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Chapter 1

1. Introduction

Fully updated for Android Studio Iguana (2023.2.1) and the new UI, this book teaches you how to develop
Android-based applications using the Kotlin programming language.

This book begins with the basics and outlines how to set up an Android development and testing environment,
followed by an introduction to programming in Kotlin, including data types, control flow, functions, lambdas,
and object-oriented programming. Asynchronous programming using Kotlin coroutines and flow is also
covered in detail.

Chapters also cover the Android Architecture Components, including view models, lifecycle management,
Room database access, content providers, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the
ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers,
and direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App Links, Gradle build configuration, in-app
billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.payloadbooks.com/product/iguanakotlin/
The steps to load a project from the code samples into Android Studio are as follows:
1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at info@payloadbooks.com.


https://www.payloadbooks.com/product/iguanakotlin/

Introduction

1.3 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.payloadbooks.com/iguanakotlin

If you find an error not listed in the errata, please let us know by emailing our technical support team at info@
payloadbooks.com. They are there to help you and will work to resolve any problems you may encounter.

1.4 Authors Wanted
Payload Publishing is looking for authors.

Are you an aspiring author with a book idea in mind? When you publish with us, you’ll receive our full support
every step of the way. We offer guidance and technical and editorial assistance to help you bring your book
to life. Once your book is completed, we will publish and market it worldwide through our distribution and
channel partnerships while paying you higher royalties than traditional publishers.

Find out more at:
https://www.payloadbooks.com/authors-wanted
or email us at:

authors@payloadbooks.com


https://www.payloadbooks.com/iguanakotlin
https://www.payloadbooks.com/authors-wanted

Chapter 2

2. Setting up an Android Studio
Development Environment

Before any work can begin on developing an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE), including the Android Software Development Kit (SDK), the
Kotlin plug-in and the Open]JDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements

Android application development may be performed on any of the following system types:
« Windows 8/10/11 64-bit

« macOS 10.14 or later running on Intel or Apple silicon

« Chrome OS device with Intel i5 or higher

o Linux systems with version 2.31 or later of the GNU C Library (glibc)

o Minimum of 8GB of RAM

« Approximately 8GB of available disk space

« 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package

Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Iguana 2023.2.1
using the Android API 34 SDK (UpsideDownCake), which, at the time of writing, are the latest stable releases.

Android Studio is, however, subject to frequent updates, so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page, which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio, there may be differences
between this book and the software. A web search for “Android Studio Iguana” should provide the option to
download the older version if these differences become a problem. Alternatively, visit the following web page to
find Android Studio Iguana 2023.2.1 in the archives:

https://developer.android.com/studio/archive


https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive
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2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is performed.

2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation to
meet your requirements in terms of the file system location into which Android Studio should be installed and
whether or not it should be made available to other system users. When prompted to select the components to
install, ensure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11, this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS

Android Studio for macOS is downloaded as a disk image (.dmg) file. Once the android-studio-<version>-mac.
dmg file has been downloaded, locate it in a Finder window and double-click on it to open it, as shown in Figure
2-1:

Figure 2-1

To install the package, drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.
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2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed, and execute the following command:

tar xvfz /<path to package>/android-studio-<version>-linux.tar.gz

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Therefore,

assuming that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory,
and execute the following command:

./studio.sh

2.4 The Android Studio setup wizard

If you have previously installed an earlier version of Android Studio, the first time this new version is launched,
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have
settings from a previous version and would like to import them into the latest installation, select the appropriate
option and location. Alternatively, indicate that you do not need to import any previous settings and click the
OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2

If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select
the Standard installation option before clicking Next.
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Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click the Finish
button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen using your chosen Ul theme:

Figure 2-4
2.5 Installing additional Android SDK packages

The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.
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This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Settings dialog
will appear as shown in Figure 2-5:

Figure 2-5

Google pairs each release of Android Studio with a maximum supported Application Programming Interface
(API) level of the Android SDK. In the case of Android Studio Iguana, this is Android UpsideDownCake (API
Level 34). This information can be confirmed using the following link:

https://developer.android.com/studio/releases#api-level-support

Immediately after installing Android Studio for the first time, it is likely that only the latest supported version
of the Android SDK has been installed. To install older versions of the Android SDK, select the checkboxes
corresponding to the versions and click the Apply button. The rest of this book assumes that the Android
UpsideDownCake (API Level 34) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo).
This ensures that the apps run on a wide range of Android devices. Within the list of SDK versions, enable
the checkbox next to Android 8.0 (Oreo) and click the Apply button. Click the OK button to install the SDK
in the resulting confirmation dialog. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:


https://developer.android.com/studio/releases#api-level-support
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Figure 2-6

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

« Android SDK Build-tools
 Android Emulator

« Android SDK Platform-tools
» Google Play Services

« Intel x86 Emulator Accelerator (HAXM installer)”

Google USB Driver (Windows only)
o Layout Inspector image server for API 31-34

"Note that the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based
Macs.

If any of the above packages are listed as Not Installed or requiring an update, select the checkboxes next to those
packages and click the Apply button to initiate the installation process. If the HAXM emulator settings dialog
appears, select the recommended memory allocation:
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Figure 2-8

Once the installation is complete, review the package list and ensure that the selected packages are listed as
Installed in the Status column. If any are listed as Not installed, make sure they are selected and click the Apply
button again.

2.6 Installing the Android SDK Command-line Tools

Android Studio includes tools that allow some tasks to be performed from your operating system command
line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab, and locate the
Android SDK Command-line Tools (latest) package as shown in Figure 2-9:

Figure 2-9
If the command-line tools package is not already installed, enable it and click Apply, followed by OK to complete
the installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add
them to the system’s PATH environment variable.
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Regardless of your operating system, you will need to configure the PATH environment variable to include the
following paths (where <path_to_android_sdk_installation> represents the file system location into which you
installed the Android SDK):

<path to android sdk installation>/sdk/cmdline-tools/latest/bin
<path to android sdk installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:

Figure 2-10

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1

1.  On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from
the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of
icons, select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it, and click
the Edit... button. Using the New button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the following
entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin
C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering ¢md into the Run
dialog. Within the Command Prompt window, enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command-line options when executed.
Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:

10
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'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10

Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.3 Windows 11

Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux

This configuration can be achieved on Linux by adding a command to the .bashrc file in your home directory
(specifics may differ depending on the particular Linux distribution in use). Assuming that the Android SDK
bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file would read as
follows:

export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS

Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:

/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory, it will be necessary to use the sudo command when creating the file.
For example:

sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management

Android Studio is a large and complex software application with many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded, it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

11
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Figure 2-11

To view and modify the current memory configuration, select the File -> Settings... main menu option (Android
Studio -> Settings... on macOS) and, in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure
2-12 below:

Figure 2-12

When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the
currently loaded project. On the other hand, when a project is built and run from within Android Studio,
several background processes (referred to as daemons) perform the task of compiling and running the app.
When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an
open project, select the Tools -> SDK Manager... menu option from the main menu.

2.8 Updating Android Studio and the SDK

From time to time, new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

12
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2.9 Summary

Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). This chapter covers the steps necessary to install these packages on Windows,
macO§, and Linux.

13






Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have explained how to configure an environment suitable for developing
Android applications using the Android Studio IDE. Before moving on to slightly more advanced topics, now
is a good time to validate that all required development packages are installed and functioning correctly. The
best way to achieve this goal is to create an Android application and compile and run it. This chapter will cover
creating an Android application project using Android Studio. Once the project has been created, a later chapter
will explore using the Android emulator environment to perform a test run of the application.

3.1 About the Project

The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also use one of the most basic Android Studio project templates. This simplicity allows us to introduce some key
aspects of Android app development without overwhelming the beginner by introducing too many concepts,
such as the recommended app architecture and Android architecture components, at once. When following
the tutorial in this chapter, rest assured that the techniques and code used in this initial example project will be
covered in much greater detail later.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1
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Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity

The next step is to define the type of initial activity to be created for the application. Options are available to
create projects for Phone and Tablet, Wear OS, Television, or Automotive. A range of different activity types is
available when developing Android applications, many of which will be covered extensively in later chapters.
For this example, however, select the Phone and Tablet option from the Templates panel, followed by the option
to create an Empty Views Activity. The Empty Views Activity option creates a template user interface consisting
of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name uniquely identifies the application within the Android application ecosystem. Although this
can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your
domain name followed by the application’s name. For example, if your domain is www.mycompany.com, and the
application has been named AndroidSample, then the package name might be specified as follows:

com.mycompany.androidsample

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your

home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This minimum SDK will be used in most projects
created in this book unless a necessary feature is only available in a more recent version. The objective here is to

16
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build an app using the latest Android SDK while retaining compatibility with devices running older versions of
Android (in this case, as far back as Android 8.0). The text beneath the Minimum SDXK setting will outline the
percentage of Android devices currently in use on which the app will run. Click on the Help me choose button
(highlighted in Figure 3-3) to see a full breakdown of the various Android versions still in use:

Figure 3-3

Finally, change the Language menu to Kotlin and select Kotlin DSL (build.gradle.kts) as the build configuration
language before clicking Finish to create the project.

3.5 Enabling the New Android Studio Ul

Android Studio is transitioning to a new, modern user interface that is not enabled by default in the Iguana
version. If your installation of Android Studio resembles Figure 3-4 below, then you will need to enable the new
UI before proceeding:

Figure 3-4
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Enable the new Ul by selecting the File -> Settings... menu option (Android Studio -> Settings... on macOS) and
selecting the New UI option under Appearance and Behavior in the left-hand panel. From the main panel, turn
on the Enable new UI checkbox before clicking Apply, followed by OK to commit the change:

Figure 3-5

When prompted, restart Android Studio to activate the new user interface.

3.6 Modifying the Example Application

Once Android Studio has restarted, the main window will reappear using the new UI and containing our
AndroidSample project as illustrated in Figure 3-6 below:

Figure 3-6

The newly created project and references to associated files are listed in the Project tool window on the left side
of the main project window. The Project tool window has several modes in which information can be displayed.
By default, this panel should be in Android mode. This setting is controlled by the menu at the top of the panel
as highlighted in Figure 3-7. If the panel is not currently in Android mode, use the menu to switch mode:
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Figure 3-7
3.7 Moditying the User Interface

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the Project tool window file hierarchy. Once located in the Project tool window,
double-click on the file to load it into the user interface Layout Editor tool, which will appear in the center panel
of the Android Studio main window:

Figure 3-8
In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A range of other
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device options are available by clicking on this menu.

Use the System UI Mode button () to turn Night mode on and off for the device screen layout. To change
the orientation of the device representation between landscape and portrait, use the drop-down menu showing

the icon.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user
interface components that may be used to construct a user interface, such as buttons, labels, and text fields.
However, it should be noted that not all user interface components are visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel, which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-9:

Figure 3-9

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
called main and a TextView child object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to ensure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a
U-shaped icon. When disabled, the icon appears with a diagonal line through it (Figure 3-10). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-10

The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns, with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-11, for example, the Button view is currently selected within the Buttons category:
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Figure 3-11

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-12

The next step is to change the text currently displayed by the Button component. The panel located to the right
of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected
component in the layout. Within this panel, locate the text property in the Common Attributes section and
change the current value from “Button” to “Convert’, as shown in Figure 3-13:
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Figure 3-13

The second text property with a wrench next to it allows a text property to be set, which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing how a visual component and the layout
will behave with different settings without running the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer Constraints
button (Figure 3-14) to add any missing constraints to the layout:

Figure 3-14

It is important to explain the warning button in the top right-hand corner of the Layout Editor tool, as indicated
in Figure 3-15. This warning indicates potential problems with the layout. For details on any problems, click on
the button:

Figure 3-15
When clicked, the Problems tool window (Figure 3-16) will appear, describing the nature of the problems:

Figure 3-16
This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected
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within the layout file. In our example, only the following problem is listed:
button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:

Hardcoded string "Convert", should use @string resource
The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This I18N message informs us that a potential issue exists concerning the future internationalization of the
project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an “N”
and has 18 letters in between). The warning reminds us that attributes and values such as text strings should be
stored as resources wherever possible when developing Android applications. Doing so enables changes to the
appearance of the application to be made by modifying resource files instead of changing the application source
code. This can be especially valuable when translating a user interface to a different spoken language. If all of the
text in a user interface is contained in a single resource file, for example, that file can be given to a translator, who
will then perform the translation work and return the translated file for inclusion in the application. This enables
multiple languages to be targeted without the necessity for any source code changes to be made. In this instance,
we are going to create a new resource named convert_string and assign to it the string “Convert”

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-17:

Figure 3-17

After selecting this option, the Extract Resource panel (Figure 3-18) will appear. Within this panel, change the
resource name field to convert_string and leave the resource value set to Convert before clicking on the OK
button:

Figure 3-18
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The next widget to be added is an EditText widget, into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars” Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout, as shown in Figure 3-19:

Figure 3-19

Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

Figure 3-20
Repeat the steps to set the id of the TextView widget to textView, if necessary.

Add any missing layout constraints by clicking on the Infer Constraints button. At this point, the layout should
resemble that shown in Figure 3-21:
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Figure 3-21
3.8 Reviewing the Layout and Resource Files

Before moving on to the next step, we will look at some internal aspects of user interface design and resource
handling. In the previous section, we changed the user interface by modifying the activity_main.xml file using
the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a user-friendly way to edit the
underlying XML content of the file. In practice, there is no reason why you cannot modify the XML directly to
make user interface changes, and, in some instances, this may actually be quicker than using the Layout Editor
tool. In the top right-hand corner of the Layout Editor panel are the View Modes buttons marked A through C
in Figure 3-22 below:

Figure 3-22

By default, the editor will be in Design mode (button C), whereby only the visual representation of the layout is
displayed. In Code mode (A), the editor will display the XML for the layout, while in Split mode (B), both the
layout and XML are displayed, as shown in Figure 3-23:
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Figure 3-23

The button to the left of the View Modes button (marked B in Figure 3-22 above) is used to toggle between Code
and Split modes quickly.

