities that are not currently visible to the user and does not host a
Service that qualifies for Service Process status. Processes that fall into this category are at high risk of termination
if additional memory needs to be freed for higher-priority processes. Android maintains a dynamic list of
background processes, terminating processes in chronological order such that processes that were the least
recently in the foreground are killed first.

150

Understanding Android Application and Activity Lifecycles

19.2.5 Empty Process

Empty processes no longer contain active applications and are held in memory, ready to serve as hosts for
newly launched applications. This is analogous to keeping the doors open and the engine running on a bus in
anticipation of passengers arriving. Such processes are considered the lowest priority and are the first to be killed
to free up resources.

19.3 Inter-Process Dependencies

Determining the highest priority process is more complex than outlined in the preceding section because
processes can often be interdependent. As such, when determining the priority of a process, the Android
system will also consider whether the process is in some way serving another process of higher priority (for
example, a service process acting as the content provider for a foreground process). As a basic rule, the Android
documentation states that a process can never be ranked lower than another process that it is currently serving.

19.4 The Activity Lifecycle

As we have previously determined, the state of an Android process is primarily determined by the status of
the activities and components that make up the application it hosts. It is important to understand, therefore,
that these activities also transition through different states during the execution lifetime of an application. The
current state of an activity is determined, in part, by its position in something called the Activity Stack.

19.5 The Activity Stack

The runtime system maintains an Activity Stack for each application running on an Android device. When an
application is launched, the first of the application’s activities to be started is placed onto the stack. When a second
activity is started, it is placed on the top of the stack, and the previous activity is pushed down. The activity at the
top of the stack is called the active (or running) activity. When the active activity exits, it is popped off the stack
by the runtime and the activity located immediately beneath it in the stack becomes the current active activity.
For example, the activity at the top of the stack might exit because the task for which it is responsible has been
completed. Alternatively, the user may have selected a “Back” button on the screen to return to the previous
activity, causing the current activity to be popped off the stack by the runtime system and destroyed. A visual
representation of the Android Activity Stack is illustrated in Figure 19-2.

As shown in the diagram, new activities are pushed onto the top of the stack when they are started. The current
active activity is located at the top of the stack until it is either pushed down the stack by a new activity or popped
off the stack when it exits or the user navigates to the previous activity. If resources become constrained, the
runtime will kill activities, starting with those at the bottom of the stack.

The Activity Stack is what is referred to in programming terminology as a Last-In-First-Out (LIFO) stack in that
the last item to be pushed onto the stack is the first to be popped off.

151

Understanding Android Application and Activity Lifecycles

Figure 19-2
19.6 Activity States

An activity can be in one of several states during the course of its execution within an application:

« Active / Running - The activity is at the top of the Activity Stack, is the foreground task visible on the device
screen, has focus, and is currently interacting with the user. This is the least likely activity to be terminated in
the event of a resource shortage.

o Paused - The activity is visible to the user but does not currently have focus (typically because the current
active activity partially obscures this activity). Paused activities are held in memory, remain attached to the
window manager, retain all state information, and can quickly be restored to active status when moved to the
top of the Activity Stack.

o Stopped - The activity is currently not visible to the user (in other words, it is obscured on the device display
by other activities). As with paused activities, it retains all state and member information but is at higher risk
of termination in low-memory situations.

« Killed - The runtime system has terminated the activity to free up memory and is no longer present on the
Activity Stack. Such activities must be restarted if required by the application.

19.7 Configuration Changes

So far in this chapter, we have looked at two causes for the change in the state of an Android activity, namely
the movement of an activity between the foreground and background and the termination of an activity by
the runtime system to free up memory. In fact, there is a third scenario in which the state of an activity can
dramatically change, which involves a change to the device configuration.

152

Understanding Android Application and Activity Lifecycles

By default, any configuration change that impacts the appearance of an activity (such as rotating the orientation
of the device between portrait and landscape or changing a system font setting) will cause the activity to be
destroyed and recreated. The reasoning behind this is that such changes affect resources such as the layout of the
user interface, and destroying and recreating impacted activities is the quickest way for an activity to respond to
the configuration change. It is, however, possible to configure an activity so that the system does not restart it in
response to specific configuration changes.

19.8 Handling State Change

It should be clear from this chapter that an application and, by definition, the components contained therein will
transition through many states during its lifespan. Of particular importance is the fact that these state changes
(up to and including complete termination) are imposed upon the application by the Android runtime subject
to the user’s actions and the availability of resources on the device.

In practice, however, these state changes are not imposed entirely without notice, and an application will, in most
circumstances, be notified by the runtime system of the changes and given the opportunity to react accordingly.
This will typically involve saving or restoring both internal data structures and user interface state, thereby
allowing the user to switch seamlessly between applications and providing at least the appearance of multiple
concurrently running applications.

Android provides two ways to handle the changes to the lifecycle states of the objects within an app. One
approach involves responding to state change method calls from the operating system and is covered in detail in
the next chapter entitled “Handling Android Activity State Changes”.

A new approach that Google recommends involves the lifecycle classes included with the Jetpack Android
Architecture components, introduced in “Modern Android App Architecture with Jetpack” and explained in more
detail in the chapter entitled “Working with Android Lifecycle-Aware Components”.

19.9 Summary

Mobile devices are typically considered to be resource constrained, particularly in terms of onboard memory
capacity. Consequently, a prime responsibility of the Android operating system is to ensure that applications,
and the operating system in general, remain responsive to the user.

Applications are hosted on Android within processes. Each application, in turn, comprises components in the
form of activities and Services.

The Android runtime system has the power to terminate both processes and individual activities to free up
memory. Process state is considered by the runtime system when deciding whether a process is a suitable
candidate for termination. The state of a process largely depends upon the status of the activities hosted by that
process.

The key message of this chapter is that an application moves through various states during its execution
lifespan and has very little control over its destiny within the Android runtime environment. Those processes
and activities not directly interacting with the user run a higher risk of termination by the runtime system.
An essential element of Android application development, therefore, involves the ability of an application to
respond to state change notifications from the operating system.

153

Chapter 27

27. Working with ConstraintLayout
Chains and Ratios in Android Studio

The previous chapters have introduced the key features of the ConstraintLayout class and outlined the best
practices for ConstraintLayout-based user interface design within the Android Studio Layout Editor. Although
the concepts of ConstraintLayout chains and ratios were outlined in the chapter entitled “A Guide to the Android
ConstraintLayout”, we have not yet addressed how to use these features within the Layout Editor. Therefore,
this chapter’s focus is to provide practical steps on how to create and manage chains and ratios when using the
ConstraintLayout class.

27.1 Creating a Chain

Chains may be implemented by adding a few lines to an activity’s XML layout resource file or by using some
chain-specific features of the Layout Editor.

Consider a layout consisting of three Button widgets constrained to be positioned in the top-left, top-center, and
top-right of the ConstraintLayout parent, as illustrated in Figure 27-1:

Figure 27-1
To represent such a layout, the XML resource layout file might contain the following entries for the button
widgets:
<Button
android:id="@+id/buttonl”
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginStart="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintStart toStartOf="parent"
app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button2"
android:layout width="wrap content"

android:layout height="wrap content"

227

Working with ConstraintLayout Chains and Ratios in Android Studio

android:layout marginkEnd="8dp"

android:layout marginStart="8dp"

android:layout marginTop="16dp"
android:text="Button"

app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toStartOf="@+id/button3”
app:layout constraintStart toEndOf="@+id/buttonl”
app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button3"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toEndOf="parent"
app:layout constraintTop toTopOf="parent" />

As currently configured, there are no bi-directional constraints to group these widgets into a chain. To address
this, additional constraints need to be added from the right-hand side of button1 to the left side of button2 and
from the left side of button3 to the right side of button2 as follows:
<Button

android:id="@+id/buttonl"

android:layout width="wrap content"

android:layout height="wrap content"

android:layout marginStart="8dp"

android:layout marginTop="16dp"

android:text="Button"

app:layout constraintHorizontal bias="0.5"

app:layout constraintStart toStartOf="parent"

app:layout constraintTop toTopOf="parent"

app:layout_constraintEnd toStartOf="@+id/button2" />

<Button
android:id="@+id/button2"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginStart="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toStartOf="@+id/button3”
app:layout constraintStart toEndOf="@+id/buttonl”

228

Working with ConstraintLayout Chains and Ratios in Android Studio

app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button3"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toEndOf="parent"
app:layout constraintTop toTopOf="parent"
app:layout constraintStart toEndOf="@+id/button2" />

With these changes, the widgets now have bi-directional horizontal constraints configured. This constitutes a
ConstraintLayout chain represented visually within the Layout Editor by chain connections, as shown in Figure
27-2 below. Note that the chain has defaulted to the spread chain style in this configuration.

Figure 27-2

A chain may also be created by right-clicking on one of the views and selecting the Chains -> Create Horizontal
Chain or Chains -> Create Vertical Chain menu options.

27.2 Changing the Chain Style

If no chain style is configured, the ConstraintLayout will default to the spread chain style. The chain style can be
altered by right-clicking any of the widgets in the chain and selecting the Cycle Chain Mode menu option. Each
time the menu option is clicked, the style will switch to another setting in the order of spread, spread inside, and
packed.

Alternatively, the style may be specified in the Attributes tool window unfolding the layout_constraints property
and changing either the horizontal_chainStyle or vertical_chainStyle property depending on the orientation of
the chain:

Figure 27-3

229

Working with ConstraintLayout Chains and Ratios in Android Studio

27.3 Spread Inside Chain Style

Figure 27-4 illustrates the effect of changing the chain style to the spread inside chain style using the above
techniques:

Figure 27-4
27.4 Packed Chain Style

Using the same technique, changing the chain style property to packed causes the layout to change, as shown in
Figure 27-5:

Figure 27-5
27.5 Packed Chain Style with Bias

The positioning of the packed chain may be influenced by applying a bias value. The bias can be between 0.0 and
1.0, with 0.5 representing the parent’s center. Bias is controlled by selecting the chain head widget and assigning
a value to the layout_constraintHorizontal_bias or layout_constraintVertical_bias attribute in the Attributes
panel. Figure 27-6 shows a packed chain with a horizontal bias setting of 0.2:

Figure 27-6
27.6 Weighted Chain

The final area of chains to explore involves weighting the individual widgets to control how much space each
widget in the chain occupies within the available space. A weighted chain may only be implemented using
the spread chain style, and any widget within the chain that responds to the weight property must have the
corresponding dimension property (height for a vertical chain and width for a horizontal chain) configured
for match constraint mode. Match constraint mode for a widget dimension may be configured by selecting the
widget, displaying the Attributes panel, and changing the dimension to match_constraint (equivalent to 0dp).
In Figure 27-7, for example, the layout_width constraint for a button has been set to match_constraint (0dp) to
indicate that the width of the widget is to be determined based on the prevailing constraint settings:

230

Working with ConstraintLayout Chains and Ratios in Android Studio

Figure 27-7

Assuming that the spread chain style has been selected and all three buttons have been configured such that the
width dimension is set to match the constraints, the widgets in the chain will expand equally to fill the available
space:

Figure 27-8

The amount of space occupied by each widget relative to the other widgets in the chain can be controlled by
adding weight properties to the widgets. Figure 27-9 shows the effect of setting the layout_constraintHorizontal_
weight property to 4 on buttonl, and to 2 on both button2 and button3:

Figure 27-9
As a result of these weighting values, button1 occupies half of the space (4/8), while button2 and button3 each
occupy one-quarter (2/8) of the space.

27.7 Working with Ratios

ConstraintLayout ratios allow one widget dimension to be sized relative to the widget’s other dimension (also
referred to as aspect ratio). For example, an aspect ratio setting could be applied to an ImageView to ensure that
its width is always twice its height.

231

Working with ConstraintLayout Chains and Ratios in Android Studio

A dimension ratio constraint is configured by setting the constrained dimension to match constraint mode
and configuring the layout_constraintDimensionRatio attribute on that widget to the required ratio. This ratio
value may be specified as a float value or a width:height ratio setting. The following XML excerpt, for example,
configures a ratio of 2:1 on an ImageView widget:
<ImageView

android:layout width="0dp"

android:layout height="100dp"

android:i1d="@+id/imageView"

app:layout constraintDimensionRatio="2:1" />

The above example demonstrates how to configure a ratio when only one dimension is set to match constraint. A
ratio may also be applied when both dimensions are set to match constraint mode. This involves specifying the
ratio preceded with either an H or a W to indicate which of the dimensions is constrained relative to the other.

Consider, for example, the following XML excerpt for an ImageView object:
<ImageView
android:layout width="0dp"
android:layout height="0dp"
android:1d="@+id/imageView"
app:layout constraintBottom toBottomOf="parent"
app:layout constraintRight toRightOf="parent"
app:layout constraintLeft toLeftOf="parent"
app:layout constraintTop toTopOf="parent"

app:layout constraintDimensionRatio="W,1:3" />

In the above example, the height will be defined subject to the constraints applied to it. In this case, constraints
have been configured such that it is attached to the top and bottom of the parent view, essentially stretching the
widget to fill the entire height of the parent. On the other hand, the width dimension has been constrained to
be one-third of the ImageView’s height dimension. Consequently, whatever size screen or orientation the layout
appears on, the ImageView will always be the same height as the parent and the width one-third of that height.

The same results may also be achieved without manually editing the XML resource file. Whenever a widget
dimension is set to match constraint mode, a ratio control toggle appears in the Inspector area of the property
panel. Figure 27-10, for example, shows the layout width and height attributes of a button widget set to match
constraint mode and 100dp respectively, and highlights the ratio control toggle in the widget sizing preview:

Figure 27-10

By default, the ratio sizing control is toggled off. Clicking on the control enables the ratio constraint and displays
an additional field where the ratio may be changed:

232

Working with ConstraintLayout Chains and Ratios in Android Studio

Figure 27-11
27.8 Summary

Both chains and ratios are powerful features of the ConstraintLayout class intended to provide additional
options for designing flexible and responsive user interface layouts within Android applications. As outlined in
this chapter, the Android Studio Layout Editor has been enhanced to make it easier to use these features during
the user interface design process.

233

Chapter 40

40. Modern Android App
Architecture with Jetpack

For many years, Google did not recommend a specific approach to building Android apps other than to provide
tools and development kits while letting developers decide what worked best for a particular project or individual
programming style. That changed in 2017 with the introduction of the Android Architecture Components,
which, in turn, became part of Android Jetpack when it was released in 2018.

This chapter provides an overview of the concepts of Jetpack, Android app architecture recommendations, and
some key architecture components. Once the basics have been covered, these topics will be covered in more
detail and demonstrated through practical examples in later chapters.

40.1 What is Android Jetpack?

Android Jetpack consists of Android Studio, the Android Architecture Components, the Android Support
Library, and a set of guidelines recommending how an Android App should be structured. The Android
Architecture Components are designed to make it quicker and easier to perform common tasks when developing
Android apps while also conforming to the key principle of the architectural guidelines.

While all Android Architecture Components will be covered in this book, this chapter will focus on the key
architectural guidelines and the ViewModel, LiveData, and Lifecycle components while introducing Data
Binding and Repositories.

Before moving on, it is important to understand that the Jetpack approach to app development is optional.
While highlighting some of the shortcomings of other techniques that have gained popularity over the years,
Google stopped short of completely condemning those approaches to app development. Google is taking the
position that while there is no right or wrong way to develop an app, there is a reccommended way.

40.2 The “Old” Architecture

In the chapter entitled “Creating an Example Android App in Android Studio”, an Android project was created
consisting of a single activity that contained all of the code for presenting and managing the user interface
together with the back-end logic of the app. Until the introduction of Jetpack, the most common architecture
followed this paradigm with apps consisting of multiple activities (one for each screen within the app), with each
activity class to some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example, an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

40.3 Modern Android Architecture

At the most basic level, Google now advocates single-activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept referred to as “separation of concerns”). One of the keys to this approach

315

Modern Android App Architecture with Jetpack

is the ViewModel component.

40.4 The ViewModel Component

The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the
code responsible for displaying and managing the user interface and interacting with the operating system.
When designed this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data those controllers need.

The ViewModel only knows about the data model and corresponding logic. It knows nothing about the user
interface and does not attempt to directly access or respond to events relating to views within the user interface.
When a Ul controller needs data to display, it asks the ViewModel to provide it. Similarly, when the user enters
data into a view within the user interface, the UI controller passes it to the ViewModel for handling.

This separation of responsibility addresses the issues relating to the lifecycle of UI controllers. Regardless of how
often the UT controller is recreated during the lifecycle of an app, the ViewModel instances remain in memory,
thereby maintaining data consistency. For example, a ViewModel used by an activity will remain in memory
until the activity finishes, which, in the single activity app, is not until the app exits.

Figure 40-1
40.5 The LiveData Component

Consider an app that displays real-time data, such as the current price of a financial stock. The app could
use a stock price web service to continuously update the data model within the ViewModel with the latest
information. This real-time data is of use only if it is displayed to the user promptly. There are only two ways that
the UI controller can ensure that the latest data is displayed in the user interface. One option is for the controller
to continuously check with the ViewModel to determine if the data has changed since it was last displayed.
However, the problem with this approach is that it could be more efficient. To maintain the real-time nature of
the data feed, the UI controller would have to run on a loop, continuously checking for the data to change.

A better solution would be for the UI controller to receive a notification when a specific data item within a
ViewModel changes. This is made possible by using the LiveData component. LiveData is a data holder that
allows a value to become observable. In basic terms, an observable object can notify other objects when changes
to its data occur, thereby solving the problem of ensuring that the user interface always matches the data within
the ViewModel.

This means, for example, that a UI controller interested in a ViewModel value can set up an observer, which will,
in turn, be notified when that value changes. In our hypothetical application, for example, the stock price would

316

Modern Android App Architecture with Jetpack

be wrapped in a LiveData object within the ViewModel, and the UI controller would assign an observer to the
value, declaring a method to be called when the value changes. When triggered by data change, this method will
read the updated value from the ViewModel and use it to update the user interface.

Figure 40-2

A LiveData instance may also be declared as mutable, allowing the observing entity to update the underlying
value held within the LiveData object. The user might, for example, enter a value in the user interface that needs
to overwrite the value stored in the ViewModel.

Another of the key advantages of using LiveData is that it is aware of the lifecycle state of its observers. If,
for example, an activity contains a LiveData observer, the corresponding LiveData object will know when the
activity’s lifecycle state changes and respond accordingly. If the activity is paused (perhaps the app is put into the
background), the LiveData object will stop sending events to the observer. Suppose the activity has just started
or resumes after being paused. In that case, the LiveData object will send a LiveData event to the observer so
that the activity has the most up-to-date value. Similarly, the LiveData instance will know when the activity is
destroyed and remove the observer to free up resources.

So far, we've only talked about UI controllers using observers. In practice, however, an observer can be used
within any object that conforms to the Jetpack approach to lifecycle management.