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button, and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although complexity and content vary, all user
interface layouts are structured in this hierarchical, XML-based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel, with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/main"

android:layout width="match parent"

android:layout height="match parent"
tools:context=".MainActivity"
android:background="#££2438" >

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the layout color changes in real-time to match the new setting in the XML file. Note also that a small
red square appears in the XML editor’s left margin (also called the gutter) next to the line containing the color
setting. This is a visual cue to the fact that the color red has been set on a property. Clicking on the red square
will display a color chooser allowing a different color to be selected:
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Figure 3-24

Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently, the XML should read as follows:
<resources>
<string name="app name">AndroidSample</string>
<string name="convert string">Convert</string>
<string name="dollars hint">dollars</string>
</resources>

To demonstrate resources in action, change the string value currently assigned to the convert_string resource to
“Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file in the editor
panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor
tool in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights, and
then press Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml
file and take you to the line in that file where this resource is declared. Use this opportunity to revert the string
resource to the original “Convert” text and to add the following additional entry for a string resource that will
be referenced later in the app code:
<resources>

<string name="app name">AndroidSample</string>

<string name="convert string">Convert</string>

<string name="dollars hint">dollars</string>

<string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor by clicking on the Open editor
link in the top right-hand corner of the editor window. This will display the Translation Editor in the main panel
of the Android Studio window:
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Figure 3-25

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.9 Adding Interaction

The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button, the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can
be implemented in several ways and is covered in a later chapter entitled “An Overview and Example of Android
Event Handling”. Return the layout editor to Design mode, select the Button widget in the layout editor, refer to
the Attributes tool window, and specify a method named convertCurrency as shown below:

Figure 3-26

Next, double-click on the MainActivity.kt file in the Project tool window (app -> kotlin+java -> <package name>
-> MainActivity) to load it into the code editor and add the code for the convertCurrency method to the class file
so that it reads as follows, noting that it is also necessary to import some additional Android packages:

package com.example.androidsample

import android.os.Bundle

import androidx.activity.enableEdgeToEdge
import androidx.appcompat.app.AppCompatActivity
import androidx.core.view.ViewCompat

import androidx.core.view.WindowInsetsCompat

import android.view.View
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import android.widget.EditText
import android.widget.TextView

class MainActivity : AppCompatActivity() {
override fun onCreate (savedInstanceState: Bundle?) {

super.onCreate (savedInstanceState)

fun convertCurrency (view: View) ({
val dollarText: EditText = findViewById(R.id.dollarText)
val textView: TextView = findViewById(R.id.textView)

if (dollarText.text.isNotEmpty()) {
val dollarValue = dollarText.text.toString().toFloat()
val euroValue = dollarValue * 0.85f
textView. text = euroValue.toString()
} else {
textView. text = getString(R.string.no_value_string)

}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewByld, passing through the id assigned within the layout file. A check is then made to ensure
that the user has entered a dollar value, and if so, that value is extracted, converted from a String to a floating
point value, and converted to euros. Finally, the result is displayed on the TextView widget.

If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters. In
particular, the topic of accessing widgets from within code using findByViewld and an introduction to an
alternative technique referred to as view binding will be covered in the chapter entitled “An Overview of Android
View Binding”.

3.10 Summary

While not excessively complex, several steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to ensure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly string values, and briefly touched on layouts. Next, we looked at the
underlying XML used to store Android application user interface designs.

Finally, an onClick event was added to a Button connected to a method implemented to extract the user input
from the EditText component, convert it from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.
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Chapter 12

12. Kotlin Data Types, Variables, and
Nullability

Both this and the following few chapters are intended to introduce the basics of the Kotlin programming
language. This chapter will focus on the various data types available for use within Kotlin code. This will also
include an explanation of constants, variables, typecasting, and Kotlin's handling of null values.

As outlined in the previous chapter, entitled “An Introduction to Kotlin” a useful way to experiment with the
language is to use the Kotlin online playground environment. Before starting this chapter, therefore, open a
browser window, navigate to https://play.kotlinlang.org and use the playground to try out the code in both this
and the other Kotlin introductory chapters that follow.

12.1 Kotlin Data Types

When we look at the different types of software that run on computer systems and mobile devices, from financial
applications to graphics-intensive games, it is easy to forget that computers are really just binary machines.
Binary systems work in terms of 0 and 1, true or false, set and unset. All the data sitting in RAM, stored on disk
drives, and flowing through circuit boards and buses are nothing more than sequences of 1s and 0s. Each 1 or 0
is referred to as a bit and bits are grouped together in blocks of 8, each group being referred to as a byte. When
people talk about 32-bit and 64-bit computer systems they are talking about the number of bits that can be
handled simultaneously by the CPU bus. A 64-bit CPU, for example, can handle data in 64-bit blocks, resulting
in faster performance than a 32-bit based system.

Humans, of course, don't think in binary. We work with decimal numbers, letters, and words. For a human
to easily (‘easily’ being a relative term in this context) program a computer, some middle ground between
human and computer thinking is needed. This is where programming languages such as Kotlin come into
play. Programming languages allow humans to express instructions to a computer in terms and structures we
understand and then compile that down to a format that can be executed by a CPU.

One of the fundamentals of any program involves data, and programming languages such as Kotlin define a set
of data types that allow us to work with data in a format we understand when programming. For example, if we
want to store a number in a Kotlin program we could do so with syntax similar to the following:

val mynumber = 10

In the above example, we have created a variable named mynumber and then assigned to it the value of 10. When
we compile the source code down to the machine code used by the CPU, the number 10 is seen by the computer
in binary as:

1010

Similarly, we can express a letter, the visual representation of a digit (‘0’ through to ‘9’), or punctuation mark
(referred to in computer terminology as characters) using the following syntax:

val myletter = 'c'

Once again, this is understandable by a human programmer but gets compiled down to a binary sequence for

the CPU to understand. In this case, the letter ‘¢’ is represented by the decimal number 99 using the ASCII
table (an internationally recognized standard that assigns numeric values to human-readable characters). When
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converted to binary, it is stored as:
10101100011

Now that we have a basic understanding of the concept of data types and why they are necessary we can take a
closer look at some of the more commonly used data types supported by Kotlin.

12.1.1 Integer Data Types

Kotlin integer data types are used to store whole numbers (in other words a number with no decimal places). All
integers in Kotlin are signed (in other words capable of storing positive, negative, and zero values).

Kotlin provides support for 8, 16, 32, and 64-bit integers (represented by the Byte, Short, Int, and Long types
respectively).

12.1.2 Floating-Point Data Types

The Kotlin floating-point data types can store values containing decimal places. For example, 4353.1223 would
be stored in a floating-point data type. Kotlin provides two floating-point data types in the form of Float and
Double. Which type to use depends on the size of value to be stored and the level of precision required. The
Double type can be used to store up to 64-bit floating-point numbers. The Float data type, on the other hand, is
limited to 32-bit floating-point numbers.

12.1.3 Boolean Data Type

Kotlin, like other languages, includes a data type to handle true or false (1 or 0) conditions. Two Boolean constant
values (true and false) are provided by Kotlin specifically for working with Boolean data types.

12.1.4 Character Data Type

The Kotlin Char data type is used to store a single character of rendered text such as a letter, numerical digit,
punctuation mark, or symbol. Internally characters in Kotlin are stored in the form of 16-bit Unicode grapheme
clusters. A grapheme cluster is made of two or more Unicode code points that are combined to represent a single
visible character.

The following lines assign a variety of different characters to Character type variables:
val myCharl = 'f'

val myChar?2
val myChar3 = 'X'

Characters may also be referenced using Unicode code points. The following example assigns the X’ character
to a variable using Unicode:

val myChar4 = '\u0058"'

Note the use of single quotes when assigning a character to a variable. This indicates to Kotlin that this is a Char
data type as opposed to double quotes which indicate a String data type.

12.1.5 String Data Type

The String data type is a sequence of characters that typically make up a word or sentence. In addition to providing
a storage mechanism, the String data type also includes a range of string manipulation features allowing strings
to be searched, matched, concatenated, and modified. Double quotes are used to surround single-line strings
during an assignment, for example:

val message = "You have 10 new messages."

Alternatively, a multi-line string may be declared using triple quotes

val message = """You have 10 new messages,
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5 old messages
and 6 spam messages."""
The leading spaces on each line of a multi-line string can be removed by making a call to the trimMargin()
function of the String data type:
val message = """You have 10 new messages,
5 old messages

and 6 spam messages.""".trimMargin ()

Strings can also be constructed using combinations of strings, variables, constants, expressions, and function
calls using a concept referred to as string interpolation. For example, the following code creates a new string
from a variety of different sources using string interpolation before outputting it to the console:

val username = "John"

val inboxCount = 25

val maxcount = 100

val message = "S$Susername has $inboxCount messages. Message capacity remaining is
${maxcount - inboxCount} messages"
println (message)

When executed, the code will output the following message:

John has 25 messages. Message capacity remaining is 75 messages.

12.1.6 Escape Sequences

In addition to the standard set of characters outlined above, there is also a range of special characters (also
referred to as escape characters) available for specifying items such as a new line, tab, or a specific Unicode value
within a string. These special characters are identified by prefixing the character with a backslash (a concept
referred to as escaping). For example, the following assigns a new line to the variable named newline:

var newline = '\n'

In essence, any character that is preceded by a backslash is considered to be a special character and is treated
accordingly. This raises the question as to what to do if you actually want a backslash character. This is achieved
by escaping the backslash itself:

var backslash = "\\'

The complete list of special characters supported by Kotlin is as follows:

« \n - Newline

« \r - Carriage return

« \t - Horizontal tab

o \\ - Backslash

« \” - Double quote (used when placing a double quote into a string declaration)

« \’ - Single quote (used when placing a single quote into a string declaration)

« \$ - Used when a character sequence containing a $ is misinterpreted as a variable in a string template.

« \unnnn - Double byte Unicode scalar where nnnn is replaced by four hexadecimal digits representing the
Unicode character.
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12.2 Mutable Variables

Variables are essentially locations in computer memory reserved for storing the data used by an application.
Each variable is given a name by the programmer and assigned a value. The name assigned to the variable
may then be used in the Kotlin code to access the value assigned to that variable. This access can involve either
reading the value of the variable or, in the case of mutable variables, changing the value.

12.3 Immutable Variables

Often referred to as a constant, an immutable variable is similar to a mutable variable in that it provides a named
location in memory to store a data value. Immutable variables differ in one significant way in that once a value
has been assigned it cannot subsequently be changed.

Immutable variables are particularly useful if there is a value that is used repeatedly throughout the application
code. Rather than use the value each time, it makes the code easier to read if the value is first assigned to a
constant which is then referenced in the code. For example, it might not be clear to someone reading your Kotlin
code why you used the value 5 in an expression. If, instead of the value 5, you use an immutable variable named
interestRate the purpose of the value becomes much clearer. Immutable values also have the advantage that if the
programmer needs to change a widely used value, it only needs to be changed once in the constant declaration
and not each time it is referenced.

12.4 Declaring Mutable and Immutable Variables

Mutable variables are declared using the var keyword and may be initialized with a value at creation time. For
example:

var userCount = 10
If the variable is declared without an initial value, the type of the variable must also be declared (a topic that will

be covered in more detail in the next section of this chapter). The following, for example, is a typical declaration
where the variable is initialized after it has been declared:

var userCount: Int

userCount = 42

Immutable variables are declared using the val keyword.

val maxUserCount = 20

As with mutable variables, the type must also be specified when declaring the variable without initializing it:

val maxUserCount: Int

maxUserCount = 20

When writing Kotlin code, immutable variables should always be used in preference to mutable variables
whenever possible.

12.5 Data Types are Objects

All of the above data types are objects, each of which provides a range of functions and properties that may
be used to perform a variety of different type-specific tasks. These functions and properties are accessed using
so-called dot notation. Dot notation involves accessing a function or property of an object by specifying the
variable name followed by a dot followed in turn by the name of the property to be accessed or function to be
called.

A string variable, for example, can be converted to uppercase via a call to the toUpperCase() function of the
String class:

val myString = "The quick brown fox"
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val uppercase = myString.toUpperCase ()

Similarly, the length of a string is available by accessing the length property:
val length = myString.length

Functions are also available within the String class to perform tasks such as comparisons and checking for the
presence of a specific word. The following code, for example, will return a true Boolean value since the word
“fox” appears within the string assigned to the myString variable:

val result = myString.contains ("fox")

All of the number data types include functions for performing tasks such as converting from one data type to
another such as converting an Int to a Float:

val myInt = 10

val myFloat = myInt.toFloat()

A detailed overview of all of the properties and functions provided by the Kotlin data type classes is beyond the
scope of this book (there are hundreds). An exhaustive list for all data types can, however, be found within the
Kotlin reference documentation available online at:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/
12.6 Type Annotations and Type Inference

Kotlin is categorized as a statically typed programming language. This essentially means that once the data
type of a variable has been identified, that variable cannot subsequently be used to store data of any other type
without inducing a compilation error. This contrasts to loosely typed programming languages where a variable,
once declared, can subsequently be used to store other data types.

There are two ways in which the type of a variable will be identified. One approach is to use a type annotation at
the point the variable is declared in the code. This is achieved by placing a colon after the variable name followed
by the type declaration. The following line of code, for example, declares a variable named userCount as being
of type Int:

val userCount: Int = 10
In the absence of a type annotation in a declaration, the Kotlin compiler uses a technique referred to as type
inference to identify the type of the variable. When relying on type inference, the compiler looks to see what type

of value is being assigned to the variable at the point that it is initialized and uses that as the type. Consider, for
example, the following variable declarations:

var signalStrength = 2.231

val companyName = "My Company"

During compilation of the above lines of code, Kotlin will infer that the signalStrength variable is of type Double
(type inference in Kotlin defaults to Double for all floating-point numbers) and that the companyName constant
is of type String.

When a constant is declared without a type annotation it must be assigned a value at the point of declaration:
val bookTitle = "Android Studio Development Essentials"

If a type annotation is used when the constant is declared, however, the value can be assigned later in the code.
For example:

val iosBookType = false

val bookTitle: String
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if (iosBookType) {

bookTitle = "i0S App Development Essentials"
} else {

bookTitle = "Android Studio Development Essentials"
}
12.7 Nullable Type

Kotlin nullable types are a concept that does not exist in most other programming languages (except for the
optional type in Swift). The purpose of nullable types is to provide a safe and consistent approach to handling
situations where a variable may have a null value assigned to it. In other words, the objective is to avoid the
common problem of code crashing with the null pointer exception errors that occur when code encounters a
null value where one was not expected.

By default, a variable in Kotlin cannot have a null value assigned to it. Consider, for example, the following code:

val username: String = null

An attempt to compile the above code will result in a compilation error similar to the following:

Error: Null cannot be a value of a non-null string type String

If a variable is required to be able to store a null value, it must be specifically declared as a nullable type by
placing a question mark (?) after the type declaration:

val username: String? = null

The username variable can now have a null value assigned to it without triggering a compiler error. Once a
variable has been declared as nullable, a range of restrictions is then imposed on that variable by the compiler

to prevent it from being used in situations where it might cause a null pointer exception to occur. A nullable
variable, cannot, for example, be assigned to a variable of non-null type as is the case in the following code:

val username: String? = null

val firstname: String = username

The above code will elicit the following error when encountered by the compiler:

Error: Type mismatch: inferred type is String? but String was expected

The only way that the assignment will be permitted is if some code is added to check that the value assigned to
the nullable variable is non-null:

val username: String? = null
if (username != null) {
val firstname: String = username

}

In the above case, the assignment will only take place if the username variable references a non-null value.

12.8 The Safe Call Operator

A nullable variable also cannot be used to call a function or to access a property in the usual way. Earlier in this
chapter, the toUpperCase() function was called on a String object. Given the possibility that this could cause a
function to be called on a null reference, the following code will be disallowed by the compiler:

val username: String? = null

val uppercase = username.toUpperCase ()

The exact error message generated by the compiler in this situation reads as follows:
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Error: (Only safe (?.) or non-null asserted (!!.) calls are allowed on a nullable
receiver of type String?

In this instance, the compiler is essentially refusing to allow the function call to be made because no attempt
has been made to verify that the variable is non-null. One way around this is to add some code to verify that
something other than null value has been assigned to the variable before making the function call:
if (username != null) {

val uppercase = username.toUpperCase ()
}
A much more efficient way to achieve this same verification, however, is to call the function using the safe call
operator (represented by ?.) as follows:

val uppercase = username?.toUpperCase ()

In the above example, if the username variable is null, the toUpperCase() function will not be called and execution
will proceed at the next line of code. If, on the other hand, a non-null value is assigned the toUpperCase()
function will be called and the result assigned to the uppercase variable.

In addition to function calls, the safe call operator may also be used when accessing properties:

val uppercase = username?.length

12.9 Not-Null Assertion

The not-null assertion removes all of the compiler restrictions from a nullable type, allowing it to be used in
the same ways as a non-null type, even if it has been assigned a null value. This assertion is implemented using
double exclamation marks after the variable name, for example:

val username: String? = null

val length = username!!.length

The above code will now compile, but will crash with the following exception at runtime since an attempt is
being made to call a function on a nonexistent object:

Exception in thread "main" kotlin.KotlinNullPointerException

Clearly, this causes the very issue that nullable types are designed to avoid. Use of the not-null assertion is
generally discouraged and should only be used in situations where you are certain that the value will not be null.

12.10 Nullable Types and the let Function

Earlier in this chapter, we looked at how the safe call operator can be used when making a call to a function
belonging to a nullable type. This technique makes it easier to check if a value is null without having to write
an if statement every time the variable is accessed. A similar problem occurs when passing a nullable type as an
argument to a function that is expecting a non-null parameter. As an example, consider the times() function of
the Int data type. When called on an Int object and passed another integer value as an argument, the function
multiplies the two values and returns the result. When the following code is executed, for example, the value of
200 will be displayed within the console:

val firstNumber = 10

val secondNumber = 20

val result = firstNumber.times (secondNumber)

print (result)

The above example works because the secondNumber variable is a non-null type. A problem, however, occurs if
the secondNumber variable is declared as being of nullable type:
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val firstNumber = 10

val secondNumber: Int? = 20

val result = firstNumber.times (secondNumber)

print (result)
Now the compilation will fail with the following error message because a nullable type is being passed to a
function that is expecting a non-null parameter:

Error: Type mismatch: inferred type is Int? but Int was expected

A possible solution to this problem is to write an if statement to verify that the value assigned to the variable is
non-null before making the call to the function:

val firstNumber = 10

val secondNumber: Int? = 20

if (secondNumber !'= null) ({
val result = firstNumber.times (secondNumber)
print (result)

}

A more convenient approach to addressing the issue, however, involves the use of the let function. When called
on a nullable type object, the let function converts the nullable type to a non-null variable named it which may
then be referenced within a lambda statement.
secondNumber?.let {

val result = firstNumber.times (it)

print (result)

}

Note the use of the safe call operator when calling the let function on secondVariable in the above example. This
ensures that the function is only called when the variable is assigned a non-null value.

12.11 Late Initialization (lateinit)

As previously outlined, non-null types need to be initialized when they are declared. This can be inconvenient
if the value to be assigned to the non-null variable will not be known until later in the code execution. One way
around this is to declare the variable using the lateinit modifier. This modifier designates that a value will be
initialized with a value later. This has the advantage that a non-null type can be declared before it is initialized,
with the disadvantage that the programmer is responsible for ensuring that the initialization has been performed
before attempting to access the variable. Consider the following variable declaration:

var myName: String
Clearly, this is invalid since the variable is a non-null type but has not been assigned a value. Suppose, however,

that the value to be assigned to the variable will not be known until later in the program execution. In this case,
the lateinit modifier can be used as follows:

lateinit var myName: String

With the variable declared in this way, the value can be assigned later, for example:

myName = "John Smith"

print ("My Name is " + myName)

Of course, if the variable is accessed before it is initialized, the code will fail with an exception:

102



Kotlin Data Types, Variables, and Nullability

lateinit var myName: String
print ("My Name is " + myName)

Exception in thread "main" kotlin.UninitializedPropertyAccessException: lateinit
property myName has not been initialized

To verify whether a lateinit variable has been initialized, check the isInitialized property on the variable. To do
this, we need to access the properties of the variable by prefixing the name with the “:” operator:
if (::myName.isInitialized) {

print ("My Name is " + myName)

)
12.12 The Elvis Operator

The Kotlin Elvis operator can be used in conjunction with nullable types to define a default value that is to be
returned if a value or expression result is null. The Elvis operator (?:) is used to separate two expressions. If the
expression on the left does not resolve to a null value that value is returned, otherwise the result of the rightmost
expression is returned. This can be thought of as a quick alternative to writing an if-else statement to check for
a null value. Consider the following code:
if (myString != null) {

return myString
} else {

return "String is null"

}

The same result can be achieved with less coding using the Elvis operator as follows:

return myString ?: "String is null"

12.13 Type Casting and Type Checking

When compiling Kotlin code, the compiler can typically infer the type of an object. Situations will occur,
however, where the compiler is unable to identify the specific type. This is often the case when a value type is
ambiguous or an unspecified object is returned from a function call. In this situation, it may be necessary to let
the compiler know the type of object that your code is expecting or to write code that checks whether the object
is of a particular type.

Letting the compiler know the type of object that is expected is known as type casting and is achieved within
Kotlin code using the as cast operator. The following code, for example, lets the compiler know that the result
returned from the getSystemService() method needs to be treated as a KeyguardManager object:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as KeyguardManager
The Kotlin language includes both safe and unsafe cast operators. The above cast is unsafe and will cause the app

to throw an exception if the cast cannot be performed. A safe cast, on the other hand, uses the as? operator and
returns null if the cast cannot be performed:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as? KeyguardManager
A type check can be performed to verify that an object conforms to a specific type using the is operator, for
example:
if (keyMgr is KeyguardManager) {
// It is a KeyguardManager object
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12.14 Summary

This chapter has begun the introduction to Kotlin by exploring data types together with an overview of how to
declare variables. The chapter has also introduced concepts such as nullable types, typecasting and type checking,
and the Elvis operator, each of which is an integral part of Kotlin programming and designed specifically to
make code writing less prone to error.
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Chapter 19

19. Understanding Android
Application and Activity Lifecycles

In earlier chapters, we learned that Android applications run within processes and comprise multiple components
in the form of activities, services, and broadcast receivers. This chapter aims to expand on this knowledge by
looking at the lifecycle of applications and activities within the Android runtime system.

Regardless of the fanfare about how much memory and computing power resides in the mobile devices of
today compared to the desktop systems of yesterday, it is important to keep in mind that these devices are
still considered to be “resource constrained” by the standards of modern desktop and laptop-based systems,
particularly in terms of memory. As such, a key responsibility of the Android system is to ensure that these
limited resources are managed effectively and that the operating system and the applications running on it
remain responsive to the user at all times. To achieve this, Android is given complete control over the lifecycle
and state of the processes in which the applications run and the individual components that comprise those
applications.

An important factor in developing Android applications, therefore, is to understand Android’s application and
activity lifecycle management models of Android, and how an application can react to the state changes likely to
be imposed upon it during its execution lifetime.

19.1 Android Applications and Resource Management
The operating system views each running Android application as a separate process. If the system identifies that

resources on the device are reaching capacity, it will take steps to terminate processes to free up memory.

When determining which process to terminate to free up memory, the system considers both the priority and
state of all currently running processes, combining these factors to create what is referred to by Google as
an importance hierarchy. Processes are then terminated, starting with the lowest priority and working up the
hierarchy until sufficient resources have been liberated for the system to function.

19.2 Android Process States

Processes host applications, and applications are made up of components. Within an Android system, the
current state of a process is defined by the highest-ranking active component within the application it hosts. As
outlined in Figure 19-1, a process can be in one of the following five states at any given time:
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Figure 19-1
19.2.1 Foreground Process

These processes are assigned the highest level of priority. At any one time, there are unlikely to be more than one
or two foreground processes active, which are usually the last to be terminated by the system. A process must
meet one or more of the following criteria to qualify for foreground status:

« Hosts an activity with which the user is currently interacting.
 Hosts a Service connected to the activity with which the user is interacting.

« Hosts a Service that has indicated, via a call to startForeground(), that termination would disrupt the user
experience.

« Hosts a Service executing either its onCreate(), onResume(), or onStart() callbacks.

« Hosts a Broadcast Receiver that is currently executing its onReceive() method.

19.2.2 Visible Process

A process containing an activity that is visible to the user but is not the activity with which the user is interacting
is classified as a “visible process”. This is typically the case when an activity in the process is visible to the user,
but another activity, such as a partial screen or dialog, is in the foreground. A process is also eligible for visible
status if it hosts a Service that is, itself, bound to a visible or foreground activity.

19.2.3 Service Process

Processes that contain a Service that has already been started and is currently executing.

19.2.4 Background Process

A process that contains one or more activities that are not currently visible to the user and does not host a
Service that qualifies for Service Process status. Processes that fall into this category are at high risk of termination
if additional memory needs to be freed for higher-priority processes. Android maintains a dynamic list of
background processes, terminating processes in chronological order such that processes that were the least
recently in the foreground are killed first.
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19.2.5 Empty Process

Empty processes no longer contain active applications and are held in memory, ready to serve as hosts for
newly launched applications. This is analogous to keeping the doors open and the engine running on a bus in
anticipation of passengers arriving. Such processes are considered the lowest priority and are the first to be killed
to free up resources.

19.3 Inter-Process Dependencies

Determining the highest priority process is more complex than outlined in the preceding section because
processes can often be interdependent. As such, when determining the priority of a process, the Android
system will also consider whether the process is in some way serving another process of higher priority (for
example, a service process acting as the content provider for a foreground process). As a basic rule, the Android
documentation states that a process can never be ranked lower than another process that it is currently serving.

19.4 The Activity Lifecycle

As we have previously determined, the state of an Android process is primarily determined by the status of
the activities and components that make up the application it hosts. It is important to understand, therefore,
that these activities also transition through different states during the execution lifetime of an application. The
current state of an activity is determined, in part, by its position in something called the Activity Stack.

19.5 The Activity Stack

The runtime system maintains an Activity Stack for each application running on an Android device. When an
application is launched, the first of the application’s activities to be started is placed onto the stack. When a second
activity is started, it is placed on the top of the stack, and the previous activity is pushed down. The activity at the
top of the stack is called the active (or running) activity. When the active activity exits, it is popped off the stack
by the runtime and the activity located immediately beneath it in the stack becomes the current active activity.
For example, the activity at the top of the stack might exit because the task for which it is responsible has been
completed. Alternatively, the user may have selected a “Back” button on the screen to return to the previous
activity, causing the current activity to be popped off the stack by the runtime system and destroyed. A visual
representation of the Android Activity Stack is illustrated in Figure 19-2.

As shown in the diagram, new activities are pushed onto the top of the stack when they are started. The current
active activity is located at the top of the stack until it is either pushed down the stack by a new activity or popped
off the stack when it exits or the user navigates to the previous activity. If resources become constrained, the
runtime will kill activities, starting with those at the bottom of the stack.

The Activity Stack is what is referred to in programming terminology as a Last-In-First-Out (LIFO) stack in that
the last item to be pushed onto the stack is the first to be popped off.
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Figure 19-2
19.6 Activity States

An activity can be in one of several states during the course of its execution within an application:

« Active / Running - The activity is at the top of the Activity Stack, is the foreground task visible on the device
screen, has focus, and is currently interacting with the user. This is the least likely activity to be terminated in
the event of a resource shortage.

o Paused - The activity is visible to the user but does not currently have focus (typically because the current
active activity partially obscures this activity). Paused activities are held in memory, remain attached to the
window manager, retain all state information, and can quickly be restored to active status when moved to the
top of the Activity Stack.

o Stopped - The activity is currently not visible to the user (in other words, it is obscured on the device display
by other activities). As with paused activities, it retains all state and member information but is at higher risk
of termination in low-memory situations.

« Killed - The runtime system has terminated the activity to free up memory and is no longer present on the
Activity Stack. Such activities must be restarted if required by the application.