40.6 ViewModel Saved State

Android allows the user to place an active app in the background and return to it after performing other tasks
on the device (including running other apps). When a device runs low on resources, the operating system will
rectify this by terminating background app processes, starting with the least recently used app. However, when
the user returns to the terminated background app, it should appear in the same state as when it was placed in
the background, regardless of whether it was terminated. In terms of the data associated with a ViewModel, this
can be implemented using the ViewModel Saved State module. This module allows values to be stored in the
app’s saved state and restored in case of system-initiated process termination. This topic will be covered later in
the “An Android ViewModel Saved State Tutorial” chapter.

40.7 LiveData and Data Binding

Android Jetpack includes the Data Binding Library, which allows data in a ViewModel to be mapped directly to
specific views within the XML user interface layout file. In the AndroidSample project created earlier, code had
to be written to obtain references to the EditText and TextView views and to set and get the text properties to

317

Modern Android App Architecture with Jetpack

reflect data changes. Data binding allows the LiveData value stored in the ViewModel to be referenced directly
within the XML layout file avoiding the need to write code to keep the layout views updated.

Figure 40-3

Data binding will be covered in greater detail, starting with the chapter “An Overview of Android Jetpack Data
Binding”.

40.8 Android Lifecycles

The duration from when an Android component is created to the point that it is destroyed is called the lifecycle.
During this lifecycle, the component will change between different lifecycle states, usually under the operating
systemy’s control and in response to user actions. An activity, for example, will begin in the initialized state before
transitioning to the created state. Once the activity runs, it will switch to the started state, from which it will cycle
through various states, including created, started, resumed, and destroyed.

Many Android Framework classes and components allow other objects to access their current state. Lifecycle
observers may also be used so that an object receives a notification when the lifecycle state of another object
changes. The ViewModel component uses this technique behind the scenes to identify when an observer
has restarted or been destroyed. This functionality is not limited to Android framework and architecture
components. It may also be built into any other classes using a set of lifecycle components included with the
architecture components.

Objects that can detect and react to lifecycle state changes in other objects are said to be lifecycle-aware. In
contrast, objects that provide access to their lifecycle state are called lifecycle owners. The chapter entitled
“Working with Android Lifecycle-Aware Components” will cover Lifecycles in greater detail.

40.9 Repository Modules

If a ViewModel obtains data from one or more external sources (such as databases or web services, it is important
to separate the code involved in handling those data sources from the ViewModel class. Failure to do this would,
after all, violate the separation of concerns guidelines. To avoid mixing this functionality with the ViewModel,
Google’s architecture guidelines recommend placing this code in a separate Repository module.

A repository is not an Android architecture component but a Kotlin class created by the app developer that is
responsible for interfacing with the various data sources. The class then provides an interface to the ViewModel,
allowing that data to be stored in the model.

318

Modern Android App Architecture with Jetpack

Figure 40-4
40.10 Summary

Until recently, Google has tended not to recommend any particular approach to structuring an Android app.
That has now changed with the introduction of Android Jetpack, consisting of tools, components, libraries, and
architecture guidelines. Google now recommends that an app project be divided into separate modules, each
responsible for a particular area of functionality, otherwise known as “separation of concerns”.

In particular, the guidelines recommend separating the view data model of an app from the code responsible
for handling the user interface. In addition, the code responsible for gathering data from data sources such as
web services or databases should be built into a separate repository module instead of being bundled with the
view model.

Android Jetpack includes the Android Architecture Components, designed to make developing apps that
conform to the recommended guidelines easier. This chapter has introduced the ViewModel, LiveData, and
Lifecycle components. These will be covered in more detail, starting with the next chapter. Other architecture
components not mentioned in this chapter will be covered later in the book.

319

Chapter 43

43. An Overview of Android Jetpack
Data Binding

In the chapter entitled “Modern Android App Architecture with Jetpack”, we introduced the concept of Android
Data Binding. We explained how it is used to directly connect the views in a user interface layout to the methods
and data located in other objects within an app without the need to write code. This chapter will provide more
details on data binding, emphasizing how data binding is implemented within an Android Studio project. The
tutorial in the next chapter (“An Android Jetpack Data Binding Tutorial”) will provide a practical example of data
binding in action.

43.1 An Overview of Data Binding

The Android Jetpack Data Binding Library provides data binding support, primarily providing a simple way to
connect the views in a user interface layout to the data stored within the app’s code (typically within ViewModel
instances). Data binding also provides a convenient way to map user interface controls, such as Button widgets,
to event and listener methods within other objects, such as UI controllers and ViewModel instances.

Data binding becomes particularly powerful when used in conjunction with the LiveData component. Consider,
for example, an EditText view bound to a LiveData variable within a ViewModel using data binding. When
connected in this way, any changes to the data value in the ViewModel will automatically appear within the
EditText view, and when using two-way binding, any data typed into the EditText will automatically be used
to update the LiveData value. Perhaps most impressive is that this can be achieved with no code beyond that
necessary to initially set up the binding.

Connecting an interactive view, such as a Button widget, to a method within a UI controller traditionally
required that the developer write code to implement a listener method to be called when the button is clicked.
Data binding makes this as simple as referencing the method to be called within the Button element in the layout
XML file.

43.2 The Key Components of Data Binding

An Android Studio project is not configured for data binding support by default. Several elements must be
combined before an app can begin using data binding. These involve the project build configuration, the
layout XML file, data binding classes, and the use of the data binding expression language. While this may
appear overwhelming at first, when taken separately, these are quite simple steps that, once completed, are
more than worthwhile in terms of saved coding effort. Each element will be covered in detail in the remainder
of this chapter. Once these basics have been covered, the next chapter will work through a detailed tutorial
demonstrating these steps.

43.2.1 The Project Build Configuration

Before a project can use data binding, it must be configured to use the Android Data Binding Library and to
enable support for data binding classes and the binding syntax. Fortunately, this can be achieved with just a few
lines added to the module level build.gradle.kts file (the one listed as build.gradle.kts (Module: app) under Gradle
Scripts in the Project tool window). The following lists a partial build file with data binding enabled:

331

An Overview of Android Jetpack Data Binding

android {

buildFeatures {
dataBinding = true

43.2.2 The Data Binding Layout File

As we have seen in previous chapters, the user interfaces for an app are typically contained within an XML layout
file. Before the views contained within one of these layout files can take advantage of data binding, the layout file
must be converted to a data binding layout file.

As outlined earlier in the book, XML layout files define the hierarchy of components in the layout, starting with a
top-level or root view. Invariably, this root view takes the form of a layout container such as a ConstraintLayout,
FrameLayout, or LinearLayout instance, as is the case in the fragment_main.xml file for the ViewModelDemo
project:

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/main"

android:layout width="match parent"

android:layout height="match parent"

tools:context=".ui.main.MainFragment">

</androidx.constraintlayout.widget.ConstraintLayout>

To use data binding, the layout hierarchy must have a layout component as the root view, which, in turn, becomes
the parent of the current root view.

In the case of the above example, this would require that the following changes be made to the existing layout
file:

<?xml version="1.0" encoding="utf-8"?>
<layout xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"

xmlns:android="http://schemas.android.com/apk/res/android">

<androidx.constraintlayout.widget.ConstraintLayout

k] . i - K| 1 NN |
IS app— 1Tt tp. STIICIIdS . dITUL ULTUTCUI/ dPR7LTo~dutuU

—xmins:rtoots="http://schemasandroid-com/toots™
android:id="Q@+id/main"

android:layout width="match parent"

332

An Overview of Android Jetpack Data Binding

android:layout height="match parent"

tools:context=".ui.main.MainFragment">

</androidx.constraintlayout.widget.ConstraintLayout>
</layout>

43.2.3 The Layout File Data Element

The data binding layout file needs some way to declare the classes within the project to which the views in the
layout are to be bound (for example, a ViewModel or UI controller). Having declared these classes, the layout
file will need a variable name to reference those instances within binding expressions.

This is achieved using the data element, an example of which is shown below:

<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"

xmlns:android="http://schemas.android.com/apk/res/android">

<data>
<variable
name="myViewModel"
type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />
</data>

<androidx.constraintlayout.widget.ConstraintLayout
android:id="@+id/main"
android:layout width="match parent"
android:layout height="match parent"

tools:context=".ui.main.MainFragment">

</layout>

The above data element declares a new variable named myViewModel of type MainViewModel (note that it is
necessary to declare the full package name of the MyViewModel class when declaring the variable).

The data element can import other classes that may then be referenced within binding expressions elsewhere in
the layout file. For example, if you have a class containing a method that needs to be called on a value before it
is displayed to the user, the class could be imported as follows:

<data>
<import type="com.ebookfrenzy.MyFormattingTools" />
<variable
name="viewModel"
type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />
</data>

333

An Overview of Android Jetpack Data Binding
43.2.4 The Binding Classes

For each class referenced in the data element within the binding layout file, Android Studio will automatically
generate a corresponding binding class. This subclass of the Android ViewDataBinding class will be named
based on the layout filename using word capitalization and the Binding suffix. Therefore, the binding class for a
layout file named fragment_main.xml file will be named FragmentMainBinding. The binding class contains the
bindings specified within the layout file and maps them to the variables and methods within the bound objects.

Although the binding class is generated automatically, code must be written to create an instance of the class
based on the corresponding data binding layout file. Fortunately, this can be achieved by making use of the
DataBindingUtil class.

The initialization code for an Activity or Fragment will typically set the content view or “inflate” the user
interface layout file. This means that the code opens the layout file, parses the XML, and creates and configures
all of the view objects in memory. In the case of an existing Activity class, the code to achieve this can be found
in the onCreate() method and will read as follows:

setContentView (R.layout.activity main)

In the case of a Fragment, this takes place in the onCreateView() method:

return inflater.inflate (R.layout.fragment main, container, false)

All that is needed to create the binding class instances within an Activity class is to modify this initialization
code as follows:

lateinit var binding: ActivityMainBinding

binding = DataBindingUtil.inflate (

inflater, R.layout.activity main, container, false)

In the case of a Fragment, the code would read as follows:

lateinit var binding: FragmentMainBinding

binding = DataBindingUtil.inflate (

inflater, R.layout.fragment main, container, false)
binding.setLifecycleOwner (this)

return binding.root

43.2.5 Data Binding Variable Configuration

As outlined above, the data binding layout file contains the data element, which contains variable elements
consisting of variable names and the class types to which the bindings are to be established. For example:

<data>
<variable
name="viewModel"
type="com.ebookfrenzy.viewmodeldemo.ui.main.MainViewModel" />
<variable
name="uiController"
type="com.ebookfrenzy.viewmodeldemo databinding.ui.main.MainFragment"
/>
</data>

334

An Overview of Android Jetpack Data Binding

In the above example, the first variable knows that it will be binding to an instance of a ViewModel class of type

MainViewModel but has yet to be connected to an actual MainViewModel object instance. This requires the

additional step of assigning the MainViewModel instance used within the app to the variable declared in the

layout file. This is performed via a call to the setVariable() method of the data binding instance, a reference to

which was obtained in the previous chapter:

var MainViewModel mViewModel =
ViewModelProvider (this) .get (MainViewModel::class.java)

binding.setVariable (mViewModel, viewModel)

The second variable in the above data element references a UT controller class in the form of a Fragment named
MainFragment. In this situation, the code within a UI controller (be it an Activity or Fragment) would need to
assign itself to the variable as follows:

binding.setVariable (uiController, this)

43.2.6 Binding Expressions (One-Way)

Binding expressions define how a particular view interacts with bound objects. For example, a binding expression
on a Button might declare which method on an object is called in response to a click. Alternatively, a binding
expression might define which data value stored in a ViewModel is to appear within a TextView and how it is to
be presented and formatted.

Binding expressions use a declarative language that allows logic and access to other classes and methods to
decide how bound data is used. Expressions can, for example, include mathematical expressions, method calls,
string concatenations, access to array elements, and comparison operations. In addition, all standard Java
language libraries are imported by default, so many things that can be achieved in Java or Kotlin can also be
performed in a binding expression. As already discussed, the data element may also be used to import custom
classes to add more capability to expressions.

A binding expression begins with an @ symbol followed by the expression enclosed in curly braces ({}).

Consider, for example, a ViewModel instance containing a variable named result. Assume that this class has been
assigned to a variable named viewModel within the data binding layout file and needs to be bound to a TextView
object so that the view always displays the latest result value. If this value were stored as a String object, this
would be declared within the layout file as follows:
<TextView

android:id="@+id/resultText"

android:layout width="wrap content"

android:layout height="wrap content"

android: text="@{viewModel.result}"

app:layout constraintBottom toBottomOf="parent"

app:layout constraintEnd toEndOf="parent"

app:layout constraintStart toStartOf="parent"

app:layout constraintTop toTopOf="parent" />

In the above XML, the text property is set to the value stored in the result LiveData property of the viewModel
object.

Consider, however, that the result is stored within the model as a Float value instead of a String. That being
the case, the above expression would cause a compilation error. Clearly, the Float value must be converted to a
string before the TextView can display it. To resolve issues such as this, the binding expression can include the
necessary steps to complete the conversion using the standard Java language classes:

335

An Overview of Android Jetpack Data Binding

android:text="@{String.valueOf (viewModel.result) }"

When running the app after making this change, it is important to be aware that the following warning may
appear in the Android Studio console:

warning: myViewModel.result.getValue() is a boxed field but needs to be un-boxed

to execute String.valueOf (viewModel.result.getValue()).

Values in Java can take the form of primitive values such as the boolean type (referred to as being unboxed) or
wrapped in a Java object such as the Boolean type and accessed via reference to that object (i.e., boxed). The
unboxing process involves unwrapping the primitive value from the object.

To avoid this message, wrap the offending operation in a safeUnbox() call as follows:
android:text="@{String.valueOf (safeUnbox (myViewModel.result)) }"

String concatenation may also be used. For example, to include the word “dollars” after the result string value,
the following expression would be used:
android:text="@{String.valueOf (safeUnbox (myViewModel.result)) + " dollars"}'

Note that since the appended result string is wrapped in double quotes, the expression is now encapsulated with
single quotes to avoid syntax errors.

The expression syntax also allows ternary statements to be declared. In the following expression, the view will
display different text depending on whether or not the result value is greater than 10.

@{myViewModel.result > 10 ? "Out of range" : "In range"}

Expressions may also be constructed to access specific elements in a data array:

@{myViewModel.resultsArray[3]}

43.2.7 Binding Expressions (Two-Way)

The type of expression covered so far is called one-way binding. In other words, the layout is constantly updated
as the corresponding value changes, but changes to the value from within the layout do not update the stored
value.

A two-way binding, on the other hand, allows the data model to be updated in response to changes in the layout.
An EditText view, for example, could be configured with a two-way binding so that when the user enters a
different value, that value is used to update the corresponding data model value. When declaring a two-way
expression, the syntax is similar to a one-way expression except that it begins with @=. For example:

android:text="@={myViewModel.result}"
43.2.8 Event and Listener Bindings

Binding expressions may also trigger method calls in response to events on a view. A Button view, for example,
can be configured to call a method when clicked. In the chapter entitled “Creating an Example Android App in
Android Studio”, for example, the onClick property of a button was configured to call a method within the app’s
main activity named convertCurrency(). Within the XML file, this was represented as follows:

android:onClick="convertCurrency"

The convertCurrency() method was declared along the following lines:

fun convertCurrency(view: View) {

}
Note that this type of method call is always passed a reference to the view on which the event occurred. The same
336

An Overview of Android Jetpack Data Binding

effect can be achieved in data binding using the following expression (assuming the layout has been bound to a
class with a variable name of uiController):

android:onClick="@{uiController::convertCurrency}"
Another option, and one which provides the ability to pass parameters to the method, is referred to as a listener

binding. The following expression uses this approach to call a method on the same viewModel instance with no
parameters:

android:onClick="Q@{ () -> myViewModel.methodOne () }"'

The following expression calls a method that expects three parameters:
android:onClick='Q@{ () -> myViewModel.methodTwo (viewModel.result, 10, "A
String")}'

Binding expressions provide a rich and flexible language to bind user interface views to data and methods
in other objects. This chapter has only covered the most common use cases. To learn more about binding
expressions, review the Android documentation online at:

https://developer.android.com/topic/libraries/data-binding/expressions

43.3 Summary

Android data bindings provide a system for creating connections between the views in a user interface layout
and the data and methods of other objects within the app architecture without writing code. Once some initial
configuration steps have been performed, data binding involves using binding expressions within the view
elements of the layout file. These binding expressions can be either one-way or two-way and may also be used to
bind methods to be called in response to events such as button clicks within the user interface.

337

Chapter 55

55. Working with the RecyclerView
and CardView Widgets

The RecyclerView and CardView widgets work together to provide scrollable lists of information to the user in
which the information is presented as individual cards. Details of both classes will be covered in this chapter
before working through the design and implementation of an example project.

55.1 An Overview of the RecyclerView

Much like the ListView class outlined in the chapter entitled “Working with the Floating Action Button and
Snackbar”, the RecyclerView’s purpose is to allow information to be presented to the user as a scrollable list.
The RecyclerView, however, provides several advantages over the ListView. In particular, the RecyclerView is
significantly more efficient in managing the views that make up a list, reusing existing views that makeup list
items as they scroll off the screen instead of creating new ones (hence the name “recycler”). This increases the
performance and reduces the resources a list uses, a feature of particular benefit when presenting large amounts
of data to the user.

Unlike the ListView, the RecyclerView also provides a choice of three built-in layout managers to control how
the list items are presented to the user:

o LinearLayoutManager - The list items are presented as horizontal or vertical scrolling lists.

Figure 55-1

 GridLayoutManager — The list items are presented in grid format. This manager is best used when the list
items are of uniform size.

Figure 55-2

o StaggeredGridLayoutManager - The list items are presented in a staggered grid format. This manager is best
435

Working with the RecyclerView and CardView Widgets

used when the list items are of different sizes.

Figure 55-3

For situations where none of the three built-in managers provide the necessary layout, custom layout managers
may be implemented by subclassing the RecyclerView.LayoutManager class.

Each list item displayed in a RecyclerView is created as an instance of the ViewHolder class. The ViewHolder
instance contains everything necessary for the RecyclerView to display the list item, including the information
to be displayed and the view layout used to display the item.

As with the ListView, the RecyclerView depends on an adapter to act as the intermediary between the
RecyclerView instance and the data to be displayed to the user. The adapter is created as a subclass of the
RecyclerView.Adapter class and must, at a minimum, implement the following methods, which will be called at
various points by the RecyclerView object to which the adapter is assigned:

o getltemCount() - This method must return a count of the number of items to be displayed in the list.

« onCreateViewHolder() - This method creates and returns a ViewHolder object initialized with the view that
is to be used to display the data. This view is typically created by inflating the XML layout file.

» onBindViewHolder() — This method is passed the ViewHolder object created by the onCreateViewHolder()
method together with an integer value indicating the list item that is about to be displayed. Contained within
the ViewHolder object is the layout assigned by the onCreate ViewHolder() method. The onBindViewHolder()
method is responsible for populating the views in the layout with the text and graphics corresponding to the
specified item and returning the object to the RecyclerView, where it will be presented to the user.