19.7 Configuration Changes

So far in this chapter, we have looked at two causes for the change in the state of an Android activity, namely
the movement of an activity between the foreground and background and the termination of an activity by
the runtime system to free up memory. In fact, there is a third scenario in which the state of an activity can
dramatically change, which involves a change to the device configuration.
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By default, any configuration change that impacts the appearance of an activity (such as rotating the orientation
of the device between portrait and landscape or changing a system font setting) will cause the activity to be
destroyed and recreated. The reasoning behind this is that such changes affect resources such as the layout of the
user interface, and destroying and recreating impacted activities is the quickest way for an activity to respond to
the configuration change. It is, however, possible to configure an activity so that the system does not restart it in
response to specific configuration changes.

19.8 Handling State Change

It should be clear from this chapter that an application and, by definition, the components contained therein will
transition through many states during its lifespan. Of particular importance is the fact that these state changes
(up to and including complete termination) are imposed upon the application by the Android runtime subject
to the user’s actions and the availability of resources on the device.

In practice, however, these state changes are not imposed entirely without notice, and an application will, in most
circumstances, be notified by the runtime system of the changes and given the opportunity to react accordingly.
This will typically involve saving or restoring both internal data structures and user interface state, thereby
allowing the user to switch seamlessly between applications and providing at least the appearance of multiple
concurrently running applications.

Android provides two ways to handle the changes to the lifecycle states of the objects within an app. One
approach involves responding to state change method calls from the operating system and is covered in detail in
the next chapter entitled “Handling Android Activity State Changes”.

A new approach that Google recommends involves the lifecycle classes included with the Jetpack Android
Architecture components, introduced in “Modern Android App Architecture with Jetpack” and explained in more
detail in the chapter entitled “Working with Android Lifecycle-Aware Components”.

19.9 Summary

Mobile devices are typically considered to be resource constrained, particularly in terms of onboard memory
capacity. Consequently, a prime responsibility of the Android operating system is to ensure that applications,
and the operating system in general, remain responsive to the user.

Applications are hosted on Android within processes. Each application, in turn, comprises components in the
form of activities and Services.

The Android runtime system has the power to terminate both processes and individual activities to free up
memory. Process state is considered by the runtime system when deciding whether a process is a suitable
candidate for termination. The state of a process largely depends upon the status of the activities hosted by that
process.

The key message of this chapter is that an application moves through various states during its execution
lifespan and has very little control over its destiny within the Android runtime environment. Those processes
and activities not directly interacting with the user run a higher risk of termination by the runtime system.
An essential element of Android application development, therefore, involves the ability of an application to
respond to state change notifications from the operating system.
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Chapter 27

27. Working with ConstraintLayout
Chains and Ratios in Android Studio

The previous chapters have introduced the key features of the ConstraintLayout class and outlined the best
practices for ConstraintLayout-based user interface design within the Android Studio Layout Editor. Although
the concepts of ConstraintLayout chains and ratios were outlined in the chapter entitled “A Guide to the Android
ConstraintLayout”, we have not yet addressed how to use these features within the Layout Editor. Therefore,
this chapter’s focus is to provide practical steps on how to create and manage chains and ratios when using the
ConstraintLayout class.

27.1 Creating a Chain

Chains may be implemented by adding a few lines to an activity’s XML layout resource file or by using some
chain-specific features of the Layout Editor.

Consider a layout consisting of three Button widgets constrained to be positioned in the top-left, top-center, and
top-right of the ConstraintLayout parent, as illustrated in Figure 27-1:

Figure 27-1
To represent such a layout, the XML resource layout file might contain the following entries for the button
widgets:
<Button
android:id="@+id/buttonl”
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginStart="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintStart toStartOf="parent"
app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button2"
android:layout width="wrap content"

android:layout height="wrap content"
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android:layout marginkEnd="8dp"

android:layout marginStart="8dp"

android:layout marginTop="16dp"
android:text="Button"

app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toStartOf="@+id/button3”
app:layout constraintStart toEndOf="@+id/buttonl”
app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button3"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toEndOf="parent"
app:layout constraintTop toTopOf="parent" />

As currently configured, there are no bi-directional constraints to group these widgets into a chain. To address
this, additional constraints need to be added from the right-hand side of button1 to the left side of button2 and
from the left side of button3 to the right side of button2 as follows:
<Button

android:id="@+id/buttonl"

android:layout width="wrap content"

android:layout height="wrap content"

android:layout marginStart="8dp"

android:layout marginTop="16dp"

android:text="Button"

app:layout constraintHorizontal bias="0.5"

app:layout constraintStart toStartOf="parent"

app:layout constraintTop toTopOf="parent"

app:layout_constraintEnd toStartOf="@+id/button2" />

<Button
android:id="@+id/button2"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginStart="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toStartOf="@+id/button3”
app:layout constraintStart toEndOf="@+id/buttonl”

228



Working with ConstraintLayout Chains and Ratios in Android Studio

app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button3"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toEndOf="parent"
app:layout constraintTop toTopOf="parent"
app:layout constraintStart toEndOf="@+id/button2" />

With these changes, the widgets now have bi-directional horizontal constraints configured. This constitutes a
ConstraintLayout chain represented visually within the Layout Editor by chain connections, as shown in Figure
27-2 below. Note that the chain has defaulted to the spread chain style in this configuration.

Figure 27-2

A chain may also be created by right-clicking on one of the views and selecting the Chains -> Create Horizontal
Chain or Chains -> Create Vertical Chain menu options.

27.2 Changing the Chain Style

If no chain style is configured, the ConstraintLayout will default to the spread chain style. The chain style can be
altered by right-clicking any of the widgets in the chain and selecting the Cycle Chain Mode menu option. Each
time the menu option is clicked, the style will switch to another setting in the order of spread, spread inside, and
packed.

Alternatively, the style may be specified in the Attributes tool window unfolding the layout_constraints property
and changing either the horizontal_chainStyle or vertical_chainStyle property depending on the orientation of
the chain:

Figure 27-3
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27.3 Spread Inside Chain Style

Figure 27-4 illustrates the effect of changing the chain style to the spread inside chain style using the above
techniques:

Figure 27-4
27.4 Packed Chain Style

Using the same technique, changing the chain style property to packed causes the layout to change, as shown in
Figure 27-5:

Figure 27-5
27.5 Packed Chain Style with Bias

The positioning of the packed chain may be influenced by applying a bias value. The bias can be between 0.0 and
1.0, with 0.5 representing the parent’s center. Bias is controlled by selecting the chain head widget and assigning
a value to the layout_constraintHorizontal_bias or layout_constraintVertical_bias attribute in the Attributes
panel. Figure 27-6 shows a packed chain with a horizontal bias setting of 0.2:

Figure 27-6
27.6 Weighted Chain

The final area of chains to explore involves weighting the individual widgets to control how much space each
widget in the chain occupies within the available space. A weighted chain may only be implemented using
the spread chain style, and any widget within the chain that responds to the weight property must have the
corresponding dimension property (height for a vertical chain and width for a horizontal chain) configured
for match constraint mode. Match constraint mode for a widget dimension may be configured by selecting the
widget, displaying the Attributes panel, and changing the dimension to match_constraint (equivalent to 0dp).
In Figure 27-7, for example, the layout_width constraint for a button has been set to match_constraint (0dp) to
indicate that the width of the widget is to be determined based on the prevailing constraint settings:
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Figure 27-7

Assuming that the spread chain style has been selected and all three buttons have been configured such that the
width dimension is set to match the constraints, the widgets in the chain will expand equally to fill the available
space:

Figure 27-8

The amount of space occupied by each widget relative to the other widgets in the chain can be controlled by
adding weight properties to the widgets. Figure 27-9 shows the effect of setting the layout_constraintHorizontal_
weight property to 4 on buttonl, and to 2 on both button2 and button3:

Figure 27-9
As a result of these weighting values, button1 occupies half of the space (4/8), while button2 and button3 each
occupy one-quarter (2/8) of the space.

27.7 Working with Ratios

ConstraintLayout ratios allow one widget dimension to be sized relative to the widget’s other dimension (also
referred to as aspect ratio). For example, an aspect ratio setting could be applied to an ImageView to ensure that
its width is always twice its height.
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A dimension ratio constraint is configured by setting the constrained dimension to match constraint mode
and configuring the layout_constraintDimensionRatio attribute on that widget to the required ratio. This ratio
value may be specified as a float value or a width:height ratio setting. The following XML excerpt, for example,
configures a ratio of 2:1 on an ImageView widget:
<ImageView

android:layout width="0dp"

android:layout height="100dp"

android:i1d="@+id/imageView"

app:layout constraintDimensionRatio="2:1" />

The above example demonstrates how to configure a ratio when only one dimension is set to match constraint. A
ratio may also be applied when both dimensions are set to match constraint mode. This involves specifying the
ratio preceded with either an H or a W to indicate which of the dimensions is constrained relative to the other.

Consider, for example, the following XML excerpt for an ImageView object:
<ImageView
android:layout width="0dp"
android:layout height="0dp"
android:1d="@+id/imageView"
app:layout constraintBottom toBottomOf="parent"
app:layout constraintRight toRightOf="parent"
app:layout constraintLeft toLeftOf="parent"
app:layout constraintTop toTopOf="parent"

app:layout constraintDimensionRatio="W,1:3" />

In the above example, the height will be defined subject to the constraints applied to it. In this case, constraints
have been configured such that it is attached to the top and bottom of the parent view, essentially stretching the
widget to fill the entire height of the parent. On the other hand, the width dimension has been constrained to
be one-third of the ImageView’s height dimension. Consequently, whatever size screen or orientation the layout
appears on, the ImageView will always be the same height as the parent and the width one-third of that height.

The same results may also be achieved without manually editing the XML resource file. Whenever a widget
dimension is set to match constraint mode, a ratio control toggle appears in the Inspector area of the property
panel. Figure 27-10, for example, shows the layout width and height attributes of a button widget set to match
constraint mode and 100dp respectively, and highlights the ratio control toggle in the widget sizing preview:

Figure 27-10

By default, the ratio sizing control is toggled off. Clicking on the control enables the ratio constraint and displays
an additional field where the ratio may be changed:
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Figure 27-11
27.8 Summary

Both chains and ratios are powerful features of the ConstraintLayout class intended to provide additional
options for designing flexible and responsive user interface layouts within Android applications. As outlined in
this chapter, the Android Studio Layout Editor has been enhanced to make it easier to use these features during
the user interface design process.
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Chapter 40

40. Modern Android App
Architecture with Jetpack

For many years, Google did not recommend a specific approach to building Android apps other than to provide
tools and development kits while letting developers decide what worked best for a particular project or individual
programming style. That changed in 2017 with the introduction of the Android Architecture Components,
which, in turn, became part of Android Jetpack when it was released in 2018.

This chapter provides an overview of the concepts of Jetpack, Android app architecture recommendations, and
some key architecture components. Once the basics have been covered, these topics will be covered in more
detail and demonstrated through practical examples in later chapters.

40.1 What is Android Jetpack?

Android Jetpack consists of Android Studio, the Android Architecture Components, the Android Support
Library, and a set of guidelines recommending how an Android App should be structured. The Android
Architecture Components are designed to make it quicker and easier to perform common tasks when developing
Android apps while also conforming to the key principle of the architectural guidelines.

While all Android Architecture Components will be covered in this book, this chapter will focus on the key
architectural guidelines and the ViewModel, LiveData, and Lifecycle components while introducing Data
Binding and Repositories.

Before moving on, it is important to understand that the Jetpack approach to app development is optional.
While highlighting some of the shortcomings of other techniques that have gained popularity over the years,
Google stopped short of completely condemning those approaches to app development. Google is taking the
position that while there is no right or wrong way to develop an app, there is a reccommended way.

40.2 The “Old” Architecture

In the chapter entitled “Creating an Example Android App in Android Studio”, an Android project was created
consisting of a single activity that contained all of the code for presenting and managing the user interface
together with the back-end logic of the app. Until the introduction of Jetpack, the most common architecture
followed this paradigm with apps consisting of multiple activities (one for each screen within the app), with each
activity class to some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example, an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

40.3 Modern Android Architecture

At the most basic level, Google now advocates single-activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept referred to as “separation of concerns”). One of the keys to this approach
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is the ViewModel component.

40.4 The ViewModel Component

The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the
code responsible for displaying and managing the user interface and interacting with the operating system.
When designed this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data those controllers need.

The ViewModel only knows about the data model and corresponding logic. It knows nothing about the user
interface and does not attempt to directly access or respond to events relating to views within the user interface.
When a Ul controller needs data to display, it asks the ViewModel to provide it. Similarly, when the user enters
data into a view within the user interface, the UI controller passes it to the ViewModel for handling.

This separation of responsibility addresses the issues relating to the lifecycle of UI controllers. Regardless of how
often the UT controller is recreated during the lifecycle of an app, the ViewModel instances remain in memory,
thereby maintaining data consistency. For example, a ViewModel used by an activity will remain in memory
until the activity finishes, which, in the single activity app, is not until the app exits.

Figure 40-1
40.5 The LiveData Component

Consider an app that displays real-time data, such as the current price of a financial stock. The app could
use a stock price web service to continuously update the data model within the ViewModel with the latest
information. This real-time data is of use only if it is displayed to the user promptly. There are only two ways that
the UI controller can ensure that the latest data is displayed in the user interface. One option is for the controller
to continuously check with the ViewModel to determine if the data has changed since it was last displayed.
However, the problem with this approach is that it could be more efficient. To maintain the real-time nature of
the data feed, the UI controller would have to run on a loop, continuously checking for the data to change.

A better solution would be for the UI controller to receive a notification when a specific data item within a
ViewModel changes. This is made possible by using the LiveData component. LiveData is a data holder that
allows a value to become observable. In basic terms, an observable object can notify other objects when changes
to its data occur, thereby solving the problem of ensuring that the user interface always matches the data within
the ViewModel.

This means, for example, that a UI controller interested in a ViewModel value can set up an observer, which will,
in turn, be notified when that value changes. In our hypothetical application, for example, the stock price would
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be wrapped in a LiveData object within the ViewModel, and the UI controller would assign an observer to the
value, declaring a method to be called when the value changes. When triggered by data change, this method will
read the updated value from the ViewModel and use it to update the user interface.

Figure 40-2

A LiveData instance may also be declared as mutable, allowing the observing entity to update the underlying
value held within the LiveData object. The user might, for example, enter a value in the user interface that needs
to overwrite the value stored in the ViewModel.

Another of the key advantages of using LiveData is that it is aware of the lifecycle state of its observers. If,
for example, an activity contains a LiveData observer, the corresponding LiveData object will know when the
activity’s lifecycle state changes and respond accordingly. If the activity is paused (perhaps the app is put into the
background), the LiveData object will stop sending events to the observer. Suppose the activity has just started
or resumes after being paused. In that case, the LiveData object will send a LiveData event to the observer so
that the activity has the most up-to-date value. Similarly, the LiveData instance will know when the activity is
destroyed and remove the observer to free up resources.

So far, we've only talked about UI controllers using observers. In practice, however, an observer can be used
within any object that conforms to the Jetpack approach to lifecycle management.

40.6 ViewModel Saved State

Android allows the user to place an active app in the background and return to it after performing other tasks
on the device (including running other apps). When a device runs low on resources, the operating system will
rectify this by terminating background app processes, starting with the least recently used app. However, when
the user returns to the terminated background app, it should appear in the same state as when it was placed in
the background, regardless of whether it was terminated. In terms of the data associated with a ViewModel, this
can be implemented using the ViewModel Saved State module. This module allows values to be stored in the
app’s saved state and restored in case of system-initiated process termination. This topic will be covered later in
the “An Android ViewModel Saved State Tutorial” chapter.

40.7 LiveData and Data Binding

Android Jetpack includes the Data Binding Library, which allows data in a ViewModel to be mapped directly to
specific views within the XML user interface layout file. In the AndroidSample project created earlier, code had
to be written to obtain references to the EditText and TextView views and to set and get the text properties to
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reflect data changes. Data binding allows the LiveData value stored in the ViewModel to be referenced directly
within the XML layout file avoiding the need to write code to keep the layout views updated.

Figure 40-3

Data binding will be covered in greater detail, starting with the chapter “An Overview of Android Jetpack Data
Binding”.

40.8 Android Lifecycles

The duration from when an Android component is created to the point that it is destroyed is called the lifecycle.
During this lifecycle, the component will change between different lifecycle states, usually under the operating
systemy’s control and in response to user actions. An activity, for example, will begin in the initialized state before
transitioning to the created state. Once the activity runs, it will switch to the started state, from which it will cycle
through various states, including created, started, resumed, and destroyed.

Many Android Framework classes and components allow other objects to access their current state. Lifecycle
observers may also be used so that an object receives a notification when the lifecycle state of another object
changes. The ViewModel component uses this technique behind the scenes to identify when an observer
has restarted or been destroyed. This functionality is not limited to Android framework and architecture
components. It may also be built into any other classes using a set of lifecycle components included with the
architecture components.

Objects that can detect and react to lifecycle state changes in other objects are said to be lifecycle-aware. In
contrast, objects that provide access to their lifecycle state are called lifecycle owners. The chapter entitled
“Working with Android Lifecycle-Aware Components” will cover Lifecycles in greater detail.

40.9 Repository Modules

If a ViewModel obtains data from one or more external sources (such as databases or web services, it is important
to separate the code involved in handling those data sources from the ViewModel class. Failure to do this would,
after all, violate the separation of concerns guidelines. To avoid mixing this functionality with the ViewModel,
Google’s architecture guidelines recommend placing this code in a separate Repository module.

A repository is not an Android architecture component but a Kotlin class created by the app developer that is
responsible for interfacing with the various data sources. The class then provides an interface to the ViewModel,
allowing that data to be stored in the model.
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Figure 40-4
40.10 Summary

Until recently, Google has tended not to recommend any particular approach to structuring an Android app.
That has now changed with the introduction of Android Jetpack, consisting of tools, components, libraries, and
architecture guidelines. Google now recommends that an app project be divided into separate modules, each
responsible for a particular area of functionality, otherwise known as “separation of concerns”.

In particular, the guidelines recommend separating the view data model of an app from the code responsible
for handling the user interface. In addition, the code responsible for gathering data from data sources such as
web services or databases should be built into a separate repository module instead of being bundled with the
view model.

Android Jetpack includes the Android Architecture Components, designed to make developing apps that
conform to the recommended guidelines easier. This chapter has introduced the ViewModel, LiveData, and
Lifecycle components. These will be covered in more detail, starting with the next chapter. Other architecture
components not mentioned in this chapter will be covered later in the book.

319






Chapter 43

43. An Overview of Android Jetpack
Data Binding

In the chapter entitled “Modern Android App Architecture with Jetpack”, we introduced the concept of Android
Data Binding. We explained how it is used to directly connect the views in a user interface layout to the methods
and data located in other objects within an app without the need to write code. This chapter will provide more
details on data binding, emphasizing how data binding is implemented within an Android Studio project. The
tutorial in the next chapter (“An Android Jetpack Data Binding Tutorial”) will provide a practical example of data
binding in action.

43.1 An Overview of Data Binding

The Android Jetpack Data Binding Library provides data binding support, primarily providing a simple way to
connect the views in a user interface layout to the data stored within the app’s code (typically within ViewModel
instances). Data binding also provides a convenient way to map user interface controls, such as Button widgets,
to event and listener methods within other objects, such as UI controllers and ViewModel instances.

Data binding becomes particularly powerful when used in conjunction with the LiveData component. Consider,
for example, an EditText view bound to a LiveData variable within a ViewModel using data binding. When
connected in this way, any changes to the data value in the ViewModel will automatically appear within the
EditText view, and when using two-way binding, any data typed into the EditText will automatically be used
to update the LiveData value. Perhaps most impressive is that this can be achieved with no code beyond that
necessary to initially set up the binding.

Connecting an interactive view, such as a Button widget, to a method within a UI controller traditionally
required that the developer write code to implement a listener method to be called when the button is clicked.
Data binding makes this as simple as referencing the method to be called within the Button element in the layout
XML file.

43.2 The Key Components of Data Binding

An Android Studio project is not configured for data binding support by default. Several elements must be
combined before an app can begin using data binding. These involve the project build configuration, the
layout XML file, data binding classes, and the use of the data binding expression language. While this may
appear overwhelming at first, when taken separately, these are quite simple steps that, once completed, are
more than worthwhile in terms of saved coding effort. Each element will be covered in detail in the remainder
of this chapter. Once these basics have been covered, the next chapter will work through a detailed tutorial
demonstrating these steps.

43.2.1 The Project Build Configuration

Before a project can use data binding, it must be configured to use the Android Data Binding Library and to
enable support for data binding classes and the binding syntax. Fortunately, this can be achieved with just a few
lines added to the module level build.gradle.kts file (the one listed as build.gradle.kts (Module: app) under Gradle
Scripts in the Project tool window). The following lists a partial build file with data binding enabled:
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android {

buildFeatures {
dataBinding = true

43.2.2 The Data Binding Layout File

As we have seen in previous chapters, the user interfaces for an app are typically contained within an XML layout
file. Before the views contained within one of these layout files can take advantage of data binding, the layout file
must be converted to a data binding layout file.

As outlined earlier in the book, XML layout files define the hierarchy of components in the layout, starting with a
top-level or root view. Invariably, this root view takes the form of a layout container such as a ConstraintLayout,
FrameLayout, or LinearLayout instance, as is the case in the fragment_main.xml file for the ViewModelDemo
project:

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/main"

android:layout width="match parent"

android:layout height="match parent"

tools:context=".ui.main.MainFragment">

</androidx.constraintlayout.widget.ConstraintLayout>

To use data binding, the layout hierarchy must have a layout component as the root view, which, in turn, becomes
the parent of the current root view.

In the case of the above example, this would require that the following changes be made to the existing layout
file:

<?xml version="1.0" encoding="utf-8"?>
<layout xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"

xmlns:android="http://schemas.android.com/apk/res/android">

<androidx.constraintlayout.widget.ConstraintLayout

k] . i - K| 1 NN |
IS app— 1Tt tp. STIICIIdS . dITUL ULTUTCUI/ dPR7LTo~dutuU

—xmins:rtoots="http://schemasandroid-com/toots™
android:id="Q@+id/main"

android:layout width="match parent"
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android:layout height="match parent"

tools:context=".ui.main.MainFragment">

</androidx.constraintlayout.widget.ConstraintLayout>
</layout>

43.2.3 The Layout File Data Element

The data binding layout file needs some way to declare the classes within the project to which the views in the
layout are to be bound (for example, a ViewModel or UI controller). Having declared these classes, the layout
file will need a variable name to reference those instances within binding expressions.

This is achieved using the data element, an example of which is shown below:

<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"

xmlns:android="http://schemas.android.com/apk/res/android">

<data>
<variable
name="myViewModel"
type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />
</data>

<androidx.constraintlayout.widget.ConstraintLayout
android:id="@+id/main"
android:layout width="match parent"
android:layout height="match parent"

tools:context=".ui.main.MainFragment">

</layout>

The above data element declares a new variable named myViewModel of type MainViewModel (note that it is
necessary to declare the full package name of the MyViewModel class when declaring the variable).

The data element can import other classes that may then be referenced within binding expressions elsewhere in
the layout file. For example, if you have a class containing a method that needs to be called on a value before it
is displayed to the user, the class could be imported as follows:

<data>
<import type="com.ebookfrenzy.MyFormattingTools" />
<variable
name="viewModel"
type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />
</data>
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43.2.4 The Binding Classes

For each class referenced in the data element within the binding layout file, Android Studio will automatically
generate a corresponding binding class. This subclass of the Android ViewDataBinding class will be named
based on the layout filename using word capitalization and the Binding suffix. Therefore, the binding class for a
layout file named fragment_main.xml file will be named FragmentMainBinding. The binding class contains the
bindings specified within the layout file and maps them to the variables and methods within the bound objects.

Although the binding class is generated automatically, code must be written to create an instance of the class
based on the corresponding data binding layout file. Fortunately, this can be achieved by making use of the
DataBindingUtil class.

The initialization code for an Activity or Fragment will typically set the content view or “inflate” the user
interface layout file. This means that the code opens the layout file, parses the XML, and creates and configures
all of the view objects in memory. In the case of an existing Activity class, the code to achieve this can be found
in the onCreate() method and will read as follows:

setContentView (R.layout.activity main)

In the case of a Fragment, this takes place in the onCreateView() method:

return inflater.inflate (R.layout.fragment main, container, false)

All that is needed to create the binding class instances within an Activity class is to modify this initialization
code as follows:

lateinit var binding: ActivityMainBinding

binding = DataBindingUtil.inflate (

inflater, R.layout.activity main, container, false)

In the case of a Fragment, the code would read as follows:

lateinit var binding: FragmentMainBinding

binding = DataBindingUtil.inflate (

inflater, R.layout.fragment main, container, false)
binding.setLifecycleOwner (this)

return binding.root

43.2.5 Data Binding Variable Configuration

As outlined above, the data binding layout file contains the data element, which contains variable elements
consisting of variable names and the class types to which the bindings are to be established. For example:

<data>
<variable
name="viewModel"
type="com.ebookfrenzy.viewmodeldemo.ui.main.MainViewModel" />
<variable
name="uiController"
type="com.ebookfrenzy.viewmodeldemo databinding.ui.main.MainFragment"
/>
</data>
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In the above example, the first variable knows that it will be binding to an instance of a ViewModel class of type

MainViewModel but has yet to be connected to an actual MainViewModel object instance. This requires the

additional step of assigning the MainViewModel instance used within the app to the variable declared in the

layout file. This is performed via a call to the setVariable() method of the data binding instance, a reference to

which was obtained in the previous chapter:

var MainViewModel mViewModel =
ViewModelProvider (this) .get (MainViewModel::class.java)

binding.setVariable (mViewModel, viewModel)

The second variable in the above data element references a UT controller class in the form of a Fragment named
MainFragment. In this situation, the code within a UI controller (be it an Activity or Fragment) would need to
assign itself to the variable as follows:

binding.setVariable (uiController, this)

43.2.6 Binding Expressions (One-Way)

Binding expressions define how a particular view interacts with bound objects. For example, a binding expression
on a Button might declare which method on an object is called in response to a click. Alternatively, a binding
expression might define which data value stored in a ViewModel is to appear within a TextView and how it is to
be presented and formatted.

Binding expressions use a declarative language that allows logic and access to other classes and methods to
decide how bound data is used. Expressions can, for example, include mathematical expressions, method calls,
string concatenations, access to array elements, and comparison operations. In addition, all standard Java
language libraries are imported by default, so many things that can be achieved in Java or Kotlin can also be
performed in a binding expression. As already discussed, the data element may also be used to import custom
classes to add more capability to expressions.

A binding expression begins with an @ symbol followed by the expression enclosed in curly braces ({}).

Consider, for example, a ViewModel instance containing a variable named result. Assume that this class has been
assigned to a variable named viewModel within the data binding layout file and needs to be bound to a TextView
object so that the view always displays the latest result value. If this value were stored as a String object, this
would be declared within the layout file as follows:
<TextView

android:id="@+id/resultText"

android:layout width="wrap content"

android:layout height="wrap content"

android: text="@{viewModel.result}"

app:layout constraintBottom toBottomOf="parent"

app:layout constraintEnd toEndOf="parent"

app:layout constraintStart toStartOf="parent"

app:layout constraintTop toTopOf="parent" />

In the above XML, the text property is set to the value stored in the result LiveData property of the viewModel
object.

Consider, however, that the result is stored within the model as a Float value instead of a String. That being
the case, the above expression would cause a compilation error. Clearly, the Float value must be converted to a
string before the TextView can display it. To resolve issues such as this, the binding expression can include the
necessary steps to complete the conversion using the standard Java language classes:
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android:text="@{String.valueOf (viewModel.result) }"

When running the app after making this change, it is important to be aware that the following warning may
appear in the Android Studio console:

warning: myViewModel.result.getValue() is a boxed field but needs to be un-boxed

to execute String.valueOf (viewModel.result.getValue()).