Adding a RecyclerView to a layout is a matter of adding the appropriate element to the XML content layout file
of the activity in which it is to appear. For example:
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
app:layout behavior="@string/appbar scrolling view behavior"
tools:context=".MainActivity"

tools:showIn="@layout/activity card demo">

<androidx.recyclerview.widget.RecyclerView

android:id="@+id/recycler_view"

436

Working with the RecyclerView and CardView Widgets

android:layout_width="0dp"
android:layout_height="0dp"

app:layout constraintBottom_ toBottomOf="parent"
app:layout_constraintEnd toEndOf="parent"
app:layout_constraintStart_ toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:listItem="@layout/card layout" />

</androidx.constraintlayout.widget.ConstraintLayout>

The RecyclerView has been embedded into the CoordinatorLayout of a main activity layout file along with
the AppBar and Toolbar in the above example. This provides some additional features, such as configuring the
Toolbar and AppBar to scroll off the screen when the user scrolls up within the RecyclerView (a topic covered in
more detail in the chapter entitled “Working with the AppBar and Collapsing Toolbar Layouts”).

55.2 An Overview of the CardView

The CardView class is a user interface view that allows information to be presented in groups using a card
metaphor. Cards are usually presented in lists using a RecyclerView instance and may be configured to appear
with shadow effects and rounded corners. Figure 55-4, for example, shows three CardView instances configured
to display a layout consisting of an ImageView and two TextViews:

Figure 55-4
The user interface layout to be presented with a CardView instance is defined within an XML layout resource file
and loaded into the CardView at runtime. The CardView layout can contain a layout of any complexity using the
standard layout managers such as RelativeLayout and LinearLayout. The following XML layout file represents a
card view layout consisting of a RelativeLayout and a single ImageView. The card is configured to be elevated to
create a shadowing effect and to appear with rounded corners:
<?xml version="1.0" encoding="utf-8"?>
<androidx.cardview.widget.CardView
xmlns:card view="http://schemas.android.com/apk/res-auto"
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/card view"
android:layout width="match parent"
android:layout height="wrap content"
android:layout margin="5dp"
437

Working with the RecyclerView and CardView Widgets

card view:cardCornerRadius="12dp"

card view:cardElevation="3dp"

card view:contentPadding="4dp">

<Relativelayout

android:layout width="match parent"

android:layout height="wrap content"

android:padding="16dp" >

<ImageView

android:
android:
android:
android:
android:

android:

layout width="100dp"
layout height="100dp"
id="@+id/item image"
layout alignParentLeft="true"
layout alignParentTop="true"

layout marginRight="1l6dp" />

</RelativeLayout>

</androidx.cardview.widget.CardvView>

When combined with the RecyclerView to create a scrollable list of cards, the onCreateViewHolder() method of
the recycler view inflates the layout resource file for the card, assigns it to the ViewHolder instance and returns

it to the RecyclerView instance.

55.3 Summary

This chapter has introduced the Android RecyclerView and CardView components. The RecyclerView provides
a resource-efficient way to display scrollable lists of views within an Android app. The CardView is useful when
presenting groups of data (such as a list of names and addresses) in the form of cards. As previously outlined and
demonstrated in the tutorial contained in the next chapter, RecyclerView and CardView are particularly useful

when combined.

438

Chapter 69

69. An Overview of Android SQLite
Databases

Mobile applications that do not need to store at least some persistent data are few and far between. The use of
databases is an essential aspect of most applications, ranging from almost entirely data-driven applications to
those that need to store small amounts of data, such as the prevailing game score.

The importance of persistent data storage becomes even more evident when considering the transient lifecycle
of the typical Android application. With the ever-present risk that the Android runtime system will terminate
an application component to free up resources, a comprehensive data storage strategy to avoid data loss is a key
factor in designing and implementing any application development strategy.

This chapter will cover the SQLite database management system bundled with the Android operating system
and outline the Android SDK classes that facilitate persistent SQLite-based database storage within an Android
application. Before delving into the specifics of SQLite in the context of Android development, however, a brief
overview of databases and SQL will be covered.

69.1 Understanding Database Tables

Database Tables provide the most basic level of data structure in a database. Each database can contain multiple
tables, each designed to hold information of a specific type. For example, a database may contain a customer
table that contains the name, address, and telephone number of each of the customers of a particular business.
The same database may also include a products table used to store the product descriptions with associated
product codes for the items sold by the business.

Each table in a database is assigned a name that must be unique within that particular database. A table name,
once assigned to a table in one database, may not be used for another table except within the context of another
database.

69.2 Introducing Database Schema

Database Schemas define the characteristics of the data stored in a database table. For example, the table schema
for a customer database table might define the customer name as a string of no more than 20 characters long and
the customer phone number is a numerical data field of a certain format.

Schemas are also used to define the structure of entire databases and the relationship between the various tables
in each database.

69.3 Columns and Data Types

It is helpful at this stage to begin viewing a database table as similar to a spreadsheet where data is stored in rows
and columns.

Each column represents a data field in the corresponding table. For example, a table’s name, address, and
telephone data fields are all columns.

Each column, in turn, is defined to contain a certain type of data. Therefore, a column designed to store numbers
would be defined as containing numerical data.

549

An Overview of Android SQLite Databases
69.4 Database Rows

Each new record saved to a table is stored in a row. Each row, in turn, consists of the columns of data associated
with the saved record.

Once again, consider the spreadsheet analogy described earlier in this chapter. Each entry in a customer table
is equivalent to a row in a spreadsheet, and each column contains the data for each customer (name, address,
telephone, etc.). When a new customer is added to the table, a new row is created, and the data for that customer
is stored in the corresponding columns of the new row.

Rows are also sometimes referred to as records or entries, and these terms can generally be used interchangeably.

69.5 Introducing Primary Keys

Each database table should contain one or more columns that can be used to identify each row in the table
uniquely. This is known in database terminology as the Primary Key. For example, a table may use a bank
account number column as the primary key. Alternatively, a customer table may use the customer’s social
security number as the primary key.

Primary keys allow the database management system to uniquely identify a specific row in a table. Without
a primary key, retrieving or deleting a specific row in a table would not be possible because there can be no
certainty that the correct row has been selected. For example, suppose a table existed where the customer’s last
name had been defined as the primary key. Imagine the problem if more than one customer named “Smith” were
recorded in the database. Without some guaranteed way to identify a specific row uniquely, ensuring the correct
data was being accessed at any given time would be impossible.

Primary keys can comprise a single column or multiple columns in a table. To qualify as a single column primary
key, no two rows can contain matching primary key values. When using multiple columns to construct a primary
key, individual column values do not need to be unique, but all the columns’ values combined must be unique.

69.6 What is SQLite?

SQLite is an embedded, relational database management system (RDBMS). Most relational databases (Oracle,
SQL Server, and MySQL being prime examples) are standalone server processes that run independently and
cooperate with applications requiring database access. SQLite is referred to as embedded because it is provided in
the form of a library that is linked into applications. As such, there is no standalone database server running in
the background. All database operations are handled internally within the application through calls to functions
in the SQLite library.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

SQLite is written in the C programming language, so the Android SDK provides a Java-based “wrapper” around
the underlying database interface. This consists of classes that may be utilized within an application’s Java or
Kotlin code to create and manage SQLite-based databases.

For additional information about SQLite, refer to https://www.sqlite.org.

69.7 Structured Query Language (SQL)

Data is accessed in SQLite databases using a high-level language known as Structured Query Language. This is
usually abbreviated to SQL and pronounced sequel. SQL is a standard language used by most relational database
management systems. SQLite conforms mostly to the SQL-92 standard.

SQL is a straightforward and easy-to-use language designed specifically to enable the reading and writing of
database data. Because SQL contains a small set of keywords, it can be learned quickly. In addition, SQL syntax is

550

http://www.sqlite.org

An Overview of Android SQLite Databases

more or less identical between most DBMS implementations, so having learned SQL for one system, your skills
will likely transfer to other database management systems.

While some basic SQL statements will be used within this chapter, a detailed overview of SQL is beyond the
scope of this book. However, many other resources provide a far better overview of SQL than we could ever hope
to provide in a single chapter here.

69.8 Trying SQLite on an Android Virtual Device (AVD)

For readers unfamiliar with databases and SQLite, diving right into creating an Android application that
uses SQLite may seem intimidating. Fortunately, Android is shipped with SQLite pre-installed, including an
interactive environment for issuing SQL commands from within an adb shell session connected to a running
Android AVD emulator instance. This is a useful way to learn about SQLite and SQL and an invaluable tool for
identifying problems with databases created by applications running in an emulator.

To launch an interactive SQLite session, begin by running an AVD session. This can be achieved within Android
Studio by launching the Android Virtual Device Manager (Tools -> Device Manager), selecting a previously
configured AVD, and clicking on the start button.

Once the AVD is up and running, open a Terminal or Command-Prompt window and connect to the emulator
using the adb command-line tool as follows:

adb shell

Once connected, the shell environment will provide a command prompt at which commands may be entered.
Begin by obtaining superuser privileges using the su command:

Generic x86:/ su

root@android:/ #

If a message indicates that superuser privileges are not allowed, the AVD instance likely includes Google Play
support. To resolve this, create a new AVD and, on the “Choose a device definition” screen, select a device that
does not have a marker in the “Play Store” column.

The data in SQLite databases are stored in database files on the file system of the Android device on which the
application is running. By default, the file system path for these database files is as follows:

/data/data/<package name>/databases/<database filename>.db

For example, if an application with the package name com.example. MyDBApp creates a database named
mydatabase.db, the path to the file on the device would read as follows:
/data/data/com.example.MyDBApp/databases/mydatabase.db

For this exercise, therefore, change directory to /data/data within the adb shell and create a sub-directory
hierarchy suitable for some SQLite experimentation:

cd /data/data

mkdir com.example.dbexample

cd com.example.dbexample

mkdir databases

cd databases

With a suitable location created for the database file, launch the interactive SQLite tool as follows:
root@android:/data/data/databases # sglite3 ./mydatabase.db

sqlite3 ./mydatabase.db

SQLite version 3.8.10.2 2015-05-20 18:17:19

551

An Overview of Android SQLite Databases

Enter ".help" for usage hints.

sgqlite>

At the sqlite> prompt, commands may be entered to perform tasks such as creating tables and inserting and
retrieving data. For example, to create a new table in our database with fields to hold ID, name, address, and
phone number fields, the following statement is required:

create table contacts (_id integer primary key autoincrement, name text, address
text, phone text);

Note that each row in a table should have a primary key that is unique to that row. In the above example, we have
designated the ID field as the primary key, declared it as being of type integer, and asked SQLite to increment
the number automatically each time a row is added. This is a common way to ensure that each row has a unique
primary key. On most other platforms, the primary key’s name choice is arbitrary. In the case of Android,
however, the key must be named _id for the database to be fully accessible using all Android database-related
classes. The remaining fields are each declared as being of type text.

To list the tables in the currently selected database, use the .fables statement:
sgqlite> .tables

contacts

To insert records into the table:

sgqlite> insert into contacts (name, address, phone) wvalues ("Bill Smith", "123
Main Street, California", "123-555-2323");

sglite> insert into contacts (name, address, phone) values ("Mike Parks", "10
Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:

sgqlite> select * from contacts;

1|Bill Smith|123 Main Street, California|l1l23-555-2323

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:

sglite> select * from contacts where name="Mike Parks";
2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:

sglite> .exit

When running an Android application in the emulator environment, any database files will be created on the
emulator’s file system using the previously discussed path convention. This has the advantage that you can
connect with adb, navigate to the location of the database file, load it into the sqlite3 interactive tool, and perform
tasks on the data to identify possible problems occurring in the application code.

It is also important to note that while connecting with an adb shell to a physical Android device is possible, the
shell is not granted sufficient privileges by default to create and manage SQLite databases. Therefore, database
problem debugging is best performed using an AVD session.

69.9 Android SQLite Classes

As previously mentioned, SQLite is written in the C programming language, while Android applications are
primarily developed using Java or Kotlin. To bridge this “language gap’, the Android SDK includes a set of
classes that provide a programming layer on top of the SQLite database management system. The remainder of
this chapter will provide a basic overview of each of the major classes within this category.

552

An Overview of Android SQLite Databases

69.9.1 Cursor

A class provided specifically to access the results of a database query. For example, a SQL SELECT operation
performed on a database will potentially return multiple matching rows from the database. A Cursor instance
can be used to step through these results, which may then be accessed from within the application code using a
variety of methods. Some key methods of this class are as follows:

o close() — Releases all resources used by the cursor and closes it.

« getCount() - Returns the number of rows contained within the result set.

« moveToFirst() - Moves to the first row within the result set.

« moveToLast() - Moves to the last row in the result set.

« moveToNext() - Moves to the next row in the result set.

« move() - Moves by a specified offset from the current position in the result set.

o get<type>() - Returns the value of the specified <type> contained at the specified column index of the row at
the current cursor position (variations consist of getString(), getlnt(), getShort(), getFloat(), and getDouble()).

69.9.2 SQLiteDatabase

This class provides the primary interface between the application code and underlying SQLite databases
including the ability to create, delete, and perform SQL-based operations on databases. Some key methods of
this class are as follows:

« insert() — Inserts a new row into a database table.

delete() - Deletes rows from a database table.

query() — Performs a specified database query and returns matching results via a Cursor object.
« execSQL() - Executes a single SQL statement that does not return result data.

o rawQuery() — Executes a SQL query statement and returns matching results in the form of a Cursor object.

69.9.3 SQLiteOpenHelper

A helper class designed to make it easier to create and update databases. This class must be subclassed within
the code of the application seeking database access and the following callback methods implemented within
that subclass:

« onCreate() - Called when the database is created for the first time. This method is passed the SQLiteDatabase
object as an argument for the newly created database. This is the ideal location to initialize the database in
terms of creating a table and inserting any initial data rows.

« onUpgrade() — Called in the event that the application code contains a more recent database version number
reference. This is typically used when an application is updated on the device and requires that the database
schema also be updated to handle storage of additional data.

In addition to the above mandatory callback methods, the 0nOpen() method, called when the database is
opened, may also be implemented within the subclass.

The constructor for the subclass must also be implemented to call the super class, passing through the application
context, the name of the database and the database version.

553

An Overview of Android SQLite Databases
Notable methods of the SQLiteOpenHelper class include:

« getWritableDatabase() — Opens or creates a database for reading and writing. Returns a reference to the
database in the form of a SQLiteDatabase object.

« getReadableDatabase() — Creates or opens a database for reading only. Returns a reference to the database in
the form of a SQLiteDatabase object.

o close() - Closes the database.

69.9.4 ContentValues

ContentValues is a convenience class that allows key/value pairs to be declared consisting of table column
identifiers and the values to be stored in each column. This class is of particular use when inserting or updating
entries in a database table.

69.10 The Android Room Persistence Library

A limitation of the Android SDK SQLite classes is that they require moderate coding effort and don't take
advantage of the new architecture guidelines and features such as LiveData and lifecycle management. The
Android Jetpack Architecture Components include the Room persistent library to address these shortcomings.
This library provides a high-level interface on top of the SQLite database system, making it easy to store data
locally on Android devices with minimal coding while also conforming to the recommendations for modern
application architecture.

The following chapters will provide an overview and tutorial on SQLite database management using SQLite and
the Room persistence library.

69.11 Summary

SQLite is a lightweight, embedded relational database management system included in the Android framework
and provides a mechanism for implementing organized persistent data storage for Android applications. When
combined with the Room persistence library, Android provides a modern way to implement data storage from
within an Android app.

This chapter provided an overview of databases in general and SQLite in particular within the context of Android
application development.

554

Chapter 74

74. The Android Room Persistence
Library

Included with the Android Architecture Components, the Room persistence library is designed to make it easier
to add database storage support to Android apps in a way consistent with the Android architecture guidelines.
With the basics of SQLite databases covered in the previous chapters, this chapter will explore Room-based
database management, the key elements that work together to implement Room support within an Android app,
and how these are implemented in terms of architecture and coding. Having covered these topics, the next two
chapters will put this theory into practice with an example Room database project.

74.1 Revisiting Modern App Architecture

The chapter entitled “Modern Android App Architecture with Jetpack” introduced the concept of modern app
architecture and stressed the importance of separating different areas of responsibility within an app. The
diagram illustrated in Figure 74-1 outlines the recommended architecture for a typical Android app:

Figure 74-1

With the top three levels of this architecture covered in some detail in earlier chapters of this book, it is time to
explore the repository and database architecture levels in the context of the Room persistence library.

74.2 Key Elements of Room Database Persistence

Before going into greater detail later in the chapter, it is first worth summarizing the key elements involved in
working with SQLite databases using the Room persistence library:

583

The Android Room Persistence Library

74.2.1 Repository

As previously discussed, the repository module contains all of the code necessary for directly handling all data
sources used by the app. This avoids the need for the UI controller and ViewModel to contain code directly
accessing sources such as databases or web services.

74.2.2 Room Database

The room database object provides the interface to the underlying SQLite database. It also provides the repository
with access to the Data Access Object (DAO). An app should only have one room database instance, which may
be used to access multiple database tables.

74.2.3 Data Access Object (DAO)

The DAO contains the SQL statements required by the repository to insert, retrieve and delete data within
the SQLite database. These SQL statements are mapped to methods which are then called from within the
repository to execute the corresponding query.

74.2.4 Entities

An entity is a class that defines the schema for a table within the database, defines the table name, column names,
and data types, and identifies which column is to be the primary key. In addition to declaring the table schema,
entity classes contain getter and setter methods that provide access to these data fields. The data returned to
the repository by the DAO in response to the SQL query method calls will take the form of instances of these
entity classes. The getter methods will then be called to extract the data from the entity object. Similarly, when
the repository needs to write new records to the database, it will create an entity instance, configure values on
the object via setter calls, then call insert methods declared in the DAO, passing through entity instances to be
saved.

74.2.5 SQLite Database

The SQLite database is responsible for storing and providing access to the data. The app code, including the
repository, should never directly access this underlying database. All database operations are performed using a
combination of the room database, DAOs, and entities.

The architecture diagram in Figure 74-2 illustrates how these different elements interact to provide Room-based
database storage within an Android app:

Figure 74-2

584

The Android Room Persistence Library
The numbered connections in the above architecture diagram can be summarized as follows:

1. The repository interacts with the Room Database to get a database instance which, in turn, is used to obtain
references to DAO instances.

2. 'The repository creates entity instances and configures them with data before passing them to the DAO for
use in search and insertion operations.

3. The repository calls methods on the DAO passing through entities to be inserted into the database and
receives entity instances back in response to search queries.

4. 'When a DAO has results to return to the repository, it packages them into entity objects.
5. The DAO interacts with the Room Database to initiate database operations and handle results.

6. The Room Database handles all low-level interactions with the underlying SQLite database, submitting
queries and receiving results.

With a basic outline of the key elements of database access using the Room persistent library covered, it is time
to explore entities, DAOs, room databases, and repositories in more detail.