Values in Java can take the form of primitive values such as the boolean type (referred to as being unboxed) or
wrapped in a Java object such as the Boolean type and accessed via reference to that object (i.e., boxed). The
unboxing process involves unwrapping the primitive value from the object.

To avoid this message, wrap the offending operation in a safeUnbox() call as follows:
android:text="@{String.valueOf (safeUnbox (myViewModel.result)) }"

String concatenation may also be used. For example, to include the word “dollars” after the result string value,
the following expression would be used:
android:text="@{String.valueOf (safeUnbox (myViewModel.result)) + " dollars"}'

Note that since the appended result string is wrapped in double quotes, the expression is now encapsulated with
single quotes to avoid syntax errors.

The expression syntax also allows ternary statements to be declared. In the following expression, the view will
display different text depending on whether or not the result value is greater than 10.

@{myViewModel.result > 10 ? "Out of range" : "In range"}

Expressions may also be constructed to access specific elements in a data array:

@{myViewModel.resultsArray[3]}

43.2.7 Binding Expressions (Two-Way)

The type of expression covered so far is called one-way binding. In other words, the layout is constantly updated
as the corresponding value changes, but changes to the value from within the layout do not update the stored
value.

A two-way binding, on the other hand, allows the data model to be updated in response to changes in the layout.
An EditText view, for example, could be configured with a two-way binding so that when the user enters a
different value, that value is used to update the corresponding data model value. When declaring a two-way
expression, the syntax is similar to a one-way expression except that it begins with @=. For example:

android:text="@={myViewModel.result}"
43.2.8 Event and Listener Bindings

Binding expressions may also trigger method calls in response to events on a view. A Button view, for example,
can be configured to call a method when clicked. In the chapter entitled “Creating an Example Android App in
Android Studio”, for example, the onClick property of a button was configured to call a method within the app’s
main activity named convertCurrency(). Within the XML file, this was represented as follows:

android:onClick="convertCurrency"

The convertCurrency() method was declared along the following lines:

fun convertCurrency(view: View) {

}
Note that this type of method call is always passed a reference to the view on which the event occurred. The same
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effect can be achieved in data binding using the following expression (assuming the layout has been bound to a
class with a variable name of uiController):

android:onClick="@{uiController::convertCurrency}"
Another option, and one which provides the ability to pass parameters to the method, is referred to as a listener

binding. The following expression uses this approach to call a method on the same viewModel instance with no
parameters:

android:onClick="Q@{ () -> myViewModel.methodOne () }"'

The following expression calls a method that expects three parameters:
android:onClick='Q@{ () -> myViewModel.methodTwo (viewModel.result, 10, "A
String")}'

Binding expressions provide a rich and flexible language to bind user interface views to data and methods
in other objects. This chapter has only covered the most common use cases. To learn more about binding
expressions, review the Android documentation online at:

https://developer.android.com/topic/libraries/data-binding/expressions

43.3 Summary

Android data bindings provide a system for creating connections between the views in a user interface layout
and the data and methods of other objects within the app architecture without writing code. Once some initial
configuration steps have been performed, data binding involves using binding expressions within the view
elements of the layout file. These binding expressions can be either one-way or two-way and may also be used to
bind methods to be called in response to events such as button clicks within the user interface.
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Chapter 55

55. Working with the RecyclerView
and CardView Widgets

The RecyclerView and CardView widgets work together to provide scrollable lists of information to the user in
which the information is presented as individual cards. Details of both classes will be covered in this chapter
before working through the design and implementation of an example project.

55.1 An Overview of the RecyclerView

Much like the ListView class outlined in the chapter entitled “Working with the Floating Action Button and
Snackbar”, the RecyclerView’s purpose is to allow information to be presented to the user as a scrollable list.
The RecyclerView, however, provides several advantages over the ListView. In particular, the RecyclerView is
significantly more efficient in managing the views that make up a list, reusing existing views that makeup list
items as they scroll off the screen instead of creating new ones (hence the name “recycler”). This increases the
performance and reduces the resources a list uses, a feature of particular benefit when presenting large amounts
of data to the user.

Unlike the ListView, the RecyclerView also provides a choice of three built-in layout managers to control how
the list items are presented to the user:

o LinearLayoutManager - The list items are presented as horizontal or vertical scrolling lists.

Figure 55-1

 GridLayoutManager — The list items are presented in grid format. This manager is best used when the list
items are of uniform size.

Figure 55-2

o StaggeredGridLayoutManager - The list items are presented in a staggered grid format. This manager is best
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used when the list items are of different sizes.

Figure 55-3

For situations where none of the three built-in managers provide the necessary layout, custom layout managers
may be implemented by subclassing the RecyclerView.LayoutManager class.

Each list item displayed in a RecyclerView is created as an instance of the ViewHolder class. The ViewHolder
instance contains everything necessary for the RecyclerView to display the list item, including the information
to be displayed and the view layout used to display the item.

As with the ListView, the RecyclerView depends on an adapter to act as the intermediary between the
RecyclerView instance and the data to be displayed to the user. The adapter is created as a subclass of the
RecyclerView.Adapter class and must, at a minimum, implement the following methods, which will be called at
various points by the RecyclerView object to which the adapter is assigned:

o getltemCount() - This method must return a count of the number of items to be displayed in the list.

« onCreateViewHolder() - This method creates and returns a ViewHolder object initialized with the view that
is to be used to display the data. This view is typically created by inflating the XML layout file.

» onBindViewHolder() — This method is passed the ViewHolder object created by the onCreateViewHolder()
method together with an integer value indicating the list item that is about to be displayed. Contained within
the ViewHolder object is the layout assigned by the onCreate ViewHolder() method. The onBindViewHolder()
method is responsible for populating the views in the layout with the text and graphics corresponding to the
specified item and returning the object to the RecyclerView, where it will be presented to the user.

Adding a RecyclerView to a layout is a matter of adding the appropriate element to the XML content layout file
of the activity in which it is to appear. For example:
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
app:layout behavior="@string/appbar scrolling view behavior"
tools:context=".MainActivity"

tools:showIn="@layout/activity card demo">

<androidx.recyclerview.widget.RecyclerView

android:id="@+id/recycler_view"
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android:layout_width="0dp"
android:layout_height="0dp"

app:layout constraintBottom_ toBottomOf="parent"
app:layout_constraintEnd toEndOf="parent"
app:layout_constraintStart_ toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:listItem="@layout/card layout" />

</androidx.constraintlayout.widget.ConstraintLayout>

The RecyclerView has been embedded into the CoordinatorLayout of a main activity layout file along with
the AppBar and Toolbar in the above example. This provides some additional features, such as configuring the
Toolbar and AppBar to scroll off the screen when the user scrolls up within the RecyclerView (a topic covered in
more detail in the chapter entitled “Working with the AppBar and Collapsing Toolbar Layouts”).

55.2 An Overview of the CardView

The CardView class is a user interface view that allows information to be presented in groups using a card
metaphor. Cards are usually presented in lists using a RecyclerView instance and may be configured to appear
with shadow effects and rounded corners. Figure 55-4, for example, shows three CardView instances configured
to display a layout consisting of an ImageView and two TextViews:

Figure 55-4
The user interface layout to be presented with a CardView instance is defined within an XML layout resource file
and loaded into the CardView at runtime. The CardView layout can contain a layout of any complexity using the
standard layout managers such as RelativeLayout and LinearLayout. The following XML layout file represents a
card view layout consisting of a RelativeLayout and a single ImageView. The card is configured to be elevated to
create a shadowing effect and to appear with rounded corners:
<?xml version="1.0" encoding="utf-8"?>
<androidx.cardview.widget.CardView
xmlns:card view="http://schemas.android.com/apk/res-auto"
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/card view"
android:layout width="match parent"
android:layout height="wrap content"
android:layout margin="5dp"
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card view:cardCornerRadius="12dp"

card view:cardElevation="3dp"

card view:contentPadding="4dp">

<Relativelayout

android:layout width="match parent"

android:layout height="wrap content"

android:padding="16dp" >

<ImageView

android:
android:
android:
android:
android:

android:

layout width="100dp"
layout height="100dp"
id="@+id/item image"
layout alignParentLeft="true"
layout alignParentTop="true"

layout marginRight="1l6dp" />

</RelativeLayout>

</androidx.cardview.widget.CardvView>

When combined with the RecyclerView to create a scrollable list of cards, the onCreateViewHolder() method of
the recycler view inflates the layout resource file for the card, assigns it to the ViewHolder instance and returns

it to the RecyclerView instance.

55.3 Summary

This chapter has introduced the Android RecyclerView and CardView components. The RecyclerView provides
a resource-efficient way to display scrollable lists of views within an Android app. The CardView is useful when
presenting groups of data (such as a list of names and addresses) in the form of cards. As previously outlined and
demonstrated in the tutorial contained in the next chapter, RecyclerView and CardView are particularly useful

when combined.
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69. An Overview of Android SQLite
Databases

Mobile applications that do not need to store at least some persistent data are few and far between. The use of
databases is an essential aspect of most applications, ranging from almost entirely data-driven applications to
those that need to store small amounts of data, such as the prevailing game score.

The importance of persistent data storage becomes even more evident when considering the transient lifecycle
of the typical Android application. With the ever-present risk that the Android runtime system will terminate
an application component to free up resources, a comprehensive data storage strategy to avoid data loss is a key
factor in designing and implementing any application development strategy.

This chapter will cover the SQLite database management system bundled with the Android operating system
and outline the Android SDK classes that facilitate persistent SQLite-based database storage within an Android
application. Before delving into the specifics of SQLite in the context of Android development, however, a brief
overview of databases and SQL will be covered.

69.1 Understanding Database Tables

Database Tables provide the most basic level of data structure in a database. Each database can contain multiple
tables, each designed to hold information of a specific type. For example, a database may contain a customer
table that contains the name, address, and telephone number of each of the customers of a particular business.
The same database may also include a products table used to store the product descriptions with associated
product codes for the items sold by the business.

Each table in a database is assigned a name that must be unique within that particular database. A table name,
once assigned to a table in one database, may not be used for another table except within the context of another
database.

69.2 Introducing Database Schema

Database Schemas define the characteristics of the data stored in a database table. For example, the table schema
for a customer database table might define the customer name as a string of no more than 20 characters long and
the customer phone number is a numerical data field of a certain format.

Schemas are also used to define the structure of entire databases and the relationship between the various tables
in each database.

69.3 Columns and Data Types

It is helpful at this stage to begin viewing a database table as similar to a spreadsheet where data is stored in rows
and columns.

Each column represents a data field in the corresponding table. For example, a table’s name, address, and
telephone data fields are all columns.

Each column, in turn, is defined to contain a certain type of data. Therefore, a column designed to store numbers
would be defined as containing numerical data.
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69.4 Database Rows

Each new record saved to a table is stored in a row. Each row, in turn, consists of the columns of data associated
with the saved record.

Once again, consider the spreadsheet analogy described earlier in this chapter. Each entry in a customer table
is equivalent to a row in a spreadsheet, and each column contains the data for each customer (name, address,
telephone, etc.). When a new customer is added to the table, a new row is created, and the data for that customer
is stored in the corresponding columns of the new row.

Rows are also sometimes referred to as records or entries, and these terms can generally be used interchangeably.

69.5 Introducing Primary Keys

Each database table should contain one or more columns that can be used to identify each row in the table
uniquely. This is known in database terminology as the Primary Key. For example, a table may use a bank
account number column as the primary key. Alternatively, a customer table may use the customer’s social
security number as the primary key.

Primary keys allow the database management system to uniquely identify a specific row in a table. Without
a primary key, retrieving or deleting a specific row in a table would not be possible because there can be no
certainty that the correct row has been selected. For example, suppose a table existed where the customer’s last
name had been defined as the primary key. Imagine the problem if more than one customer named “Smith” were
recorded in the database. Without some guaranteed way to identify a specific row uniquely, ensuring the correct
data was being accessed at any given time would be impossible.

Primary keys can comprise a single column or multiple columns in a table. To qualify as a single column primary
key, no two rows can contain matching primary key values. When using multiple columns to construct a primary
key, individual column values do not need to be unique, but all the columns’ values combined must be unique.

69.6 What is SQLite?

SQLite is an embedded, relational database management system (RDBMS). Most relational databases (Oracle,
SQL Server, and MySQL being prime examples) are standalone server processes that run independently and
cooperate with applications requiring database access. SQLite is referred to as embedded because it is provided in
the form of a library that is linked into applications. As such, there is no standalone database server running in
the background. All database operations are handled internally within the application through calls to functions
in the SQLite library.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

SQLite is written in the C programming language, so the Android SDK provides a Java-based “wrapper” around
the underlying database interface. This consists of classes that may be utilized within an application’s Java or
Kotlin code to create and manage SQLite-based databases.

For additional information about SQLite, refer to https://www.sqlite.org.

69.7 Structured Query Language (SQL)

Data is accessed in SQLite databases using a high-level language known as Structured Query Language. This is
usually abbreviated to SQL and pronounced sequel. SQL is a standard language used by most relational database
management systems. SQLite conforms mostly to the SQL-92 standard.

SQL is a straightforward and easy-to-use language designed specifically to enable the reading and writing of
database data. Because SQL contains a small set of keywords, it can be learned quickly. In addition, SQL syntax is
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more or less identical between most DBMS implementations, so having learned SQL for one system, your skills
will likely transfer to other database management systems.

While some basic SQL statements will be used within this chapter, a detailed overview of SQL is beyond the
scope of this book. However, many other resources provide a far better overview of SQL than we could ever hope
to provide in a single chapter here.

69.8 Trying SQLite on an Android Virtual Device (AVD)

For readers unfamiliar with databases and SQLite, diving right into creating an Android application that
uses SQLite may seem intimidating. Fortunately, Android is shipped with SQLite pre-installed, including an
interactive environment for issuing SQL commands from within an adb shell session connected to a running
Android AVD emulator instance. This is a useful way to learn about SQLite and SQL and an invaluable tool for
identifying problems with databases created by applications running in an emulator.

To launch an interactive SQLite session, begin by running an AVD session. This can be achieved within Android
Studio by launching the Android Virtual Device Manager (Tools -> Device Manager), selecting a previously
configured AVD, and clicking on the start button.

Once the AVD is up and running, open a Terminal or Command-Prompt window and connect to the emulator
using the adb command-line tool as follows:

adb shell

Once connected, the shell environment will provide a command prompt at which commands may be entered.
Begin by obtaining superuser privileges using the su command:

Generic x86:/ su

root@android:/ #

If a message indicates that superuser privileges are not allowed, the AVD instance likely includes Google Play
support. To resolve this, create a new AVD and, on the “Choose a device definition” screen, select a device that
does not have a marker in the “Play Store” column.

The data in SQLite databases are stored in database files on the file system of the Android device on which the
application is running. By default, the file system path for these database files is as follows:

/data/data/<package name>/databases/<database filename>.db

For example, if an application with the package name com.example. MyDBApp creates a database named
mydatabase.db, the path to the file on the device would read as follows:
/data/data/com.example.MyDBApp/databases/mydatabase.db

For this exercise, therefore, change directory to /data/data within the adb shell and create a sub-directory
hierarchy suitable for some SQLite experimentation:

cd /data/data

mkdir com.example.dbexample

cd com.example.dbexample

mkdir databases

cd databases

With a suitable location created for the database file, launch the interactive SQLite tool as follows:
root@android:/data/data/databases # sglite3 ./mydatabase.db

sqlite3 ./mydatabase.db

SQLite version 3.8.10.2 2015-05-20 18:17:19
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Enter ".help" for usage hints.

sgqlite>

At the sqlite> prompt, commands may be entered to perform tasks such as creating tables and inserting and
retrieving data. For example, to create a new table in our database with fields to hold ID, name, address, and
phone number fields, the following statement is required:

create table contacts (_id integer primary key autoincrement, name text, address
text, phone text);

Note that each row in a table should have a primary key that is unique to that row. In the above example, we have
designated the ID field as the primary key, declared it as being of type integer, and asked SQLite to increment
the number automatically each time a row is added. This is a common way to ensure that each row has a unique
primary key. On most other platforms, the primary key’s name choice is arbitrary. In the case of Android,
however, the key must be named _id for the database to be fully accessible using all Android database-related
classes. The remaining fields are each declared as being of type text.

To list the tables in the currently selected database, use the .fables statement:
sgqlite> .tables

contacts

To insert records into the table:

sgqlite> insert into contacts (name, address, phone) wvalues ("Bill Smith", "123
Main Street, California", "123-555-2323");

sglite> insert into contacts (name, address, phone) values ("Mike Parks", "10
Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:

sgqlite> select * from contacts;

1|Bill Smith|123 Main Street, California|l1l23-555-2323

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:

sglite> select * from contacts where name="Mike Parks";
2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:

sglite> .exit

When running an Android application in the emulator environment, any database files will be created on the
emulator’s file system using the previously discussed path convention. This has the advantage that you can
connect with adb, navigate to the location of the database file, load it into the sqlite3 interactive tool, and perform
tasks on the data to identify possible problems occurring in the application code.

It is also important to note that while connecting with an adb shell to a physical Android device is possible, the
shell is not granted sufficient privileges by default to create and manage SQLite databases. Therefore, database
problem debugging is best performed using an AVD session.

69.9 Android SQLite Classes

As previously mentioned, SQLite is written in the C programming language, while Android applications are
primarily developed using Java or Kotlin. To bridge this “language gap’, the Android SDK includes a set of
classes that provide a programming layer on top of the SQLite database management system. The remainder of
this chapter will provide a basic overview of each of the major classes within this category.
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69.9.1 Cursor

A class provided specifically to access the results of a database query. For example, a SQL SELECT operation
performed on a database will potentially return multiple matching rows from the database. A Cursor instance
can be used to step through these results, which may then be accessed from within the application code using a
variety of methods. Some key methods of this class are as follows:

o close() — Releases all resources used by the cursor and closes it.

« getCount() - Returns the number of rows contained within the result set.

« moveToFirst() - Moves to the first row within the result set.

« moveToLast() - Moves to the last row in the result set.

« moveToNext() - Moves to the next row in the result set.

« move() - Moves by a specified offset from the current position in the result set.

o get<type>() - Returns the value of the specified <type> contained at the specified column index of the row at
the current cursor position (variations consist of getString(), getlnt(), getShort(), getFloat(), and getDouble()).

69.9.2 SQLiteDatabase

This class provides the primary interface between the application code and underlying SQLite databases
including the ability to create, delete, and perform SQL-based operations on databases. Some key methods of
this class are as follows:

« insert() — Inserts a new row into a database table.

delete() - Deletes rows from a database table.

query() — Performs a specified database query and returns matching results via a Cursor object.
« execSQL() - Executes a single SQL statement that does not return result data.

o rawQuery() — Executes a SQL query statement and returns matching results in the form of a Cursor object.

69.9.3 SQLiteOpenHelper

A helper class designed to make it easier to create and update databases. This class must be subclassed within
the code of the application seeking database access and the following callback methods implemented within
that subclass:

« onCreate() - Called when the database is created for the first time. This method is passed the SQLiteDatabase
object as an argument for the newly created database. This is the ideal location to initialize the database in
terms of creating a table and inserting any initial data rows.

« onUpgrade() — Called in the event that the application code contains a more recent database version number
reference. This is typically used when an application is updated on the device and requires that the database
schema also be updated to handle storage of additional data.

In addition to the above mandatory callback methods, the 0nOpen() method, called when the database is
opened, may also be implemented within the subclass.

The constructor for the subclass must also be implemented to call the super class, passing through the application
context, the name of the database and the database version.
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Notable methods of the SQLiteOpenHelper class include:

« getWritableDatabase() — Opens or creates a database for reading and writing. Returns a reference to the
database in the form of a SQLiteDatabase object.

« getReadableDatabase() — Creates or opens a database for reading only. Returns a reference to the database in
the form of a SQLiteDatabase object.

o close() - Closes the database.

69.9.4 ContentValues

ContentValues is a convenience class that allows key/value pairs to be declared consisting of table column
identifiers and the values to be stored in each column. This class is of particular use when inserting or updating
entries in a database table.

69.10 The Android Room Persistence Library

A limitation of the Android SDK SQLite classes is that they require moderate coding effort and don't take
advantage of the new architecture guidelines and features such as LiveData and lifecycle management. The
Android Jetpack Architecture Components include the Room persistent library to address these shortcomings.
This library provides a high-level interface on top of the SQLite database system, making it easy to store data
locally on Android devices with minimal coding while also conforming to the recommendations for modern
application architecture.

The following chapters will provide an overview and tutorial on SQLite database management using SQLite and
the Room persistence library.

69.11 Summary

SQLite is a lightweight, embedded relational database management system included in the Android framework
and provides a mechanism for implementing organized persistent data storage for Android applications. When
combined with the Room persistence library, Android provides a modern way to implement data storage from
within an Android app.

This chapter provided an overview of databases in general and SQLite in particular within the context of Android
application development.
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74. The Android Room Persistence
Library

Included with the Android Architecture Components, the Room persistence library is designed to make it easier
to add database storage support to Android apps in a way consistent with the Android architecture guidelines.
With the basics of SQLite databases covered in the previous chapters, this chapter will explore Room-based
database management, the key elements that work together to implement Room support within an Android app,
and how these are implemented in terms of architecture and coding. Having covered these topics, the next two
chapters will put this theory into practice with an example Room database project.

74.1 Revisiting Modern App Architecture

The chapter entitled “Modern Android App Architecture with Jetpack” introduced the concept of modern app
architecture and stressed the importance of separating different areas of responsibility within an app. The
diagram illustrated in Figure 74-1 outlines the recommended architecture for a typical Android app:

Figure 74-1

With the top three levels of this architecture covered in some detail in earlier chapters of this book, it is time to
explore the repository and database architecture levels in the context of the Room persistence library.

74.2 Key Elements of Room Database Persistence

Before going into greater detail later in the chapter, it is first worth summarizing the key elements involved in
working with SQLite databases using the Room persistence library:
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74.2.1 Repository

As previously discussed, the repository module contains all of the code necessary for directly handling all data
sources used by the app. This avoids the need for the UI controller and ViewModel to contain code directly
accessing sources such as databases or web services.

74.2.2 Room Database

The room database object provides the interface to the underlying SQLite database. It also provides the repository
with access to the Data Access Object (DAO). An app should only have one room database instance, which may
be used to access multiple database tables.

74.2.3 Data Access Object (DAO)

The DAO contains the SQL statements required by the repository to insert, retrieve and delete data within
the SQLite database. These SQL statements are mapped to methods which are then called from within the
repository to execute the corresponding query.

74.2.4 Entities

An entity is a class that defines the schema for a table within the database, defines the table name, column names,
and data types, and identifies which column is to be the primary key. In addition to declaring the table schema,
entity classes contain getter and setter methods that provide access to these data fields. The data returned to
the repository by the DAO in response to the SQL query method calls will take the form of instances of these
entity classes. The getter methods will then be called to extract the data from the entity object. Similarly, when
the repository needs to write new records to the database, it will create an entity instance, configure values on
the object via setter calls, then call insert methods declared in the DAO, passing through entity instances to be
saved.

74.2.5 SQLite Database

The SQLite database is responsible for storing and providing access to the data. The app code, including the
repository, should never directly access this underlying database. All database operations are performed using a
combination of the room database, DAOs, and entities.

The architecture diagram in Figure 74-2 illustrates how these different elements interact to provide Room-based
database storage within an Android app:

Figure 74-2
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The numbered connections in the above architecture diagram can be summarized as follows:

1. The repository interacts with the Room Database to get a database instance which, in turn, is used to obtain
references to DAO instances.

2. 'The repository creates entity instances and configures them with data before passing them to the DAO for
use in search and insertion operations.

3. The repository calls methods on the DAO passing through entities to be inserted into the database and
receives entity instances back in response to search queries.

4. 'When a DAO has results to return to the repository, it packages them into entity objects.
5. The DAO interacts with the Room Database to initiate database operations and handle results.

6. The Room Database handles all low-level interactions with the underlying SQLite database, submitting
queries and receiving results.

With a basic outline of the key elements of database access using the Room persistent library covered, it is time
to explore entities, DAOs, room databases, and repositories in more detail.

74.3 Understanding Entities

Each database table will have associated with it an entity class. This class defines the schema for the table and
takes the form of a standard Kotlin class interspersed with some special Room annotations. An example Kotlin
class declaring the data to be stored within a database table might read as follows:

class Customer {

var id: Int = 0

var name: String? = null
var address: String? = null
constructor () {}

constructor (id: Int, name: String, address: String) {
this.id = id
this.name = name
this.address = address

}

constructor (name: String, address: String) {
this.name = name

this.address = address

}

As currently implemented, the above code declares a basic Kotlin class containing several variables representing
database table fields and a collection of getter and setter methods. This class, however, is not yet an entity. To
make this class into an entity and to make it accessible within SQL statements, some Room annotations need to
be added as follows:

@Entity (tableName = "customers")

class Customer {
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@PrimaryKey (autoGenerate = true)
@NonNull
@ColumnInfo (name = "customerId")

var id: Int = 0

@ColumnInfo (name = "customerName")
var name: String? = null

var address: String? = null
constructor () {}

constructor (id: Int, name: String, address: String) {
this.id = id
this.name = name

this.address = address

constructor (name: String, address: String) {
this.name = name

this.address = address

}

The above annotations begin by declaring that the class represents an entity and assigns a table name of
“customers”. This is the name by which the table will be referenced in the DAO SQL statements:

@Entity(tableName = "customers")

Every database table needs a column to act as the primary key. In this case, the customer id is declared as the
primary key. Annotations have also been added to assign a column name to be referenced in SQL queries and to
indicate that the field cannot be used to store null values. Finally, the id value is configured to be auto-generated.
This means the system automatically generates the id assigned to new records to avoid duplicate keys:

@PrimaryKey (autoGenerate = true)
@NonNull
@ColumnInfo (name = "customerId")

var id: Int = 0

A column name is also assigned to the customer name field. Note, however, that no column name was assigned
to the address field. This means that the address data will still be stored within the database but is not required
to be referenced in SQL statements. If a field within an entity is not required to be stored within a database, use
the @Ignore annotation:

@Ignore

var MyString: String? = null

Annotations may also be included within an entity class to establish relationships with other entities using a
relational database concept referred to as foreign keys. Foreign keys allow a table to reference the primary key

in another table. For example, a relationship could be established between an entity named Purchase and our
existing Customer entity as follows:
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@Entity (foreignKeys = arrayOf (ForeignKey (entity = Customer::class,
parentColumns = arrayOf ("customerId"),
childColumns = arrayOf ("buyerId"),
onDelete = ForeignKey.CASCADE,
onUpdate = ForeignKey.RESTRICT)))

class Purchase {

@PrimaryKey (autoGenerate = true)
@NonNull
@ColumnInfo (name = "purchaseId")

var purchaselId: Int = 0

@ColumnInfo (name = "buyerId")
0

var buyerId: Int

}
Note that the foreign key declaration also specifies the action to be taken when a parent record is deleted or
updated. Available options are CASCADE, NO_ACTION, RESTRICT, SET_DEFAULT, and SET_NULL.

74.4 Data Access Objects

A Data Access Object allows access to the data stored within a SQLite database. A DAO is declared as a standard
Kotlin interface with additional annotations that map specific SQL statements to methods that the repository
may then call.

The first step is to create the interface and declare it as a DAO using the @Dao annotation:
@Dao
interface CustomerDao {

}

Next, entries are added consisting of SQL statements and corresponding method names. The following
declaration, for example, allows all of the rows in the customers table to be retrieved via a call to a method
named getAllCustomers():
@Dao
interface CustomerDao {

@Query ("SELECT * FROM customers")

fun getAllCustomers(): LiveData<List<Customer>>
}

The getAllCustomers() method returns a List object containing a Customer entity object for each record retrieved
from the database table. The DAO is also using LiveData so that the repository can observe changes to the
database.