74.3 Understanding Entities

Each database table will have associated with it an entity class. This class defines the schema for the table and
takes the form of a standard Kotlin class interspersed with some special Room annotations. An example Kotlin
class declaring the data to be stored within a database table might read as follows:

class Customer {

var id: Int = 0

var name: String? = null
var address: String? = null
constructor () {}

constructor (id: Int, name: String, address: String) {
this.id = id
this.name = name
this.address = address

}

constructor (name: String, address: String) {
this.name = name

this.address = address

}

As currently implemented, the above code declares a basic Kotlin class containing several variables representing
database table fields and a collection of getter and setter methods. This class, however, is not yet an entity. To
make this class into an entity and to make it accessible within SQL statements, some Room annotations need to
be added as follows:

@Entity (tableName = "customers")

class Customer {

585

The Android Room Persistence Library

@PrimaryKey (autoGenerate = true)
@NonNull
@ColumnInfo (name = "customerId")

var id: Int = 0

@ColumnInfo (name = "customerName")
var name: String? = null

var address: String? = null
constructor () {}

constructor (id: Int, name: String, address: String) {
this.id = id
this.name = name

this.address = address

constructor (name: String, address: String) {
this.name = name

this.address = address

}

The above annotations begin by declaring that the class represents an entity and assigns a table name of
“customers”. This is the name by which the table will be referenced in the DAO SQL statements:

@Entity(tableName = "customers")

Every database table needs a column to act as the primary key. In this case, the customer id is declared as the
primary key. Annotations have also been added to assign a column name to be referenced in SQL queries and to
indicate that the field cannot be used to store null values. Finally, the id value is configured to be auto-generated.
This means the system automatically generates the id assigned to new records to avoid duplicate keys:

@PrimaryKey (autoGenerate = true)
@NonNull
@ColumnInfo (name = "customerId")

var id: Int = 0

A column name is also assigned to the customer name field. Note, however, that no column name was assigned
to the address field. This means that the address data will still be stored within the database but is not required
to be referenced in SQL statements. If a field within an entity is not required to be stored within a database, use
the @Ignore annotation:

@Ignore

var MyString: String? = null

Annotations may also be included within an entity class to establish relationships with other entities using a
relational database concept referred to as foreign keys. Foreign keys allow a table to reference the primary key

in another table. For example, a relationship could be established between an entity named Purchase and our
existing Customer entity as follows:

586

The Android Room Persistence Library

@Entity (foreignKeys = arrayOf (ForeignKey (entity = Customer::class,
parentColumns = arrayOf ("customerId"),
childColumns = arrayOf ("buyerId"),
onDelete = ForeignKey.CASCADE,
onUpdate = ForeignKey.RESTRICT)))

class Purchase {

@PrimaryKey (autoGenerate = true)
@NonNull
@ColumnInfo (name = "purchaseId")

var purchaselId: Int = 0

@ColumnInfo (name = "buyerId")
0

var buyerId: Int

}
Note that the foreign key declaration also specifies the action to be taken when a parent record is deleted or
updated. Available options are CASCADE, NO_ACTION, RESTRICT, SET_DEFAULT, and SET_NULL.

74.4 Data Access Objects

A Data Access Object allows access to the data stored within a SQLite database. A DAO is declared as a standard
Kotlin interface with additional annotations that map specific SQL statements to methods that the repository
may then call.

The first step is to create the interface and declare it as a DAO using the @Dao annotation:
@Dao
interface CustomerDao {

}

Next, entries are added consisting of SQL statements and corresponding method names. The following
declaration, for example, allows all of the rows in the customers table to be retrieved via a call to a method
named getAllCustomers():
@Dao
interface CustomerDao {

@Query ("SELECT * FROM customers")

fun getAllCustomers(): LiveData<List<Customer>>
}

The getAllCustomers() method returns a List object containing a Customer entity object for each record retrieved
from the database table. The DAO is also using LiveData so that the repository can observe changes to the
database.

Arguments may also be passed into the methods and referenced within the corresponding SQL statements.
Consider the following DAO declaration, which searches for database records matching a customer’s name
(note that the column name referenced in the WHERE condition is the name assigned to the column in the
entity class):

587

The Android Room Persistence Library

@Query ("SELECT * FROM customers WHERE name = :customerName")
fun findCustomer (customerName: String): List<Customer>

In this example, the method is passed a string value which is, in turn, included within an SQL statement by
prefixing the variable name with a colon (:).

A basic insertion operation can be declared as follows using the @Insert convenience annotation:

@Insert

fun addCustomer (Customer customer)

This is referred to as a convenience annotation because the Room persistence library can infer that the Customer
entity passed to the addCustomer() method is to be inserted into the database without the need for the SQL
insert statement to be provided. Multiple database records may also be inserted in a single transaction as follows:

@Insert

fun insertCustomers (Customer... customers)

The following DAO declaration deletes all records matching the provided customer name:
@Query ("DELETE FROM customers WHERE name = :name")

fun deleteCustomer (String name)

As an alternative to using the @Query annotation to perform deletions, the @Delete convenience annotation
may also be used. In the following example, all of the Customer records that match the set of entities passed to
the deleteCustomers() method will be deleted from the database:

@Delete

fun deleteCustomers (Customer... customers)

The @Update convenience annotation provides similar behavior when updating records:
@Update

fun updateCustomers (Customer... customers)

The DAO methods for these types of database operations may also be declared to return an int value indicating
the number of rows affected by the transaction, for example:
@Delete

fun deleteCustomers (Customer... customers): int

74.5 The Room Database

The Room database class is created by extending the RoomDatabase class and acts as a layer on top of the
actual SQLite database embedded into the Android operating system. The class is responsible for creating and
returning a new room database instance and providing access to the database’s associated DAO instances.

The Room persistence library provides a database builder for creating database instances. Each Android app
should only have one room database instance, so it is best to implement defensive code within the class to
prevent more than one instance from being created.

An example Room Database implementation for use with the example customer table is outlined in the following
code listing:

import android.content.Context

import android.arch.persistence.room.Database

import android.arch.persistence.room.Room

import android.arch.persistence.room.RoomDatabase

588

The Android Room Persistence Library

@Database (entities = [(Customer::class)], version = 1)
abstract class CustomerRoomDatabase: RoomDatabase () {
abstract fun customerDao (): CustomerDao

companion object {

private var INSTANCE: CustomerRoomDatabase? = null

internal fun getDatabase (context: Context): CustomerRoomDatabase? {
if (INSTANCE == null) {
synchronized (CustomerRoomDatabase::class.java) {
if (INSTANCE == null) {
INSTANCE =

Room.databaseBuilder (
context.applicationContext,
CustomerRoomDatabase::class.java,

"customer database") .build()

}
return INSTANCE

}

Important areas to note in the above example are the annotation above the class declaration declaring the entities
with which the database is to work, the code to check that an instance of the class has not already been created
and the assignment of the name “customer_database” to the instance.

74.6 The Repository

The repository is responsible for getting a Room Database instance, using that instance to access associated
DAOs, and then making calls to DAO methods to perform database operations. A typical constructor for a
repository designed to work with a Room Database might read as follows:

class CustomerRepository(application: Application) {
private var customerDao: CustomerDao?

init {
val db: CustomerRoomDatabase? =
CustomerRoomDatabase.getDatabase (application)

customerDao = db?.customerDao ()

Once the repository can access the DAQ, it can call the data access methods. The following code, for example,
calls the getAllCustomers() DAO method:

589

The Android Room Persistence Library

val allCustomers: LiveData<List<Customer>>?

allCustomers = customerDao.getAllCustomers ()

When calling DAO methods, it is important to note that unless the method returns a LiveData instance (which
automatically runs queries on a separate thread), the operation cannot be performed on the app’s main thread.
Attempting to do so will cause the app to crash with the following diagnostic output:

Cannot access database on the main thread since it may potentially lock the UI
for a long period of time

Since some database transactions may take a longer time to complete, running the operations on a separate
thread avoids the app appearing to lock up. As will be demonstrated in the chapter entitled “An Android Room
Database and Repository Tutorial”, this problem can be easily resolved by making use of coroutines (for more
information or a reminder of how to use coroutines, refer back to the chapter entitled “An Introduction to Kotlin
Coroutines”).

74.7 In-Memory Databases

The examples outlined in this chapter use a SQLite database that exists as a database file on the persistent storage
of an Android device. This ensures that the data persists even after the app process is terminated.

The Room database persistence library also supports in-memory databases. These databases reside entirely
in memory and are lost when the app terminates. The only change necessary to work with an in-memory
database is to call the Room.inMemoryDatabaseBuilder() method of the Room Database class instead of Room.
databaseBuilder(). The following code shows the difference between the method calls (note that the in-memory
database does not require a database name):

// Create a file storage-based database
INSTANCE = Room.databaseBuilder<CustomerRoomDatabase> (context.applicationContext,
CustomerRoomDatabase::class.java, "customer database")
.build()
// Create an in-memory database
INSTANCE = Room.inMemoryDatabaseBuilder<CustomerRoomDatabase> (
context.getApplicationContext (),
CustomerRoomDatabase.class)

Lbuild()

74.8 Database Inspector

Android Studio includes a Database Inspector tool window which allows the Room databases associated with
running apps to be viewed, searched, and modified, as shown in Figure 74-3:

Figure 74-3
The Database Inspector will be covered in the chapter “An Android Room Database and Repository Tutorial”.

590

The Android Room Persistence Library

74.9 Summary

The Android Room persistence library is bundled with the Android Architecture Components and acts as an
abstract layer above the lower-level SQLite database. The library is designed to make it easier to work with
databases while conforming to the Android architecture guidelines. This chapter has introduced the elements
that interact to build Room-based database storage into Android app projects, including entities, repositories,
data access objects, annotations, and Room Database instances.

With the basics of SQLite and the Room architecture component covered, the next step is to create an example
app that puts this theory into practice. Since the user interface for the example application will require a forms-
based layout, the next chapter, entitled “An Android TableLayout and TableRow Tutorial”, will detour slightly
from the core topic by introducing the basics of the TableLayout and TableRow views.

591

Chapter 92

92. An Overview of Android In-App
Billing

n the early days of mobile applications for operating systems such as Android and iOS, the most common
method for earning revenue was to charge an upfront fee to download and install the application. Another
revenue opportunity was soon introduced by embedding advertising within applications. The most common
and lucrative option is to charge the user for purchasing items from within the application after installing it. This

typically takes the form of access to a higher level in a game, acquiring virtual goods or currency, or subscribing
to premium content in the digital edition of a magazine or newspaper.

Google supports integrating in-app purchasing through the Google Play In-App Billing API and the Play
Console. This chapter will provide an overview of in-app billing and outline how to integrate in-app billing into
your Android projects. Once these topics have been explored, the next chapter will walk you through creating
an example app that includes in-app purchasing features.

92.1 Preparing a Project for In-App Purchasing

Building in-app purchasing into an app will require a Google Play Developer Console account, details of which
were covered previously in the “Creating, Testing and Uploading an Android App Bundle” chapter. You must also
register a Google merchant account. These settings can be found by navigating to Setup -> Payments profile
in the Play Console. Note that merchant registration is not available in all countries. For details, refer to the
following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app must then be uploaded to the console and enabled for in-app purchasing. However, the console will
not activate in-app purchasing support for an app unless the Google Play Billing Library has been added to the
module-level build.gradle.kts file:

dependencies {

implementation(libs.billingclient.ktx)

}
Once the build file has been modified and the app bundle uploaded to the console, the next step is to add in-app
products or subscriptions for the user to purchase.

92.2 Creating In-App Products and Subscriptions

Products and subscriptions are created and managed using the options listed beneath the Monetize section of
the Play Console navigation panel, as highlighted in Figure 92-1 below:

763

https://support.google.com/googleplay/android-developer/answer/9306917

An Overview of Android In-App Billing

Figure 92-1
Each product or subscription needs an ID, title, description, and pricing information. Purchases fall into the
categories of consumable (the item must be purchased each time it is required by the user, such as virtual
currency in a game), non-consumable (only needs to be purchased once by the user, such as content access), and
subscription-based. Consumable and non-consumable products are collectively referred to as managed products.

Subscriptions are useful for selling an item that needs to be renewed regularly, such as access to news content
or the premium features of an app. When creating a subscription, a base plan specifies the price, renewal period
(monthly, annually, etc.), and whether the subscription auto-renews. Users can also be given discount offers and
the option of pre-purchasing a subscription.

92.3 Billing Client Initialization

Communication between your app and the Google Play Billing Library is handled by a BillingClient instance.
In addition, BillingClient includes a set of methods that can be called to perform both synchronous and
asynchronous billing-related activities. When the billing client is initialized, it will need to be provided with a
reference to a PurchasesUpdatedListener callback handler. The client will call this handler to notify your app
of the results of any purchasing activity. To avoid duplicate notifications, it is recommended to have only one
BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() method, passing through the current activity or
fragment context. The purchase update handler is then assigned to the client via the setListener() method:
private val purchasesUpdatedListener =
PurchasesUpdatedListener { billingResult, purchases ->
if (billingResult.responseCode ==
BillingClient.BillingResponseCode.OK
&& purchases != null

for (purchase in purchases) {
// Process the purchases

}
} else if (billingResult.responseCode ==
BillingClient.BillingResponseCode.USER CANCELED

// Purchase canceled by the user

} else {

764

An Overview of Android In-App Billing

// Handle errors here

billingClient = BillingClient.newBuilder (this)
.setlistener (purchasesUpdatedListener)
.enablePendingPurchases ()
.build()

92.4 Connecting to the Google Play Billing Library

After successfully creating the Billing Client, the next step is initializing a connection to the Google Play
Billing Library. A call must be made to the startConnection() method of the billing client instance to establish
this connection. Since the connection is performed asynchronously, a BillingClientStateListener must be
implemented to receive a callback indicating whether the connection was successful. Code should also be added
to override the onBillingServiceDisconnected() method. This is called if the connection to the Billing Library is
lost and can be used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the BillingClient instance will make a call to the
onBillingSetupFinished() method, which can be used to check that the client is ready:
billingClient.startConnection (object : BillingClientStatelListener {
override fun onBillingSetupFinished (
billingResult: BillingResult

if (billingResult.responseCode ==

BillingClient.BillingResponseCode.OK

// Connection successful
} else {
// Connection failed

override fun onBillingServiceDisconnected() {

// Connection to billing service lost

)
92.5 Querying Available Products

Once the billing environment is initialized and ready to go, the next step is to request the details of the products
or subscriptions available for purchase. This is achieved by making a call to the queryProductDetailsAsync()
method of the BillingClient and passing through an appropriately configured QueryProductDetailsParams
instance containing the product ID and type (ProductType.SUBS for a subscription or ProductType.INAPP for
a managed product):

val queryProductDetailsParams = QueryProductDetailsParams.newBuilder ()

.setProductList (
ImmutablelList.of (

QueryProductDetailsParams.Product.newBuilder ()

765

An Overview of Android In-App Billing

.setProductId(productId)

.setProductType (
BillingClient.ProductType.INAPP

)

.build()

)
Lbuild()

billingClient.queryProductDetailsAsync (
queryProductDetailsParams
) { billingResult, productDetailsList ->
if (!productDetailsList.isEmpty()) {
// Process list of matching products
} else {

// No product matches found

}

The queryProductDetailsAsync() method is passed a ProductDetailsResponseListener handler (in this case, in
the form of a lambda code block) which, in turn, is called and passed a list of ProductDetail objects containing
information about the matching products. For example, we can call methods on these objects to get information
such as the product name, title, description, price, and offer details.

92.6 Starting the Purchase Process

Once a product or subscription has been queried and selected for purchase by the user, the purchase process is
ready to be launched. We do this by calling the launchBillingFlow() method of the BillingClient, passing through
as arguments the current activity and a BillingFlowParams instance configured with the ProductDetail object
for the purchased item.
val billingFlowParams = BillingFlowParams.newBuilder ()
.setProductDetailsParamsList (
ImmutableList.of (
BillingFlowParams.ProductDetailsParams.newBuilder ()
.setProductDetails (productDetails)
Lbuild()

)
.build()

pbillingClient.launchBillingFlow (this, billingFlowParams)

The success or otherwise of the purchase operation will be reported via a call to the PurchasesUpdatedListener
callback handler outlined earlier in the chapter.
92.7 Completing the Purchase

When purchases are successful, the PurchasesUpdatedListener handler will be passed a list containing a Purchase
object for each item. You can verify that the item has been purchased by calling the getPurchaseState() method
of the Purchase instance as follows:

766

An Overview of Android In-App Billing

if (purchase.getPurchaseState () == Purchase.PurchaseState.PURCHASED) {
// Purchase completed.

} else if (purchase.getPurchaseState() == Purchase.PurchaseState.PENDING) {
// Payment is still pending

}

Note that your app will only support pending purchases if a call is made to the enablePendingPurchases() method
during initialization. A pending purchase will remain so until the user completes the payment process.

When the purchase of a non-consumable item is complete, it must be acknowledged to prevent a refund
from being issued to the user. This requires the purchase token for the item, which is obtained via a call to the
getPurchaseToken() method of the Purchase object. This token is used to create an AcknowledgePurchaseParams
instance and an AcknowledgePurchaseResponseListener handler. Managed product purchases and subscriptions
are acknowledged by calling the BillingClient’s acknowledgePurchase() method as follows:
billingClient.acknowledgePurchase (acknowledgePurchaseParams,
acknowledgePurchaseResponselListener) ;
val acknowledgePurchaseParams = AcknowledgePurchaseParams.newBuilder ()
.setPurchaseToken (purchase.purchaseToken)
.build()

val acknowledgePurchaseResponselListener = AcknowledgePurchaseResponselistener {

// Check acknowledgement result

billingClient.acknowledgePurchase (

acknowledgePurchaseParams,

acknowledgePurchaseResponselistener
)
For consumable purchases, you will need to notify Google Play when the item has been consumed so that it
is available to be repurchased by the user. This requires a configured ConsumeParams instance containing a
purchase token and a call to the billing client’s consumePurchase() method:
val consumeParams = ConsumeParams.newBuilder ()

.setPurchaseToken (purchase.purchaseToken)

.build()

coroutineScope.launch {
val result = billingClient.consumePurchase (consumeParams)

if (result.billingResult.responseCode ==
BillingClient.BillingResponseCode.OK) {

// Purchase successfully consumed

)
92.8 Querying Previous Purchases

When working with in-app billing, checking whether a user has already purchased a product or subscription is a
common requirement. A list of all the user’s previous purchases of a specific type can be generated by calling the

767

An Overview of Android In-App Billing

queryPurchasesAsync() method of the BillingClient instance and implementing a PurchaseResponseListener.
The following code, for example, obtains a list of all previously purchased items that have not yet been consumed:

val queryPurchasesParams = QueryPurchasesParams.newBuilder ()
.setProductType (BillingClient.ProductType.INAPP)
.build()

billingClient.queryPurchasesAsync (
queryPurchasesParams,

purchasesListener

private val purchasesListener =

PurchasesResponselListener { billingResult, purchases ->

if (!purchases.isEmpty()) {

// Access existing active purchases
} else {

// No

}
To obtain a list of active subscriptions, change the ProductType value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for each product, make a call to the BillingClient
queryPurchaseHistoryAsync() method:

val queryPurchaseHistoryParams = QueryPurchaseHistoryParams.newBuilder ()
.setProductType (BillingClient.ProductType.INAPP)
.build()

billingClient.queryPurchaseHistoryAsync (queryPurchaseHistoryParams) {
billingResult, historyList ->
// Process purchase history list

}
92.9 Summary

In-app purchases provide a way to generate revenue from within Android apps by selling virtual products and
subscriptions to users. This chapter explored managed products and subscriptions and explained the difference
between consumable and non-consumable products. In-app purchasing support is added to an app using the
Google Play In-app Billing Library. It involves creating and initializing a billing client on which methods are
called to perform tasks such as making purchases, listing available products, and consuming existing purchases.
The next chapter contains a tutorial demonstrating the addition of in-app purchases to an Android Studio
project.

768

Index

Symbols

2. 101

<application> 508

<fragment> 299

<fragment> element 299
<provider> 565

<receiver> 486

<service> 508, 514, 521

:: operator 103

.well-known folder 459, 482, 728

A

AbsoluteLayout 176
ACCESS_COARSE_LOCATION permission 636
ACCESS_FINE_LOCATION permission 636
acknowledgePurchase() method 767
ACTION_CREATE_DOCUMENT 789
ACTION_CREATE_INTENT 790
ACTION_DOWN 276
ACTION_MOVE 276
ACTION_OPEN_DOCUMENT intent 782
ACTION_POINTER_DOWN 276
ACTION_POINTER_UP 276
ACTION_UP 276
ACTION_VIEW 477
Active / Running state 152
Activity 87,155

adding views in Java code 253

class 155

creation 16

Entire Lifetime 159

Foreground Lifetime 159

lifecycle methods 157

lifecycles 149

returning data from 456

state change example 163

state changes 155

states 152

Visible Lifetime 159
Activity Lifecycle 151
Activity Manager 86
ActivityResultLauncher 457
Activity Stack 151
Actual screen pixels 244
adb

command-line tool 63

connection testing 69

device pairing 67

enabling on Android devices 63

Linux configuration 66

list devices 63

macOS configuration 64

overview 63

restart server 64

testing connection 69

WiFi debugging 67

Windows configuration 65

Wireless debugging 67

Wireless pairing 67
addCategory() method 485
addMarker() method 691
addView() method 247
ADD_VOICEMAIL permission 636
android

exported 509

gestureColor 292

layout_behavior property 449

onClick 301

process 509, 521

uncertainGestureColor 292
Android

Activity 87

architecture 83

events 269

823

Index

intents 88

onClick Resource 269

runtime 84

SDK Packages 6
android.app 84
Android Architecture Components 315
android.content 84
android.content.Intent 455

android.database 84

Android Debug Bridge. See ADB
Android Development

System Requirements 3
Android Devices

designing for different 175
android.graphics 85
android.hardware 85
android.intent.action 491
android.intent.action.BOOT_COMPLETED 509
android.intent.action.MAIN 477
android.intent.category. LAUNCHER 477
Android Libraries 84
android.media 85
Android Monitor tool window 36
Android Native Development Kit 85
android.net 85
android.opengl 85
android.os 85
android.permission.RECORD_AUDIO 645
android.print 85
Android Project

create new 15
android.provider 85
Android SDK Location

identifying 10
Android SDK Manager 8, 10
Android SDK Packages

version requirements 8
Android SDK Tools

command-line access 9

Linux 11

macOS 11

Windows 7 10

824

Windows 8 10

Android Software Stack 83

Android Storage Access Framework 782

Android Studio
changing theme 61
downloading 3
Editor Window 56
installation 4
Linux installation 5
macOS installation 4
Navigation Bar 55
Project tool window 56
setup wizard 5
Status Bar 56
Toolbar 55
Tool window bars 56
tool windows 56
updating 12
Welcome Screen 53
Windows installation 4

android.text 85

android.util 85

android.view 85

android.view.View 178

android.view.ViewGroup 175,178

Android Virtual Device. See AVD

overview 31

Android Virtual Device Manager 31

android.webkit 85
android.widget 85
AndroidX libraries 816
API Key 683
APK analyzer 760
APK file 753
APK File
analyzing 760
APK Signing 816
APK Wizard dialog 752
App Architecture
modern 315
AppBar
anatomy of 447

appbar_scrolling_view_behavior 449
App Bundles 749
creating 753
overview 749
revisions 759
uploading 756
AppCompatActivity class 156
App Inspector 57
Application
stopping 36
Application Context 89
Application Framework 86
Application Manifest 89
Application Resources 89
App Link
Adding Intent Filter 736
Digital Asset Links file 728, 459
Intent Filter Handling 736
Intent Filters 727
Intent Handling 728
Testing 740
URL Mapping 733
App Links 727
auto verification 458
autoVerify 459
overview 727
Apply Changes 261
Apply Changes and Restart Activity 261
Apply Code Changes 261
fallback settings 263
options 261
Run App 261
tutorial 263
applyToActivitiesIfAvailable() method 811
Architecture Components 315
ART 84
as 103
as? 103
asFlow() builder 527
assetlinks.json , 728, 459
asSharedFlow() 536
asStateFlow() 535

Index

async 495
Attribute Keyframes 386
Audio

supported formats 643
Audio Playback 643
Audio Recording 643
Auto Blocker 64
Autoconnect Mode 209
Automatic Link Verification 458, 481
autoVerify 459,736
AVD

Change posture 51

cold boot 48

command-line creation 31

creation 31

device frame 40

Display mode 50

launch in tool window 40

overview 31

quickboot 48

Resizable 50

running an application 34

Snapshots 47

standalone 37

starting 33

Startup size and orientation 34

B

Background Process 150

Barriers 202
adding 221
constrained views 202

Baseline Alignment 201

beginTransaction() method 300

BillingClient 768
acknowledgePurchase() method 767
consumeAsync() method 767
getPurchaseState() method 766
initialization 764, 773
launchBillingFlow() method 766
queryProductDetailsAsync() method 765
queryPurchasesAsync() method 768

825

Index

BillingResult 780
getDebugMessage() 780
Binding Expressions 335
one-way 335
two-way 336
BIND_JOB_SERVICE permission 509
bindService() method 507, 511, 515
Biometric Authentication 741
callbacks 745
overview 741
tutorial 741
Biometric Prompt 746
BitmapFactory 784
Bitwise AND 109
Bitwise Inversion 108
Bitwise Left Shift 110
Bitwise OR 109
Bitwise Right Shift 110
Bitwise XOR 109
black activity 16
Blank template 179
Blueprint view 207
BODY_SENSORS permission 636
Boolean 96
Bound Service 507, 511
adding to a project 512
Implementing the Binder 512
Interaction options 511
BoundService class 513
Broadcast Intent 485
example 487
overview 88, 485
sending 488
Sticky 487
Broadcast Receiver 485
adding to manifest file 490
creation 489
overview 88, 486
BroadcastReceiver class 486
BroadcastReceiver superclass 489
BufferedReader object 792
buffer() operator 529

826

Build tool window 58
Build Variants , 58
tool window 58
Bundle class 172
Bundled Notifications 664

C

Calendar permissions 636
CALL_PHONE permission 636
CAMERA permission 636
Camera permissions 636
CameraUpdateFactory class

methods 692
cancelAndJoin() 495
cancelChildren() 495
CancellationSignal 746
Canvas class 722
CardView

layout file 437

responding to selection of 445
CardView class 437
CATEGORY_OPENABLE 782
C/C++ Libraries 85
Chain bias 230
chain head 200
chains 200
Chains

creation of 227
Chain style

changing 229
chain styles 200
Char 96
CheckBox 175
checkSelfPermission() method 640
Circle class 679
Code completion 74
Code Editor

basics 71

Code completion 74

Code Generation 76

Code Reformatting 79

Document Tabs 72

Editing area 72

Gutter Area 72

Live Templates 80

Splitting 74

Statement Completion 76

Status Bar 73
Code Generation 76
Code Reformatting 79
code samples

download 1
cold boot 48
Cold flows 535
CollapsingToolbarLayout

example 450

introduction 450

parallax mode 450

pin mode 450

setting scrim color 453

setting title 453

with image 450
collectLatest() operator 528
Color class 723
COLOR_MODE_COLOR 698, 718
COLOR_MODE_MONOCHROME 698, 718
combine() operator 534
Common Gestures 281

detection 281
Communicating Sequential Processes 493
Companion Objects 133
Component tree 20
conflate() operator 529
Constraint Bias 199

adjusting 213
ConstraintLayout

advantages of 205

Availability 206

Barriers 202

Baseline Alignment 201

chain bias 230

chain head 200

chains 200

chain styles 200

Index
Constraint Bias 199
Constraints 197
conversion to 225
convert to MotionLayout 393
deleting constraints 212
guidelines 219
Guidelines 202
manual constraint manipulation 209
Margins 198, 213
Opposing Constraints 198, 215
overview of 197
Packed chain 201, 230
ratios 205, 231
Spread chain 200
Spread inside 230
Spread inside chain 200
tutorial 235
using in Android Studio 207
Weighted chain 200, 230
Widget Dimensions 201, 217
Widget Group Alignment 223
ConstraintLayout chains
creation of 227
in layout editor 227
ConstraintLayout Chain style
changing 229
Constraints
deleting 212
ConstraintSet
addToHorizontalChain() method 250
addToVerticalChain() method 250
alignment constraints 249
apply to layout 248
applyTo() method 248
centerHorizontally() method 249
center Vertically() method 249
chains 249
clear() method 250
clone() method 249
connect() method 248
connect to parent 248

constraint bias 249

827

Index

copying constraints 249
create 248
create connection 248
createHorizontalChain() method 249
createVerticalChain() method 249
guidelines 250
removeFromHorizontalChain() method 250
removeFromVerticalChain() method 250
removing constraints 250
rotation 251
scaling 250
setGuidelineBegin() method 250
setGuidelineEnd() method 250
setGuidelinePercent() method 250
setHorizonalBias() method 249
setRotationX() method 251
setRotationY() method 251
setScaleX() method 250
setScaleY() method 250
setTransformPivot() method 251
setTransformPivotX() method 251
setTransformPivotY() method 251
setVerticalBias() method 249
sizing constraints 249
tutorial 253
view IDs 255

ConstraintSet class 247, 248

Constraint Sets 248

ConstraintSets
configuring 382

consumeAsync() method 767

ConsumeParams 777

Contacts permissions 636

container view 175

Content Provider 86, 563, 579
<provider> 565
accessing 579
Authority 569
client tutorial 579
ContentProvider class 563
Content Resolver 564

ContentResolver 576

828

content URI 564
Content URI 569, 579
ContentValues 571
delete() 564, 574
getType() 564
insert() 563,571
onCreate() 563, 571
overview 89
query() 563,572
tutorial 567
update() 564, 573
UriMatcher 570
UriMatcher class 564
ContentProvider class 563
Content Resolver 564
getContentResolver() 564
ContentResolver 576
getContentResolver() 564
content URI 564
Content URI 564, 569
ContentValues 571
Context class 89
CoordinatorLayout 176, 449
Coroutine Builders 495
async 495
coroutineScope 495
launch 495
runBlocking 495
supervisorScope 495
withContext 495
Coroutine Dispatchers 494
Coroutines 493, 525
channel communication 499
GlobalScope 494
returning results 497
Suspend Functions 494
suspending 496
tutorial 501
ViewModelScope 494
vs. Threads 493
coroutineScope 495

Coroutine Scope 494

createPrintDocumentAdapter() method 713
Custom Accessors 131
Custom Attribute 383
Custom Document Printing 701, 713
Custom Gesture
recognition 287
Custom Print Adapter
implementation 715
Custom Print Adapters 713
Custom Theme
building 805
Cycle Editor 411
Cycle Keyframe 391
Cycle Keyframes

overview 407

D

dangerous permissions
list of 636
Dark Theme 36
enable on device 36
Data Access Object (DAO) 584
Database Inspector 590, 614
live updates 614
SQL query 614
Database Rows 550
Database Schema 549
Database Tables 549
Data binding
binding expressions 335
Data Binding 317
binding classes 334
enabling 340
event and listener binding 336
key components 331
overview 331
tutorial 339
variables 334
with LiveData 317
DDMS 36
Debugging

enabling on device 63

Index
debug.keystore file 459, 481
Default Function Parameters 123
DefaultLifecycleObserver 352, 355
deltaRelative 388
Density-independent pixels 243
Density Independent Pixels
converting to pixels 258
Device Definition
custom 193
Device File Explorer 58
device frame 40
Device Mirroring 69
enabling 69
device pairing 67
Digital Asset Links file 728, 459, 459
Direct Reply Input 675
Dispatchers.Default 495
Dispatchers.JO 494
Dispatchers.Main 494
document provider 781
dp 243
DROP_LATEST 537
DROP_OLDEST 537
Dynamic Colors
applyToActivitiesIfAvailable() method 811
enabling in Android 811
Dynamic State 157
saving 171

E

Elvis Operator 103

Empty Process 151

Empty template 179

Emulator
battery 46
cellular configuration 46
configuring fingerprints 48
directional pad 46
extended control options 45
Extended controls 45
fingerprint 46

location configuration 46

829

Index

phone settings 46
Resizable 50
resize 45
rotate 44
Screen Record 47
Snapshots 47
starting 33
take screenshot 44
toolbar 43
toolbar options 43
tool window mode 49
Virtual Sensors 47
zoom 44
enablePendingPurchases() method 767
enabling ADB support 63
Escape Sequences 97
ettings.gradle file 816
Event Handling 269
example 270
Event Listener 271
Event Listeners 270
Events
consuming 273
execSQL() 558
explicit
intent 88
explicit intent 455
Explicit Intent 455
Extended Control

options 45

F

Files
switching between 72
filter() operator 530
findPointerIndex() method 276
findViewByld() 143
Fingerprint
emulation 48
Fingerprint authentication
device configuration 742

permission 742

830

steps to implement 741
Fingerprint Authentication
overview 741
tutorial 741
FLAG_INCLUDE_STOPPED_PACKAGES 485
flatMapConcat() operator 533
flatMapMerge() operator 533
flexible space area 447
Float 96
floating action button 16, 180
changing appearance of 422
margins 420
removing 181
sizes 420
Flow 525
asFlow() builder 527
asSharedFlow() 536
asStateFlow() 535
background handling 545
buffering 529
buffer() operator 529
cold 535
collect() 527
collecting data 527
collectLatest() operator 528
combine() operator 534
conflate() operator 529
declaring 526
emit() 527
emitting data 527
filter() operator 530
flatMapConcat() operator 533
flatMapMerge() operator 533
flattening 532
flowOf() builder 527
flow of flows 532
fold() operator 532
hot 535
intermediate operators 530
library requirements 526
map() operator 530
MutableSharedFlow 536

MutableStateFlow 535
onEach() operator 534
reduce() operator 532
repeatOnLifecycle 546
SharedFlow 536
single() operator 529
StateFlow 535
terminal flow operators 532
transform() operator 531
try/finally 528
zip() operator 534
flowOf() builder 527
flow of flows 532
Flow operators 530
Flows
combining 534
Introduction to 525
Foldable Devices 160
multi-resume 160
Foreground Process 150
Forward-geocoding 685
Fragment
creation 297
event handling 301
XML file 298
FragmentActivity class 156
Fragment Communication 301
Fragments 297
adding in code 300
duplicating 428
example 305
overview 297
FragmentStateAdapter class 431
FrameLayout 176
Function Parameters
variable number of 123

Functions 121

G

Geocoder object 686
Geocoding 684
Gesture Builder Application 287

Index

building and running 287
Gesture Detector class 281
GestureDetectorCompat 284

instance creation 284
GestureDetectorCompat class 281
GestureDetector.OnDoubleTapListener 281, 282
GestureDetector.OnGestureListener 282
GestureLibrary 287
GestureOverlayView 287

configuring color 292

configuring multiple strokes 292
GestureOverlayView class 287
GesturePerformedListener 287
Gestures

interception of 292
Gestures File

creation 288

extract from SD card 288

loading into application 290
GET_ACCOUNTS permission 636
getAction() method 491
getContentResolver() 564
getDebugMessage() 780
getFromLocation() method 686
getld() method 248
getIntent() method 456
getPointerCount() method 276
getPointerId() method 276
getPurchaseState() method 766
getService() method 515
getWritableDatabase() 558
GlobalScope 494
GNU/Linux 84
Google Cloud

billing account 680

new project 681
Google Cloud Print 696
Google Drive 782

printing to 696
GoogleMap 679

map types 689
GoogleMap.MAP_TYPE_HYBRID 689

831

Index

GoogleMap.MAP_TYPE_NONE 689 HTML printing 699
GoogleMap.MAP_TYPE_NORMAL 689 HTML Printing
GoogleMap.MAP_TYPE_SATELLITE 689 example 703

GoogleMap.MAP_TYPE_TERRAIN 689

Google Maps Android API 679

Controlling the Map Camera 692

displaying controls 690
Map Markers 691
overview 679
Google Maps SDK 679
API Key 683
Credentials 683
enabling 682
Maps SDK for Android 683
Google Play App Signing 752
Google Play Console 771
Creating an in-app product 771

License Testers 772

Google Play Developer Console 750

Gradle
APK signing settings 820
Build Variants 816
command line tasks 821
dependencies 815
Manifest Entries 816
overview 815
sensible defaults 815
Gradle Build File
top level 817
Gradle Build Files
module level 818
gradle.properties file 816
GridLayout 176
GridLayoutManager 435

H

HAL 84

Handler class 520

Hardware Abstraction Layer 84
Higher-order Functions 125
Hot flows 535

HP Print Services Plugin 695

832

I

IBinder 507, 513

IBinder object 511, 520

Image Printing 698

Immutable Variables 98

implicit
intent 88

implicit intent 455

Implicit Intent 457

Implicit Intents
example 473

importance hierarchy 149

in 243

INAPP 768

In-App Products 763

In-App Purchasing 769
acknowledgePurchase() method 767
BillingClient 764
BillingResult 780
consumeAsync() method 767
ConsumeParams 777
Consuming purchases 777
enablePendingPurchases() method 767
getPurchaseState() method 766
launchBillingFlow() method 766
Libraries 769
newBuilder() method 764
onBillingServiceDisconnected() callback 774
onBillingServiceDisconnected() method 765
onBillingSetupFinished() listener 774
onProductDetailsResponse() callback 774
Overview 763
ProductDetail 766
ProductDetails 775
products 763
ProductType 768
Purchase Flow 775

PurchaseResponseListener 768

PurchasesUpdatedListener 766
PurchaseUpdatedListener 776
purchase updates 776
queryProductDetailsAsync() 774
queryProductDetailsAsync() method 765
queryPurchasesAsync() 778
queryPurchasesAsync() method 768
runOnUiThread() 775
subscriptions 763
tutorial 769

Initializer Blocks 131

In-Memory Database 590

Inner Classes 132

Intelli] IDEA 91

Intent 88
explicit 88
implicit 88

Intent Availability
checking for 462

Intent. CATEGORY_OPENABLE 790

Intent Filters 458
App Link 727

Intents 455
ActivityResultLauncher 457
overview 455
registerForActivityResult() 457, 470

Intent Service 507

Intent URL 475

intermediate flow operators 530

is 103

isInitialized property 103

J

Java
convert to Kotlin 91

Java Native Interface 85

JetBrains 91

Jetpack 315
overview 315

JobIntentService 507
BIND_JOB_SERVICE permission 509
onHandleWork() method 507

Index

join() 495

K

KeyAttribute 386
Keyboard Shortcuts 59
KeyCycle 407
Cycle Editor 411
tutorial 407
Keyframe 400
Keyframes 386
KeyFrameSet 416
KeyPosition 387
deltaRelative 388
parentRelative 387
pathRelative 388
Keystore File
creation 752
KeyTimeCycle 407
keytool 459
KeyTrigger 390
Killed state 152
Kotlin
accessing class properties 131
and Java 91
arithmetic operators 105
assignment operator 105
augmented assignment operators 106
bitwise operators 108
Boolean 96
break 116
breaking from loops 115
calling class methods 131
Char 96
class declaration 127
class initialization 128
class properties 128
Companion Objects 133
conditional control flow 117
continue labels 116
continue statement 116
control flow 113

convert from Java 91

833

Index

Custom Accessors 131

data types 95

decrement operator 106
Default Function Parameters 123
defining class methods 128
do ... while loop 115

Elvis Operator 103

equality operators 107
Escape Sequences 97
expression syntax 105

Float 96

Flow 525

for-in statement 113
function calling 122
Functions 121

Higher-order Functions 125
if ... else ... expressions 118
if expressions 117
Immutable Variables 98
increment operator 106
inheritance 137

Initializer Blocks 131

Inner Classes 132
introduction 91

Lambda Expressions 124
let Function 101

Local Functions 122

logical operators 107
looping 113

Mutable Variables 98
Not-Null Assertion 101
Nullable Type 100
Overriding inherited methods 140
playground 92

Primary Constructor 128
properties 131

range operator 108

Safe Call Operator 100
Secondary Constructors 128
Single Expression Functions 122
String 96

subclassing 137

834

Type Annotations 99
Type Casting 103

Type Checking 103
Type Inference 99
variable parameters 123
when statement 118

while loop 114

L

Lambda Expressions 124
lateinit 102
Late Initialization 102
launch 495
launchBillingFlow() method 766
layout_collapseMode

parallax 452

pin 452
layout_constraintDimentionRatio 232
layout_constraintHorizontal_bias 230
layout_constraintVertical_bias 230
layout editor

ConstraintLayout chains 227
Layout Editor 19, 235

Autoconnect Mode 209

code mode 186

Component Tree 183

design mode 183

device screen 183

example project 235

Inference Mode 209

palette 183

properties panel 184

Sample Data 192

Setting Properties 187

toolbar 184

user interface design 235

view conversion 191
Layout Editor Tool

changing orientation 20

overview 183
Layout Inspector 58
Layout Managers 175

LayoutResultCallback object 719
Layouts 175
layout_scrollFlags
enterAlwaysCollapsed mode 449
enterAlways mode 449
exitUntilCollapsed mode 449
scroll mode 449
Layout Validation 194
let Function 101
libc 85
License Testers 772
Lifecycle
awareness 351
components 318
observers 352
owners 351
states and events 352
tutorial 355
Lifecycle-Aware Components 351
Lifecycle library 526
Lifecycle Methods 157
Lifecycle Observer 355
creatinga 355
Lifecycle Owner
creatinga 357
Lifecycles
modern 318
Lifecycle.State. CREATED 547
Lifecycle.State. DESTROYED 547
Lifecycle.State. INITIALIZED 547
Lifecycle.State RESUMED 547
Lifecycle.State. STARTED 547
LinearLayout 176
LinearLayoutManager 435
LinearLayoutManager layout 443
Linux Kernel 84
list devices 63
LiveData 316, 327
adding to ViewModel 327
observer 329
tutorial 327

Live Templates 80

Local Bound Service 511

example 511
Local Functions 122
Location Manager 86
Location permission 636
Logcat

tool window 57
LogCat

enabling 167

M

MANAGE_EXTERNAL_STORAGE 637

adb enabling 637

testing 637
Manifest File

permissions 477
map() operator 530
Maps 679
MapView 679

adding to a layout 686
Marker class 679
Master/Detail Flow

creation 796

two pane mode 795
match_parent properties 243
Material design 419
Material Design 2 803
Material Design 2 Theming 803
Material Design 3 803
Material Theme Builder 805
Material You 803
measureTimeMillis() function 529

MediaController

adding to VideoView instance 621

MediaController class 618
methods 618
MediaPlayer class 643
methods 643
MediaRecorder class 643
methods 644
recording audio 644

Memory Indicator 73

Index

835

Index

Messenger object 520
Microphone
checking for availability 646
Microphone permissions 636
mm 243
MotionEvent 275, 276, 295
getActionMasked() 276
MotionLayout 381
arc motion 386
Attribute Keyframes 386
ConstraintSets 382
Custom Attribute 402
Custom Attributes 383
Cycle Editor 411
Editor 393
KeyAttribute 386
KeyCycle 407
Keyframes 386
KeyFrameSet 416
KeyPosition 387
KeyTimeCycle 407
KeyTrigger 390
OnClick 385, 398
OnSwipe 385
overview 381
Position Keyframes 387
previewing animation 398
Trigger Keyframe 390
Tutorial 393
MotionScene
ConstraintSets 382
Custom Attributes 383
file 382
overview 381
transition 382
moveCamera() method 692
multiple devices
testing app on 35
Multiple Touches
handling 276
multi-resume 160

Multi-Touch

836

example 277
Multi-touch Event Handling 275
multi-window support 160
MutableSharedFlow 536
MutableStateFlow 535
Mutable Variables 98
My Location Layer 679

N

Navigation 361
adding destinations 370
overview 361
pass data with safeargs 377
passing arguments 366
stack 361
tutorial 367

Navigation Action

triggering 365

Navigation Architecture Component 361

Navigation Component
tutorial 367
Navigation Controller
accessing 365
Navigation Graph 364, 368
adding actions 374
creating a 368
Navigation Host 362
declaring 369
newBuilder() method 764
normal permissions 635
Notification
adding actions 664
Direct Reply Input 675
issuing a basic 660
launch activity from a 662
PendingIntent 672
Reply Action 674
updating direct reply 676
Notifications
bundled 664
overview 653

Notifications Manager 86

Not-Null Assertion 101
Nullable Type 100

o

Observer
implementing a LiveData 329
onAttach() method 302
onBillingServiceDisconnected() callback 774
onBillingServiceDisconnected() method 765
onBillingSetupFinished() listener 774
onBind() method 508, 511, 519
onBindViewHolder() method 443
OnClick 385
onClickListener 270, 271, 274
onClick() method 269
onCreateContextMenuListener 270
onCreate() method 150, 157, 508
onCreateView() method 158
onDestroy() method 158, 508
onDoubleTap() method 281
onDown() method 281
onEach() operator 534
onFling() method 281
onFocusChangeListener 270
OnFragmentInteractionListener
implementation 375
onGesturePerformed() method 287
onHandleWork() method 508
onKeyListener 270
onLayoutFailed() method 719
onLayoutFinished() method 719
onLongClickListener 270
onLongPress() method 281
onMapReady() method 688
onPageFinished() callback 704
onPause() method 158
onProductDetailsResponse() callback 774
onReceive() method 150, 486, 487, 489
onRequestPermissionsResult() method 639, 650, 658, 670
onRestart() method 157
onRestorelnstanceState() method 158

onResume() method 150, 158

Index
onSavelnstanceState() method 158
onScaleBegin() method 293
onScaleEnd() method 293
onScale() method 293
onScroll() method 281
OnSeekBarChangeListener 312
onServiceConnected() method 511, 514, 521
onServiceDisconnected() method 511, 514, 521
onShowPress() method 281
onSingleTapUp() method 281
onStartCommand() method 508
onStart() method 158
onStop() method 158
onTouchEvent() method 281, 293
onTouchListener 270
onTouch() method 276
onUpgrade() 558
onViewCreated() method 158
onViewStatusRestored() method 158
openFileDescriptor() method 782
OpenJDK 3

P

Package Explorer 18

Package Manager 86

PackageManager class 646

PackageManager. FEATURE_MICROPHONE 646
PackageManager. PERMISSION_DENIED 637
PackageManager. PERMISSION_GRANTED 637
Package Name 16

Packed chain 201, 230

PageRange 720, 721

Paint class 723

parentRelative 387

parent view 177

pathRelative 388

Paused state 152

PdfDocument 701

PdfDocument.Page 713, 720

Pendinglntent class 672

Permission

checking for 637

837

Index

permissions

normal 635
Persistent State 157
Phone permissions 636
picker 781
Pinch Gesture

detection 293

example 293
Pinch Gesture Recognition 287
Position Keyframes 387
POST_NOTIFICATIONS permission 636, 670
Primary Constructor 128
PrintAttributes 718
PrintDocumentAdapter 701,713
Printing

color 698

monochrome 698
Printing framework

architecture 695
Printing Framework 695
Print Job

starting 724
PrintManager service 705
Problems

tool window 58
process

priority 149

state 149
PROCESS_OUTGOING_CALLS permission 636
Process States 149
ProductDetail 766
ProductDetails 775
ProductType 768
Profiler

tool window 58
ProgressBar 175
proguard-rules.pro file 820
ProGuard Support 816
Project Name 16
Project tool window 18, 57
pt 243

PurchaseResponseListener 768

838

PurchasesUpdatedListener 766
PurchaseUpdatedListener 776
putExtra() method 455, 485
px 244

Q

queryProductDetailsAsync() 774
queryProductDetailsAsync() method 765
queryPurchaseHistoryAsync() method 768
queryPurchasesAsync() 778
queryPurchasesAsync() method 768
quickboot snapshot 48

Quick Documentation 79

R

RadioButton 175
Range Operator 108
ratios 231
READ_CALENDAR permission 636
READ_CALL_LOG permission 636
READ_CONTACTS permission 636
READ_EXTERNAL_STORAGE permission 637
READ_PHONE_STATE permission 636
READ_SMS permission 636
RECEIVE_MMS permission 636
RECEIVE_SMS permission 636
RECEIVE_WAP_PUSH permission 636
Recent Files Navigation 60
RECORD_AUDIO permission 636
Recording Audio
permission 645
RecyclerView 435
adding to layout file 436
GridLayoutManager 435
initializing 443
LinearLayoutManager 435
StaggeredGridLayoutManager 435
RecyclerView Adapter
creation of 441
RecyclerView.Adapter 436, 442
getltemCount() method 436
onBindViewHolder() method 436

onCreateViewHolder() method 436
RecyclerView.ViewHolder
getAdapterPosition() method 446
reduce() operator 532
registerForActivityResult() 457
registerForActivityResult() method 456, 470
registerReceiver() method 487
RelativeLayout 176
releasePersistableUriPermission() method 785
Release Preparation 749
Remote Bound Service 519
client communication 519
implementation 519
manifest file declaration 521
Remotelnput.Builder() method 672
Remotelnput Object 672
Remote Service
launching and binding 521
sending a message 523
repeatOnLifecycle 546
Repository
tutorial 601
Repository Modules 318
Resizable Emulator 50
Resource
string creation 23
Resource File 25
Resource Management 149
Resource Manager 57, 86
result receiver 487
Reverse-geocoding 685
Reverse Geocoding 684
Room
Data Access Object (DAO) 584
entities 584, 585
In-Memory Database 590
Repository 584
Room Database 584
tutorial 601
Room Database Persistence 583
Room Persistence Library 554, 583

root element 175

Index
root view 177
Run
tool window 57
runBlocking 495
Running Devices
tool window 69

runOnUiThread() 775

S

safeargs 377
Safe Call Operator 100
Sample Data 192
Saved State 317, 347
SavedStateHandle 348

contains() method 349

keys() method 349

remove() method 349
Saved State module 347
SavedStateViewModelFactory 348
ScaleGestureDetector class 293
Scale-independent 243
SDK Packages 6
Secondary Constructors 128
Secure Sockets Layer (SSL) 85
SeekBar 305
sendBroadcast() method 485, 487
sendOrderedBroadcast() method 485, 487
SEND_SMS permission 636
sendStickyBroadcast() method 485
Sensor permissions 636
Service

anatomy 508

launch at system start 509

manifest file entry 508

overview 88

run in separate process 509
ServiceConnection class 521
Service Process 150
Service Restart Options 508
setAudioEncoder() method 644
setAudioSource() method 644
setBackgroundColor() 248

839

Index

setCompassEnabled() method 690
setContentView() method 247, 253
setld() method 248
setMyLocationButtonEnabled() method 690
setOnClickListener() method 269, 271
setOnDoubleTapListener() method 281, 284
setOutputFile() method 644
setOutputFormat() method 644
setResult() method 457
setText() method 174
settings.gradle.kts file 816
setTransition() 391
setVideoSource() method 644
SHA-256 certificate fingerprint 459
SharedFlow 536, 539
backgroudn handling 545
DROP_LATEST 537
DROP_OLDEST 537
in ViewModel 541
repeatOnLifecycle 546
SUSPEND 537
tutorial 539
shouldOverrideUrlLoading() method 704
SimpleOnScaleGestureListener 293
SimpleOnScaleGestureListener class 294
single() operator 529
SMS permissions 636
Snackbar 419, 420, 421
Snapshots
emulator 47
sp 243
Spread chain 200
Spread inside 230
Spread inside chain 200
SQL 550
SQL CREATE 558
SQLite 549
AVD command-line use 551
Columns and Data Types 549
overview 550
Primary keys 550
tutorial 555

840

SQLiteDatabase 558
SQLiteOpenHelper 556
SQL SELECT 559
StaggeredGridLayoutManager 435
startActivity() method 455
startForeground() method 150
START_NOT_STICKY 508
START_REDELIVER_INTENT 508
START_STICKY 508
State
restoring 174
State Change
handling 153
StateFlow 535
Statement Completion 76
Status Bar Widgets 73
Memory Indicator 73
Sticky Broadcast Intents 487
Stopped state 152
Storage Access Framework 781
ACTION_CREATE_DOCUMENT 782
ACTION_OPEN_DOCUMENT 782
deleting a file 785
example 787
file creation 789
file filtering 782
file reading 783
file writing 784
intents 782
MIME Types 783
Persistent Access 785
picker 781
Storage permissions 637
String 96
StringBuilder object 792
strings.xml file 27
Structure
tool window 58
Structured Query Language 550
Structure tool window 58
SUBS 768

subscriptions 763

supervisorScope 495
SupportMapFragment class 679
SUSPEND 537

Suspend Functions 494
Switcher 60

System Broadcasts 491

system requirements 3

T

TabLayout
adding to layout 429
app
tabGravity property 434
tabMode property 434
example 426
fixed mode 433
getltemCount() method 425
overview 425
TableLayout 176, 593
TableRow 593
Telephony Manager 86
Templates
blank vs. empty 179
Terminal
tool window 58
terminal flow operators 532
Theme
building a custom 805
Theming 803
tutorial 807
Time Cycle Keyframes 391
TODO
tool window 59
ToolbarListener 302
tools
layout 299
Tool window bars 56
Tool windows 56
Touch Actions 276
Touch Event Listener
implementation 277

Touch Events

Index
intercepting 275
Touch handling 275
transform() operator 531
try/finally 528
Type Annotations 99
Type Casting 103
Type Checking 103
Type Inference 99

U

UiSettings class 679

unbindService() method 507

unregisterReceiver() method 487

upload key 752

UriMatcher 564, 570

UriMatcher class 564

URL Mapping 733

USB connection issues
resolving 66

USE_BIOMETRIC 742

user interface state 157

USE_SIP permission 636

\Y%

Video Playback 617
VideoView class 617
methods 617
supported formats 617
view bindings
enabling 144
using 144
View class
setting properties 254
view conversion 191
ViewGroup 175
View Groups 175
View Hierarchy 177
ViewHolder class 436
sample implementation 442
ViewModel
adding LiveData 327

data access 325

841

Index

overview 316

saved state 347

Saved State 317, 347

tutorial 321
ViewModelProvider 324
ViewModel Saved State 347
ViewModelScope 494
ViewPager

adding to layout 429

example 426
Views 175

Java creation 247
View System 86
Virtual Device Configuration dialog 32
Virtual Sensors 47

Visible Process 150

w

WebViewClient 699, 704

WebView view 475

Weighted chain 200, 230

Welcome screen 53

while Loop 114

Widget Dimensions 201

Widget Group Alignment 223
Widgets palette 236

WiFi debugging 67

Wireless debugging 67

Wireless pairing 67

withContext 495, 497

wrap_content properties 245
WRITE_CALENDAR permission 636
WRITE_CALL_LOG permission 636
WRITE_CONTACTS permission 636
WRITE_EXTERNAL_STORAGE permission 637

X

XML Layout File
manual creation 243

vs. Java Code 247

Z

842

zip() operator 534

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata
	1.4 Authors Wanted

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Installing the Android SDK Command-line Tools
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Enabling the New Android Studio UI
	3.6 Modifying the Example Application
	3.7 Modifying the User Interface
	3.8 Reviewing the Layout and Resource Files
	3.9 Adding Interaction
	3.10 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Removing the Device Frame
	4.9 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Creating a Resizable Emulator
	5.10 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Menu Bar
	6.3 The Main Window
	6.4 The Tool Windows
	6.5 The Tool Window Menus
	6.6 Android Studio Keyboard Shortcuts
	6.7 Switcher and Recent Files Navigation
	6.8 Changing the Android Studio Theme
	6.9 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Device Mirroring
	7.7 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Hardware Abstraction Layer
	9.4 Android Runtime – ART
	9.5 Android Libraries
	9.5.1 C/C++ Libraries

	9.6 Application Framework
	9.7 Applications
	9.8 Summary

	10. The Anatomy of an Android App
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types, Variables, and Nullability
	12.1 Kotlin Data Types
	12.1.1 Integer Data Types
	12.1.2 Floating-Point Data Types
	12.1.3 Boolean Data Type
	12.1.4 Character Data Type
	12.1.5 String Data Type
	12.1.6 Escape Sequences

	12.2 Mutable Variables
	12.3 Immutable Variables
	12.4 Declaring Mutable and Immutable Variables
	12.5 Data Types are Objects
	12.6 Type Annotations and Type Inference
	12.7 Nullable Type
	12.8 The Safe Call Operator
	12.9 Not-Null Assertion
	12.10 Nullable Types and the let Function
	12.11 Late Initialization (lateinit)
	12.12 The Elvis Operator
	12.13 Type Casting and Type Checking
	12.14 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression Syntax in Kotlin
	13.2 The Basic Assignment Operator
	13.3 Kotlin Arithmetic Operators
	13.4 Augmented Assignment Operators
	13.5 Increment and Decrement Operators
	13.6 Equality Operators
	13.7 Boolean Logical Operators
	13.8 Range Operator
	13.9 Bitwise Operators
	13.9.1 Bitwise Inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise Left Shift
	13.9.6 Bitwise Right Shift

	13.10 Summary

	14. Kotlin Control Flow
	14.1 Looping Control flow
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while Loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue Statement
	14.1.6 Break and Continue Labels

	14.2 Conditional Control Flow
	14.2.1 Using the if Expressions
	14.2.2 Using if ... else … Expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when Statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a Function?
	15.2 How to Declare a Kotlin Function
	15.3 Calling a Kotlin Function
	15.4 Single Expression Functions
	15.5 Local Functions
	15.6 Handling Return Values
	15.7 Declaring Default Function Parameters
	15.8 Variable Number of Function Parameters
	15.9 Lambda Expressions
	15.10 Higher-order Functions
	15.11 Summary

	16. The Basics of Object Oriented Programming in Kotlin
	16.1 What is an Object?
	16.2 What is a Class?
	16.3 Declaring a Kotlin Class
	16.4 Adding Properties to a Class
	16.5 Defining Methods
	16.6 Declaring and Initializing a Class Instance
	16.7 Primary and Secondary Constructors
	16.8 Initializer Blocks
	16.9 Calling Methods and Accessing Properties
	16.10 Custom Accessors
	16.11 Nested and Inner Classes
	16.12 Companion Objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, Classes and Subclasses
	17.2 Subclassing Syntax
	17.3 A Kotlin Inheritance Example
	17.4 Extending the Functionality of a Subclass
	17.5 Overriding Inherited Methods
	17.6 Adding a Custom Secondary Constructor
	17.7 Using the SavingsAccount Class
	17.8 Summary

	18. An Overview of Android View Binding
	18.1 Find View by Id
	18.2 View Binding
	18.3 Converting the AndroidSample project
	18.4 Enabling View Binding
	18.5 Using View Binding
	18.6 Choosing an Option
	18.7 View Binding in the Book Examples
	18.8 Migrating a Project to View Binding
	18.9 Summary

	19. Understanding Android Application and Activity Lifecycles
	19.1 Android Applications and Resource Management
	19.2 Android Process States
	19.2.1 Foreground Process
	19.2.2 Visible Process
	19.2.3 Service Process
	19.2.4 Background Process
	19.2.5 Empty Process

	19.3 Inter-Process Dependencies
	19.4 The Activity Lifecycle
	19.5 The Activity Stack
	19.6 Activity States
	19.7 Configuration Changes
	19.8 Handling State Change
	19.9 Summary

	20. Handling Android Activity State Changes
	20.1 New vs. Old Lifecycle Techniques
	20.2 The Activity and Fragment Classes
	20.3 Dynamic State vs. Persistent State
	20.4 The Android Lifecycle Methods
	20.5 Lifetimes
	20.6 Foldable Devices and Multi-Resume
	20.7 Disabling Configuration Change Restarts
	20.8 Lifecycle Method Limitations
	20.9 Summary

	21. Android Activity State Changes by Example
	21.1 Creating the State Change Example Project
	21.2 Designing the User Interface
	21.3 Overriding the Activity Lifecycle Methods
	21.4 Filtering the Logcat Panel
	21.5 Running the Application
	21.6 Experimenting with the Activity
	21.7 Summary

	22. Saving and Restoring the State of an Android Activity
	22.1 Saving Dynamic State
	22.2 Default Saving of User Interface State
	22.3 The Bundle Class
	22.4 Saving the State
	22.5 Restoring the State
	22.6 Testing the Application
	22.7 Summary

	23. Understanding Android Views, View Groups and Layouts
	23.1 Designing for Different Android Devices
	23.2 Views and View Groups
	23.3 Android Layout Managers
	23.4 The View Hierarchy
	23.5 Creating User Interfaces
	23.6 Summary

	24. A Guide to the Android Studio Layout Editor Tool
	24.1 Basic vs. Empty Views Activity Templates
	24.2 The Android Studio Layout Editor
	24.3 Design Mode
	24.4 The Palette
	24.5 Design Mode and Layout Views
	24.6 Night Mode
	24.7 Code Mode
	24.8 Split Mode
	24.9 Setting Attributes
	24.10 Transforms
	24.11 Tools Visibility Toggles
	24.12 Converting Views
	24.13 Displaying Sample Data
	24.14 Creating a Custom Device Definition
	24.15 Changing the Current Device
	24.16 Layout Validation
	24.17 Summary

	25. A Guide to the Android ConstraintLayout
	25.1 How ConstraintLayout Works
	25.1.1 Constraints
	25.1.2 Margins
	25.1.3 Opposing Constraints
	25.1.4 Constraint Bias
	25.1.5 Chains
	25.1.6 Chain Styles

	25.2 Baseline Alignment
	25.3 Configuring Widget Dimensions
	25.4 Guideline Helper
	25.5 Group Helper
	25.6 Barrier Helper
	25.7 Flow Helper
	25.8 Ratios
	25.9 ConstraintLayout Advantages
	25.10 ConstraintLayout Availability
	25.11 Summary

	26. A Guide to Using ConstraintLayout in Android Studio
	26.1 Design and Layout Views
	26.2 Autoconnect Mode
	26.3 Inference Mode
	26.4 Manipulating Constraints Manually
	26.5 Adding Constraints in the Inspector
	26.6 Viewing Constraints in the Attributes Window
	26.7 Deleting Constraints
	26.8 Adjusting Constraint Bias
	26.9 Understanding ConstraintLayout Margins
	26.10 The Importance of Opposing Constraints and Bias
	26.11 Configuring Widget Dimensions
	26.12 Design Time Tools Positioning
	26.13 Adding Guidelines
	26.14 Adding Barriers
	26.15 Adding a Group
	26.16 Working with the Flow Helper
	26.17 Widget Group Alignment and Distribution
	26.18 Converting other Layouts to ConstraintLayout
	26.19 Summary

	27. Working with ConstraintLayout Chains and Ratios in Android Studio
	27.1 Creating a Chain
	27.2 Changing the Chain Style
	27.3 Spread Inside Chain Style
	27.4 Packed Chain Style
	27.5 Packed Chain Style with Bias
	27.6 Weighted Chain
	27.7 Working with Ratios
	27.8 Summary

	28. An Android Studio Layout Editor ConstraintLayout Tutorial
	28.1 An Android Studio Layout Editor Tool Example
	28.2 Preparing the Layout Editor Environment
	28.3 Adding the Widgets to the User Interface
	28.4 Adding the Constraints
	28.5 Testing the Layout
	28.6 Using the Layout Inspector
	28.7 Summary

	29. Manual XML Layout Design in Android Studio
	29.1 Manually Creating an XML Layout
	29.2 Manual XML vs. Visual Layout Design
	29.3 Summary

	30. Managing Constraints using Constraint Sets
	30.1 Kotlin Code vs. XML Layout Files
	30.2 Creating Views
	30.3 View Attributes
	30.4 Constraint Sets
	30.4.1 Establishing Connections
	30.4.2 Applying Constraints to a Layout
	30.4.3 Parent Constraint Connections
	30.4.4 Sizing Constraints
	30.4.5 Constraint Bias
	30.4.6 Alignment Constraints
	30.4.7 Copying and Applying Constraint Sets
	30.4.8 ConstraintLayout Chains
	30.4.9 Guidelines
	30.4.10 Removing Constraints
	30.4.11 Scaling
	30.4.12 Rotation

	30.5 Summary

	31. An Android ConstraintSet Tutorial
	31.1 Creating the Example Project in Android Studio
	31.2 Adding Views to an Activity
	31.3 Setting View Attributes
	31.4 Creating View IDs
	31.5 Configuring the Constraint Set
	31.6 Adding the EditText View
	31.7 Converting Density Independent Pixels (dp) to Pixels (px)
	31.8 Summary

	32. A Guide to Using Apply Changes in Android Studio
	32.1 Introducing Apply Changes
	32.2 Understanding Apply Changes Options
	32.3 Using Apply Changes
	32.4 Configuring Apply Changes Fallback Settings
	32.5 An Apply Changes Tutorial
	32.6 Using Apply Code Changes
	32.7 Using Apply Changes and Restart Activity
	32.8 Using Run App
	32.9 Summary

	33. A Guide to Gradle Version Catalogs
	33.1 Library and Plugin Dependencies
	33.2 Project Gradle Build File
	33.3 Module Gradle Build Files
	33.4 Version Catalog File
	33.5 Adding Dependencies
	33.6 Library Updates
	33.7 Summary

	34. An Overview and Example of Android Event Handling
	34.1 Understanding Android Events
	34.2 Using the android:onClick Resource
	34.3 Event Listeners and Callback Methods
	34.4 An Event Handling Example
	34.5 Designing the User Interface
	34.6 The Event Listener and Callback Method
	34.7 Consuming Events
	34.8 Summary

	35. Android Touch and Multi-touch Event Handling
	35.1 Intercepting Touch Events
	35.2 The MotionEvent Object
	35.3 Understanding Touch Actions
	35.4 Handling Multiple Touches
	35.5 An Example Multi-Touch Application
	35.6 Designing the Activity User Interface
	35.7 Implementing the Touch Event Listener
	35.8 Running the Example Application
	35.9 Summary

	36. Detecting Common Gestures Using the Android Gesture Detector Class
	36.1 Implementing Common Gesture Detection
	36.2 Creating an Example Gesture Detection Project
	36.3 Implementing the Listener Class
	36.4 Creating the GestureDetectorCompat Instance
	36.5 Implementing the onTouchEvent() Method
	36.6 Testing the Application
	36.7 Summary

	37. Implementing Custom Gesture and Pinch Recognition on Android
	37.1 The Android Gesture Builder Application
	37.2 The GestureOverlayView Class
	37.3 Detecting Gestures
	37.4 Identifying Specific Gestures
	37.5 Installing and Running the Gesture Builder Application
	37.6 Creating a Gestures File
	37.7 Creating the Example Project
	37.8 Extracting the Gestures File from the SD Card
	37.9 Adding the Gestures File to the Project
	37.10 Designing the User Interface
	37.11 Loading the Gestures File
	37.12 Registering the Event Listener
	37.13 Implementing the onGesturePerformed Method
	37.14 Testing the Application
	37.15 Configuring the GestureOverlayView
	37.16 Intercepting Gestures
	37.17 Detecting Pinch Gestures
	37.18 A Pinch Gesture Example Project
	37.19 Summary

	38. An Introduction to Android Fragments
	38.1 What is a Fragment?
	38.2 Creating a Fragment
	38.3 Adding a Fragment to an Activity using the Layout XML File
	38.4 Adding and Managing Fragments in Code
	38.5 Handling Fragment Events
	38.6 Implementing Fragment Communication
	38.7 Summary

	39. Using Fragments in Android Studio - An Example
	39.1 About the Example Fragment Application
	39.2 Creating the Example Project
	39.3 Creating the First Fragment Layout
	39.4 Migrating a Fragment to View Binding
	39.5 Adding the Second Fragment
	39.6 Adding the Fragments to the Activity
	39.7 Making the Toolbar Fragment Talk to the Activity
	39.8 Making the Activity Talk to the Text Fragment
	39.9 Testing the Application
	39.10 Summary

	40. Modern Android App Architecture with Jetpack
	40.1 What is Android Jetpack?
	40.2 The “Old” Architecture
	40.3 Modern Android Architecture
	40.4 The ViewModel Component
	40.5 The LiveData Component
	40.6 ViewModel Saved State
	40.7 LiveData and Data Binding
	40.8 Android Lifecycles
	40.9 Repository Modules
	40.10 Summary

	41. An Android ViewModel Tutorial
	41.1 About the Project
	41.2 Creating the ViewModel Example Project
	41.3 Removing Unwanted Project Elements
	41.4 Designing the Fragment Layout
	41.5 Implementing the View Model
	41.6 Associating the Fragment with the View Model
	41.7 Modifying the Fragment
	41.8 Accessing the ViewModel Data
	41.9 Testing the Project
	41.10 Summary

	42. An Android Jetpack LiveData Tutorial
	42.1 LiveData - A Recap
	42.2 Adding LiveData to the ViewModel
	42.3 Implementing the Observer
	42.4 Summary

	43. An Overview of Android Jetpack Data Binding
	43.1 An Overview of Data Binding
	43.2 The Key Components of Data Binding
	43.2.1 The Project Build Configuration
	43.2.2 The Data Binding Layout File
	43.2.3 The Layout File Data Element
	43.2.4 The Binding Classes
	43.2.5 Data Binding Variable Configuration
	43.2.6 Binding Expressions (One-Way)
	43.2.7 Binding Expressions (Two-Way)
	43.2.8 Event and Listener Bindings

	43.3 Summary

	44. An Android Jetpack Data Binding Tutorial
	44.1 Removing the Redundant Code
	44.2 Enabling Data Binding
	44.3 Adding the Layout Element
	44.4 Adding the Data Element to Layout File
	44.5 Working with the Binding Class
	44.6 Assigning the ViewModel Instance to the Data Binding Variable
	44.7 Adding Binding Expressions
	44.8 Adding the Conversion Method
	44.9 Adding a Listener Binding
	44.10 Testing the App
	44.11 Summary

	45. An Android ViewModel Saved State Tutorial
	45.1 Understanding ViewModel State Saving
	45.2 Implementing ViewModel State Saving
	45.3 Saving and Restoring State
	45.4 Adding Saved State Support to the ViewModelDemo Project
	45.5 Summary

	46. Working with Android Lifecycle-Aware Components
	46.1 Lifecycle Awareness
	46.2 Lifecycle Owners
	46.3 Lifecycle Observers
	46.4 Lifecycle States and Events
	46.5 Summary

	47. An Android Jetpack Lifecycle Awareness Tutorial
	47.1 Creating the Example Lifecycle Project
	47.2 Creating a Lifecycle Observer
	47.3 Adding the Observer
	47.4 Testing the Observer
	47.5 Creating a Lifecycle Owner
	47.6 Testing the Custom Lifecycle Owner
	47.7 Summary

	48. An Overview of the Navigation Architecture Component
	48.1 Understanding Navigation
	48.2 Declaring a Navigation Host
	48.3 The Navigation Graph
	48.4 Accessing the Navigation Controller
	48.5 Triggering a Navigation Action
	48.6 Passing Arguments
	48.7 Summary

	49. An Android Jetpack Navigation Component Tutorial
	49.1 Creating the NavigationDemo Project
	49.2 Adding Navigation to the Build Configuration
	49.3 Creating the Navigation Graph Resource File
	49.4 Declaring a Navigation Host
	49.5 Adding Navigation Destinations
	49.6 Designing the Destination Fragment Layouts
	49.7 Adding an Action to the Navigation Graph
	49.8 Implement the OnFragmentInteractionListener
	49.9 Adding View Binding Support to the Destination Fragments
	49.10 Triggering the Action
	49.11 Passing Data Using Safeargs
	49.12 Summary

	50. An Introduction to MotionLayout
	50.1 An Overview of MotionLayout
	50.2 MotionLayout
	50.3 MotionScene
	50.4 Configuring ConstraintSets
	50.5 Custom Attributes
	50.6 Triggering an Animation
	50.7 Arc Motion
	50.8 Keyframes
	50.8.1 Attribute Keyframes
	50.8.2 Position Keyframes

	50.9 Time Linearity
	50.10 KeyTrigger
	50.11 Cycle and Time Cycle Keyframes
	50.12 Starting an Animation from Code
	50.13 Summary

	51. An Android MotionLayout Editor Tutorial
	51.1 Creating the MotionLayoutDemo Project
	51.2 ConstraintLayout to MotionLayout Conversion
	51.3 Configuring Start and End Constraints
	51.4 Previewing the MotionLayout Animation
	51.5 Adding an OnClick Gesture
	51.6 Adding an Attribute Keyframe to the Transition
	51.7 Adding a CustomAttribute to a Transition
	51.8 Adding Position Keyframes
	51.9 Summary

	52. A MotionLayout KeyCycle Tutorial
	52.1 An Overview of Cycle Keyframes
	52.2 Using the Cycle Editor
	52.3 Creating the KeyCycleDemo Project
	52.4 Configuring the Start and End Constraints
	52.5 Creating the Cycles
	52.6 Previewing the Animation
	52.7 Adding the KeyFrameSet to the MotionScene
	52.8 Summary

	53. Working with the Floating Action Button and Snackbar
	53.1 The Material Design
	53.2 The Design Library
	53.3 The Floating Action Button (FAB)
	53.4 The Snackbar
	53.5 Creating the Example Project
	53.6 Reviewing the Project
	53.7 Removing Navigation Features
	53.8 Changing the Floating Action Button
	53.9 Adding an Action to the Snackbar
	53.10 Summary

	54. Creating a Tabbed Interface using the TabLayout Component
	54.1 An Introduction to the ViewPager2
	54.2 An Overview of the TabLayout Component
	54.3 Creating the TabLayoutDemo Project
	54.4 Creating the First Fragment
	54.5 Duplicating the Fragments
	54.6 Adding the TabLayout and ViewPager2
	54.7 Performing the Initialization Tasks
	54.8 Testing the Application
	54.9 Customizing the TabLayout
	54.10 Summary

	55. Working with the RecyclerView and CardView Widgets
	55.1 An Overview of the RecyclerView
	55.2 An Overview of the CardView
	55.3 Summary

	56. An Android RecyclerView and CardView Tutorial
	56.1 Creating the CardDemo Project
	56.2 Modifying the Basic Views Activity Project
	56.3 Designing the CardView Layout
	56.4 Adding the RecyclerView
	56.5 Adding the Image Files
	56.6 Creating the RecyclerView Adapter
	56.7 Initializing the RecyclerView Component
	56.8 Testing the Application
	56.9 Responding to Card Selections
	56.10 Summary

	57. Working with the AppBar and Collapsing Toolbar Layouts
	57.1 The Anatomy of an AppBar
	57.2 The Example Project
	57.3 Coordinating the RecyclerView and Toolbar
	57.4 Introducing the Collapsing Toolbar Layout
	57.5 Changing the Title and Scrim Color
	57.6 Summary

	58. An Overview of Android Intents
	58.1 An Overview of Intents
	58.2 Explicit Intents
	58.3 Returning Data from an Activity
	58.4 Implicit Intents
	58.5 Using Intent Filters
	58.6 Automatic Link Verification
	58.7 Manually Enabling Links
	58.8 Checking Intent Availability
	58.9 Summary

	59. Android Explicit Intents – A Worked Example
	59.1 Creating the Explicit Intent Example Application
	59.2 Designing the User Interface Layout for MainActivity
	59.3 Creating the Second Activity Class
	59.4 Designing the User Interface Layout for SecondActivity
	59.5 Reviewing the Application Manifest File
	59.6 Creating the Intent
	59.7 Extracting Intent Data
	59.8 Launching SecondActivity as a Sub-Activity
	59.9 Returning Data from a Sub-Activity
	59.10 Testing the Application
	59.11 Summary

	60. Android Implicit Intents – A Worked Example
	60.1 Creating the Android Studio Implicit Intent Example Project
	60.2 Designing the User Interface
	60.3 Creating the Implicit Intent
	60.4 Adding a Second Matching Activity
	60.5 Adding the Web View to the UI
	60.6 Obtaining the Intent URL
	60.7 Modifying the MyWebView Project Manifest File
	60.8 Installing the MyWebView Package on a Device
	60.9 Testing the Application
	60.10 Manually Enabling the Link
	60.11 Automatic Link Verification
	60.12 Summary

	61. Android Broadcast Intents and Broadcast Receivers
	61.1 An Overview of Broadcast Intents
	61.2 An Overview of Broadcast Receivers
	61.3 Obtaining Results from a Broadcast
	61.4 Sticky Broadcast Intents
	61.5 The Broadcast Intent Example
	61.6 Creating the Example Application
	61.7 Creating and Sending the Broadcast Intent
	61.8 Creating the Broadcast Receiver
	61.9 Registering the Broadcast Receiver
	61.10 Testing the Broadcast Example
	61.11 Listening for System Broadcasts
	61.12 Summary

	62. An Introduction to Kotlin Coroutines
	62.1 What are Coroutines?
	62.2 Threads vs. Coroutines
	62.3 Coroutine Scope
	62.4 Suspend Functions
	62.5 Coroutine Dispatchers
	62.6 Coroutine Builders
	62.7 Jobs
	62.8 Coroutines – Suspending and Resuming
	62.9 Returning Results from a Coroutine
	62.10 Using withContext
	62.11 Coroutine Channel Communication
	62.12 Summary

	63. An Android Kotlin Coroutines Tutorial
	63.1 Creating the Coroutine Example Application
	63.2 Designing the User Interface
	63.3 Implementing the SeekBar
	63.4 Adding the Suspend Function
	63.5 Implementing the launchCoroutines Method
	63.6 Testing the App
	63.7 Summary

	64. An Overview of Android Services
	64.1 Intent Service
	64.2 Bound Service
	64.3 The Anatomy of a Service
	64.4 Controlling Destroyed Service Restart Options
	64.5 Declaring a Service in the Manifest File
	64.6 Starting a Service Running on System Startup
	64.7 Summary

	65. Android Local Bound Services – A Worked Example
	65.1 Understanding Bound Services
	65.2 Bound Service Interaction Options
	65.3 A Local Bound Service Example
	65.4 Adding a Bound Service to the Project
	65.5 Implementing the Binder
	65.6 Binding the Client to the Service
	65.7 Completing the Example
	65.8 Testing the Application
	65.9 Summary

	66. Android Remote Bound Services – A Worked Example
	66.1 Client to Remote Service Communication
	66.2 Creating the Example Application
	66.3 Designing the User Interface
	66.4 Implementing the Remote Bound Service
	66.5 Configuring a Remote Service in the Manifest File
	66.6 Launching and Binding to the Remote Service
	66.7 Sending a Message to the Remote Service
	66.8 Summary

	67. An Introduction to Kotlin Flow
	67.1 Understanding Flows
	67.2 Creating the Sample Project
	67.3 Adding the Kotlin Lifecycle Library
	67.4 Declaring a Flow
	67.5 Emitting Flow Data
	67.6 Collecting Flow Data
	67.7 Adding a Flow Buffer
	67.8 Transforming Data with Intermediaries
	67.9 Terminal Flow Operators
	67.10 Flow Flattening
	67.11 Combining Multiple Flows
	67.12 Hot and Cold Flows
	67.13 StateFlow
	67.14 SharedFlow
	67.15 Summary

	68. An Android SharedFlow Tutorial
	68.1 About the Project
	68.2 Creating the SharedFlowDemo Project
	68.3 Adding the Lifecycle Libraries
	68.4 Designing the User Interface Layout
	68.5 Adding the List Row Layout
	68.6 Adding the RecyclerView Adapter
	68.7 Adding the ViewModel
	68.8 Configuring the ViewModelProvider
	68.9 Collecting the Flow Values
	68.10 Testing the SharedFlowDemo App
	68.11 Handling Flows in the Background
	68.12 Summary

	69. An Overview of Android SQLite Databases
	69.1 Understanding Database Tables
	69.2 Introducing Database Schema
	69.3 Columns and Data Types
	69.4 Database Rows
	69.5 Introducing Primary Keys
	69.6 What is SQLite?
	69.7 Structured Query Language (SQL)
	69.8 Trying SQLite on an Android Virtual Device (AVD)
	69.9 Android SQLite Classes
	69.9.1 Cursor
	69.9.2 SQLiteDatabase
	69.9.3 SQLiteOpenHelper
	69.9.4 ContentValues

	69.10 The Android Room Persistence Library
	69.11 Summary

	70. An Android SQLite Database Tutorial
	70.1 About the Database Example
	70.2 Creating the SQLDemo Project
	70.3 Designing the User interface
	70.4 Creating the Data Model
	70.5 Implementing the Data Handler
	70.6 The Add Handler Method
	70.7 The Query Handler Method
	70.8 The Delete Handler Method
	70.9 Implementing the Activity Event Methods
	70.10 Testing the Application
	70.11 Summary

	71. Understanding Android Content Providers
	71.1 What is a Content Provider?
	71.2 The Content Provider
	71.2.1 onCreate()
	71.2.2 query()
	71.2.3 insert()
	71.2.4 update()
	71.2.5 delete()
	71.2.6 getType()

	71.3 The Content URI
	71.4 The Content Resolver
	71.5 The <provider> Manifest Element
	71.6 Summary

	72. An Android Content Provider Tutorial
	72.1 Copying the SQLDemo Project
	72.2 Adding the Content Provider Package
	72.3 Creating the Content Provider Class
	72.4 Constructing the Authority and Content URI
	72.5 Implementing URI Matching in the Content Provider
	72.6 Implementing the Content Provider onCreate() Method
	72.7 Implementing the Content Provider insert() Method
	72.8 Implementing the Content Provider query() Method
	72.9 Implementing the Content Provider update() Method
	72.10 Implementing the Content Provider delete() Method
	72.11 Declaring the Content Provider in the Manifest File
	72.12 Modifying the Database Handler
	72.13 Summary

	73. An Android Content Provider Client Tutorial
	73.1 Creating the SQLDemoClient Project
	73.2 Designing the User interface
	73.3 Accessing the Content Provider
	73.4 Adding the Query Permission
	73.5 Testing the Project
	73.6 Summary

	74. The Android Room Persistence Library
	74.1 Revisiting Modern App Architecture
	74.2 Key Elements of Room Database Persistence
	74.2.1 Repository
	74.2.2 Room Database
	74.2.3 Data Access Object (DAO)
	74.2.4 Entities
	74.2.5 SQLite Database

	74.3 Understanding Entities
	74.4 Data Access Objects
	74.5 The Room Database
	74.6 The Repository
	74.7 In-Memory Databases
	74.8 Database Inspector
	74.9 Summary

	75. An Android TableLayout and TableRow Tutorial
	75.1 The TableLayout and TableRow Layout Views
	75.2 Creating the Room Database Project
	75.3 Converting to a LinearLayout
	75.4 Adding the TableLayout to the User Interface
	75.5 Configuring the TableRows
	75.6 Adding the Button Bar to the Layout
	75.7 Adding the RecyclerView
	75.8 Adjusting the Layout Margins
	75.9 Summary

	76. An Android Room Database and Repository Tutorial
	76.1 About the RoomDemo Project
	76.2 Modifying the Build Configuration
	76.3 Building the Entity
	76.4 Creating the Data Access Object
	76.5 Adding the Room Database
	76.6 Adding the Repository
	76.7 Adding the ViewModel
	76.8 Creating the Product Item Layout
	76.9 Adding the RecyclerView Adapter
	76.10 Preparing the Main Activity
	76.11 Adding the Button Listeners
	76.12 Adding LiveData Observers
	76.13 Initializing the RecyclerView
	76.14 Testing the RoomDemo App
	76.15 Using the Database Inspector
	76.16 Summary

	77. Video Playback on Android using the VideoView and MediaController Classes
	77.1 Introducing the Android VideoView Class
	77.2 Introducing the Android MediaController Class
	77.3 Creating the Video Playback Example
	77.4 Designing the VideoPlayer Layout
	77.5 Downloading the Video File
	77.6 Configuring the VideoView
	77.7 Adding the MediaController to the Video View
	77.8 Setting up the onPreparedListener
	77.9 Summary

	78. Android Picture-in-Picture Mode
	78.1 Picture-in-Picture Features
	78.2 Enabling Picture-in-Picture Mode
	78.3 Configuring Picture-in-Picture Parameters
	78.4 Entering Picture-in-Picture Mode
	78.5 Detecting Picture-in-Picture Mode Changes
	78.6 Adding Picture-in-Picture Actions
	78.7 Summary

	79. An Android Picture-in-Picture Tutorial
	79.1 Adding Picture-in-Picture Support to the Manifest
	79.2 Adding a Picture-in-Picture Button
	79.3 Entering Picture-in-Picture Mode
	79.4 Detecting Picture-in-Picture Mode Changes
	79.5 Adding a Broadcast Receiver
	79.6 Adding the PiP Action
	79.7 Testing the Picture-in-Picture Action
	79.8 Summary

	80. Making Runtime Permission Requests in Android
	80.1 Understanding Normal and Dangerous Permissions
	80.2 Creating the Permissions Example Project
	80.3 Checking for a Permission
	80.4 Requesting Permission at Runtime
	80.5 Providing a Rationale for the Permission Request
	80.6 Testing the Permissions App
	80.7 Summary

	81. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	81.1 Playing Audio
	81.2 Recording Audio and Video using the MediaRecorder Class
	81.3 About the Example Project
	81.4 Creating the AudioApp Project
	81.5 Designing the User Interface
	81.6 Checking for Microphone Availability
	81.7 Initializing the Activity
	81.8 Implementing the recordAudio() Method
	81.9 Implementing the stopAudio() Method
	81.10 Implementing the playAudio() method
	81.11 Configuring and Requesting Permissions
	81.12 Testing the Application
	81.13 Summary

	82. An Android Notifications Tutorial
	82.1 An Overview of Notifications
	82.2 Creating the NotifyDemo Project
	82.3 Designing the User Interface
	82.4 Creating the Second Activity
	82.5 Creating a Notification Channel
	82.6 Requesting Notification Permission
	82.7 Creating and Issuing a Notification
	82.8 Launching an Activity from a Notification
	82.9 Adding Actions to a Notification
	82.10 Bundled Notifications
	82.11 Summary

	83. An Android Direct Reply Notification Tutorial
	83.1 Creating the DirectReply Project
	83.2 Designing the User Interface
	83.3 Requesting Notification Permission
	83.4 Creating the Notification Channel
	83.5 Building the RemoteInput Object
	83.6 Creating the PendingIntent
	83.7 Creating the Reply Action
	83.8 Receiving Direct Reply Input
	83.9 Updating the Notification
	83.10 Summary

	84. Working with the Google Maps Android API in Android Studio
	84.1 The Elements of the Google Maps Android API
	84.2 Creating the Google Maps Project
	84.3 Creating a Google Cloud Billing Account
	84.4 Creating a New Google Cloud Project
	84.5 Enabling the Google Maps SDK
	84.6 Generating a Google Maps API Key
	84.7 Adding the API Key to the Android Studio Project
	84.8 Testing the Application
	84.9 Understanding Geocoding and Reverse Geocoding
	84.10 Adding a Map to an Application
	84.11 Requesting Current Location Permission
	84.12 Displaying the User’s Current Location
	84.13 Changing the Map Type
	84.14 Displaying Map Controls to the User
	84.15 Handling Map Gesture Interaction
	84.15.1 Map Zooming Gestures
	84.15.2 Map Scrolling/Panning Gestures
	84.15.3 Map Tilt Gestures
	84.15.4 Map Rotation Gestures

	84.16 Creating Map Markers
	84.17 Controlling the Map Camera
	84.18 Summary

	85. Printing with the Android Printing Framework
	85.1 The Android Printing Architecture
	85.2 The Print Service Plugins
	85.3 Google Cloud Print
	85.4 Printing to Google Drive
	85.5 Save as PDF
	85.6 Printing from Android Devices
	85.7 Options for Building Print Support into Android Apps
	85.7.1 Image Printing
	85.7.2 Creating and Printing HTML Content
	85.7.3 Printing a Web Page
	85.7.4 Printing a Custom Document

	85.8 Summary

	86. An Android HTML and Web Content Printing Example
	86.1 Creating the HTML Printing Example Application
	86.2 Printing Dynamic HTML Content
	86.3 Creating the Web Page Printing Example
	86.4 Removing the Floating Action Button
	86.5 Removing Navigation Features
	86.6 Designing the User Interface Layout
	86.7 Accessing the WebView from the Main Activity
	86.8 Loading the Web Page into the WebView
	86.9 Adding the Print Menu Option
	86.10 Summary

	87. A Guide to Android Custom Document Printing
	87.1 An Overview of Android Custom Document Printing
	87.1.1 Custom Print Adapters

	87.2 Preparing the Custom Document Printing Project
	87.3 Creating the Custom Print Adapter
	87.4 Implementing the onLayout() Callback Method
	87.5 Implementing the onWrite() Callback Method
	87.6 Checking a Page is in Range
	87.7 Drawing the Content on the Page Canvas
	87.8 Starting the Print Job
	87.9 Testing the Application
	87.10 Summary

	88. An Introduction to Android App Links
	88.1 An Overview of Android App Links
	88.2 App Link Intent Filters
	88.3 Handling App Link Intents
	88.4 Associating the App with a Website
	88.5 Summary

	89. An Android Studio App Links Tutorial
	89.1 About the Example App
	89.2 The Database Schema
	89.3 Loading and Running the Project
	89.4 Adding the URL Mapping
	89.5 Adding the Intent Filter
	89.6 Adding Intent Handling Code
	89.7 Testing the App
	89.8 Creating the Digital Asset Links File
	89.9 Testing the App Link
	89.10 Summary

	90. An Android Biometric Authentication Tutorial
	90.1 An Overview of Biometric Authentication
	90.2 Creating the Biometric Authentication Project
	90.3 Configuring Device Fingerprint Authentication
	90.4 Adding the Biometric Permission to the Manifest File
	90.5 Designing the User Interface
	90.6 Adding a Toast Convenience Method
	90.7 Checking the Security Settings
	90.8 Configuring the Authentication Callbacks
	90.9 Adding the CancellationSignal
	90.10 Starting the Biometric Prompt
	90.11 Testing the Project
	90.12 Summary

	91. Creating, Testing, and Uploading an Android App Bundle
	91.1 The Release Preparation Process
	91.2 Android App Bundles
	91.3 Register for a Google Play Developer Console Account
	91.4 Configuring the App in the Console
	91.5 Enabling Google Play App Signing
	91.6 Creating a Keystore File
	91.7 Creating the Android App Bundle
	91.8 Generating Test APK Files
	91.9 Uploading the App Bundle to the Google Play Developer Console
	91.10 Exploring the App Bundle
	91.11 Managing Testers
	91.12 Rolling the App Out for Testing
	91.13 Uploading New App Bundle Revisions
	91.14 Analyzing the App Bundle File
	91.15 Summary

	92. An Overview of Android In-App Billing
	92.1 Preparing a Project for In-App Purchasing
	92.2 Creating In-App Products and Subscriptions
	92.3 Billing Client Initialization
	92.4 Connecting to the Google Play Billing Library
	92.5 Querying Available Products
	92.6 Starting the Purchase Process
	92.7 Completing the Purchase
	92.8 Querying Previous Purchases
	92.9 Summary

	93. An Android In-App Purchasing Tutorial
	93.1 About the In-App Purchasing Example Project
	93.2 Creating the InAppPurchase Project
	93.3 Adding Libraries to the Project
	93.4 Designing the User Interface
	93.5 Adding the App to the Google Play Store
	93.6 Creating an In-App Product
	93.7 Enabling License Testers
	93.8 Initializing the Billing Client
	93.9 Querying the Product
	93.10 Launching the Purchase Flow
	93.11 Handling Purchase Updates
	93.12 Consuming the Product
	93.13 Restoring a Previous Purchase
	93.14 Testing the App
	93.15 Troubleshooting
	93.16 Summary

	94. Accessing Cloud Storage using the Android Storage Access Framework
	94.1 The Storage Access Framework
	94.2 Working with the Storage Access Framework
	94.3 Filtering Picker File Listings
	94.4 Handling Intent Results
	94.5 Reading the Content of a File
	94.6 Writing Content to a File
	94.7 Deleting a File
	94.8 Gaining Persistent Access to a File
	94.9 Summary

	95. An Android Storage Access Framework Example
	95.1 About the Storage Access Framework Example
	95.2 Creating the Storage Access Framework Example
	95.3 Designing the User Interface
	95.4 Adding the Activity Launchers
	95.5 Creating a New Storage File
	95.6 Saving to a Storage File
	95.7 Opening and Reading a Storage File
	95.8 Testing the Storage Access Application
	95.9 Summary

	96. An Android Studio Primary/Detail Flow Tutorial
	96.1 The Primary/Detail Flow
	96.2 Creating a Primary/Detail Flow Activity
	96.3 Adding the Primary/Detail Flow Activity
	96.4 Modifying the Primary/Detail Flow Template
	96.5 Changing the Content Model
	96.6 Changing the Detail Pane
	96.7 Modifying the ItemDetailFragment Class
	96.8 Modifying the ItemListFragment Class
	96.9 Adding Manifest Permissions
	96.10 Running the Application
	96.11 Summary

	97. Working with Material Design 3 Theming
	97.1 Material Design 2 vs. Material Design 3
	97.2 Understanding Material Design Theming
	97.3 Material Design 3 Theming
	97.4 Building a Custom Theme
	97.5 Summary

	98. A Material Design 3 Theming and Dynamic Color Tutorial
	98.1 Creating the ThemeDemo Project
	98.2 Designing the User Interface
	98.3 Building a New Theme
	98.4 Adding the Theme to the Project
	98.5 Enabling Dynamic Color Support
	98.6 Previewing Dynamic Colors
	98.7 Summary

	99. An Overview of Gradle in Android Studio
	99.1 An Overview of Gradle
	99.2 Gradle and Android Studio
	99.2.1 Sensible Defaults
	99.2.2 Dependencies
	99.2.3 Build Variants
	99.2.4 Manifest Entries
	99.2.5 APK Signing
	99.2.6 ProGuard Support

	99.3 The Property and Settings Gradle Build File
	99.4 The Top-level Gradle Build File
	99.5 Module Level Gradle Build Files
	99.6 Configuring Signing Settings in the Build File
	99.7 Running Gradle Tasks from the Command Line
	99.8 Summary

	Index