Arguments may also be passed into the methods and referenced within the corresponding SQL statements.
Consider the following DAO declaration, which searches for database records matching a customer’s name
(note that the column name referenced in the WHERE condition is the name assigned to the column in the
entity class):

587



The Android Room Persistence Library

@Query ("SELECT * FROM customers WHERE name = :customerName")
fun findCustomer (customerName: String): List<Customer>

In this example, the method is passed a string value which is, in turn, included within an SQL statement by
prefixing the variable name with a colon (:).

A basic insertion operation can be declared as follows using the @Insert convenience annotation:

@Insert

fun addCustomer (Customer customer)

This is referred to as a convenience annotation because the Room persistence library can infer that the Customer
entity passed to the addCustomer() method is to be inserted into the database without the need for the SQL
insert statement to be provided. Multiple database records may also be inserted in a single transaction as follows:

@Insert

fun insertCustomers (Customer... customers)

The following DAO declaration deletes all records matching the provided customer name:
@Query ("DELETE FROM customers WHERE name = :name")

fun deleteCustomer (String name)

As an alternative to using the @Query annotation to perform deletions, the @Delete convenience annotation
may also be used. In the following example, all of the Customer records that match the set of entities passed to
the deleteCustomers() method will be deleted from the database:

@Delete

fun deleteCustomers (Customer... customers)

The @Update convenience annotation provides similar behavior when updating records:
@Update

fun updateCustomers (Customer... customers)

The DAO methods for these types of database operations may also be declared to return an int value indicating
the number of rows affected by the transaction, for example:
@Delete

fun deleteCustomers (Customer... customers): int

74.5 The Room Database

The Room database class is created by extending the RoomDatabase class and acts as a layer on top of the
actual SQLite database embedded into the Android operating system. The class is responsible for creating and
returning a new room database instance and providing access to the database’s associated DAO instances.

The Room persistence library provides a database builder for creating database instances. Each Android app
should only have one room database instance, so it is best to implement defensive code within the class to
prevent more than one instance from being created.

An example Room Database implementation for use with the example customer table is outlined in the following
code listing:

import android.content.Context

import android.arch.persistence.room.Database

import android.arch.persistence.room.Room

import android.arch.persistence.room.RoomDatabase
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@Database (entities = [ (Customer::class)], version = 1)
abstract class CustomerRoomDatabase: RoomDatabase () {
abstract fun customerDao (): CustomerDao

companion object {

private var INSTANCE: CustomerRoomDatabase? = null

internal fun getDatabase (context: Context): CustomerRoomDatabase? {
if (INSTANCE == null) {
synchronized (CustomerRoomDatabase::class.java) {
if (INSTANCE == null) {
INSTANCE =

Room.databaseBuilder (
context.applicationContext,
CustomerRoomDatabase::class.java,

"customer database") .build()

}
return INSTANCE

}

Important areas to note in the above example are the annotation above the class declaration declaring the entities
with which the database is to work, the code to check that an instance of the class has not already been created
and the assignment of the name “customer_database” to the instance.

74.6 The Repository

The repository is responsible for getting a Room Database instance, using that instance to access associated
DAOs, and then making calls to DAO methods to perform database operations. A typical constructor for a
repository designed to work with a Room Database might read as follows:

class CustomerRepository(application: Application) {
private var customerDao: CustomerDao?

init {
val db: CustomerRoomDatabase? =
CustomerRoomDatabase.getDatabase (application)

customerDao = db?.customerDao ()

Once the repository can access the DAQ, it can call the data access methods. The following code, for example,
calls the getAllCustomers() DAO method:
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val allCustomers: LiveData<List<Customer>>?

allCustomers = customerDao.getAllCustomers ()

When calling DAO methods, it is important to note that unless the method returns a LiveData instance (which
automatically runs queries on a separate thread), the operation cannot be performed on the app’s main thread.
Attempting to do so will cause the app to crash with the following diagnostic output:

Cannot access database on the main thread since it may potentially lock the UI
for a long period of time

Since some database transactions may take a longer time to complete, running the operations on a separate
thread avoids the app appearing to lock up. As will be demonstrated in the chapter entitled “An Android Room
Database and Repository Tutorial”, this problem can be easily resolved by making use of coroutines (for more
information or a reminder of how to use coroutines, refer back to the chapter entitled “An Introduction to Kotlin
Coroutines”).

74.7 In-Memory Databases

The examples outlined in this chapter use a SQLite database that exists as a database file on the persistent storage
of an Android device. This ensures that the data persists even after the app process is terminated.

The Room database persistence library also supports in-memory databases. These databases reside entirely
in memory and are lost when the app terminates. The only change necessary to work with an in-memory
database is to call the Room.inMemoryDatabaseBuilder() method of the Room Database class instead of Room.
databaseBuilder(). The following code shows the difference between the method calls (note that the in-memory
database does not require a database name):

// Create a file storage-based database
INSTANCE = Room.databaseBuilder<CustomerRoomDatabase> (context.applicationContext,
CustomerRoomDatabase::class.java, "customer database")
.build()
// Create an in-memory database
INSTANCE = Room.inMemoryDatabaseBuilder<CustomerRoomDatabase> (
context.getApplicationContext (),
CustomerRoomDatabase.class)

Lbuild()

74.8 Database Inspector

Android Studio includes a Database Inspector tool window which allows the Room databases associated with
running apps to be viewed, searched, and modified, as shown in Figure 74-3:

Figure 74-3
The Database Inspector will be covered in the chapter “An Android Room Database and Repository Tutorial”.
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74.9 Summary

The Android Room persistence library is bundled with the Android Architecture Components and acts as an
abstract layer above the lower-level SQLite database. The library is designed to make it easier to work with
databases while conforming to the Android architecture guidelines. This chapter has introduced the elements
that interact to build Room-based database storage into Android app projects, including entities, repositories,
data access objects, annotations, and Room Database instances.

With the basics of SQLite and the Room architecture component covered, the next step is to create an example
app that puts this theory into practice. Since the user interface for the example application will require a forms-
based layout, the next chapter, entitled “An Android TableLayout and TableRow Tutorial”, will detour slightly
from the core topic by introducing the basics of the TableLayout and TableRow views.
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Chapter 92

92. An Overview of Android In-App
Billing

n the early days of mobile applications for operating systems such as Android and iOS, the most common
method for earning revenue was to charge an upfront fee to download and install the application. Another
revenue opportunity was soon introduced by embedding advertising within applications. The most common
and lucrative option is to charge the user for purchasing items from within the application after installing it. This

typically takes the form of access to a higher level in a game, acquiring virtual goods or currency, or subscribing
to premium content in the digital edition of a magazine or newspaper.

Google supports integrating in-app purchasing through the Google Play In-App Billing API and the Play
Console. This chapter will provide an overview of in-app billing and outline how to integrate in-app billing into
your Android projects. Once these topics have been explored, the next chapter will walk you through creating
an example app that includes in-app purchasing features.

92.1 Preparing a Project for In-App Purchasing

Building in-app purchasing into an app will require a Google Play Developer Console account, details of which
were covered previously in the “Creating, Testing and Uploading an Android App Bundle” chapter. You must also
register a Google merchant account. These settings can be found by navigating to Setup -> Payments profile
in the Play Console. Note that merchant registration is not available in all countries. For details, refer to the
following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app must then be uploaded to the console and enabled for in-app purchasing. However, the console will
not activate in-app purchasing support for an app unless the Google Play Billing Library has been added to the
module-level build.gradle.kts file:

dependencies {

implementation(libs.billingclient.ktx)

}
Once the build file has been modified and the app bundle uploaded to the console, the next step is to add in-app
products or subscriptions for the user to purchase.

92.2 Creating In-App Products and Subscriptions

Products and subscriptions are created and managed using the options listed beneath the Monetize section of
the Play Console navigation panel, as highlighted in Figure 92-1 below:
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Figure 92-1
Each product or subscription needs an ID, title, description, and pricing information. Purchases fall into the
categories of consumable (the item must be purchased each time it is required by the user, such as virtual
currency in a game), non-consumable (only needs to be purchased once by the user, such as content access), and
subscription-based. Consumable and non-consumable products are collectively referred to as managed products.

Subscriptions are useful for selling an item that needs to be renewed regularly, such as access to news content
or the premium features of an app. When creating a subscription, a base plan specifies the price, renewal period
(monthly, annually, etc.), and whether the subscription auto-renews. Users can also be given discount offers and
the option of pre-purchasing a subscription.

92.3 Billing Client Initialization

Communication between your app and the Google Play Billing Library is handled by a BillingClient instance.
In addition, BillingClient includes a set of methods that can be called to perform both synchronous and
asynchronous billing-related activities. When the billing client is initialized, it will need to be provided with a
reference to a PurchasesUpdatedListener callback handler. The client will call this handler to notify your app
of the results of any purchasing activity. To avoid duplicate notifications, it is recommended to have only one
BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() method, passing through the current activity or
fragment context. The purchase update handler is then assigned to the client via the setListener() method:
private val purchasesUpdatedListener =
PurchasesUpdatedListener { billingResult, purchases ->
if (billingResult.responseCode ==
BillingClient.BillingResponseCode.OK
&& purchases != null

for (purchase in purchases) {
// Process the purchases

}
} else if (billingResult.responseCode ==
BillingClient.BillingResponseCode.USER CANCELED

// Purchase canceled by the user

} else {

764



An Overview of Android In-App Billing

// Handle errors here

billingClient = BillingClient.newBuilder (this)
.setlistener (purchasesUpdatedListener)
.enablePendingPurchases ()
.build()

92.4 Connecting to the Google Play Billing Library

After successfully creating the Billing Client, the next step is initializing a connection to the Google Play
Billing Library. A call must be made to the startConnection() method of the billing client instance to establish
this connection. Since the connection is performed asynchronously, a BillingClientStateListener must be
implemented to receive a callback indicating whether the connection was successful. Code should also be added
to override the onBillingServiceDisconnected() method. This is called if the connection to the Billing Library is
lost and can be used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the BillingClient instance will make a call to the
onBillingSetupFinished() method, which can be used to check that the client is ready:
billingClient.startConnection (object : BillingClientStatelListener {
override fun onBillingSetupFinished (
billingResult: BillingResult

if (billingResult.responseCode ==

BillingClient.BillingResponseCode.OK

// Connection successful
} else {
// Connection failed

override fun onBillingServiceDisconnected() {

// Connection to billing service lost

)
92.5 Querying Available Products

Once the billing environment is initialized and ready to go, the next step is to request the details of the products
or subscriptions available for purchase. This is achieved by making a call to the queryProductDetailsAsync()
method of the BillingClient and passing through an appropriately configured QueryProductDetailsParams
instance containing the product ID and type (ProductType.SUBS for a subscription or ProductType.INAPP for
a managed product):

val queryProductDetailsParams = QueryProductDetailsParams.newBuilder ()

.setProductList (
ImmutablelList.of (

QueryProductDetailsParams.Product.newBuilder ()
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.setProductId(productId)

.setProductType (
BillingClient.ProductType.INAPP

)

.build()

)
Lbuild()

billingClient.queryProductDetailsAsync (
queryProductDetailsParams
) { billingResult, productDetailsList ->
if (!productDetailsList.isEmpty()) {
// Process list of matching products
} else {

// No product matches found

}

The queryProductDetailsAsync() method is passed a ProductDetailsResponseListener handler (in this case, in
the form of a lambda code block) which, in turn, is called and passed a list of ProductDetail objects containing
information about the matching products. For example, we can call methods on these objects to get information
such as the product name, title, description, price, and offer details.

92.6 Starting the Purchase Process

Once a product or subscription has been queried and selected for purchase by the user, the purchase process is
ready to be launched. We do this by calling the launchBillingFlow() method of the BillingClient, passing through
as arguments the current activity and a BillingFlowParams instance configured with the ProductDetail object
for the purchased item.
val billingFlowParams = BillingFlowParams.newBuilder ()
.setProductDetailsParamsList (
ImmutableList.of (
BillingFlowParams.ProductDetailsParams.newBuilder ()
.setProductDetails (productDetails)
Lbuild()

)
.build()

pbillingClient.launchBillingFlow (this, billingFlowParams)

The success or otherwise of the purchase operation will be reported via a call to the PurchasesUpdatedListener
callback handler outlined earlier in the chapter.
92.7 Completing the Purchase

When purchases are successful, the PurchasesUpdatedListener handler will be passed a list containing a Purchase
object for each item. You can verify that the item has been purchased by calling the getPurchaseState() method
of the Purchase instance as follows:
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if (purchase.getPurchaseState () == Purchase.PurchaseState.PURCHASED) {
// Purchase completed.

} else if (purchase.getPurchaseState() == Purchase.PurchaseState.PENDING) {
// Payment is still pending

}

Note that your app will only support pending purchases if a call is made to the enablePendingPurchases() method
during initialization. A pending purchase will remain so until the user completes the payment process.

When the purchase of a non-consumable item is complete, it must be acknowledged to prevent a refund
from being issued to the user. This requires the purchase token for the item, which is obtained via a call to the
getPurchaseToken() method of the Purchase object. This token is used to create an AcknowledgePurchaseParams
instance and an AcknowledgePurchaseResponseListener handler. Managed product purchases and subscriptions
are acknowledged by calling the BillingClient’s acknowledgePurchase() method as follows:
billingClient.acknowledgePurchase (acknowledgePurchaseParams,
acknowledgePurchaseResponselListener) ;
val acknowledgePurchaseParams = AcknowledgePurchaseParams.newBuilder ()
.setPurchaseToken (purchase.purchaseToken)
.build()

val acknowledgePurchaseResponselListener = AcknowledgePurchaseResponselistener {

// Check acknowledgement result

billingClient.acknowledgePurchase (

acknowledgePurchaseParams,

acknowledgePurchaseResponselistener
)
For consumable purchases, you will need to notify Google Play when the item has been consumed so that it
is available to be repurchased by the user. This requires a configured ConsumeParams instance containing a
purchase token and a call to the billing client’s consumePurchase() method:
val consumeParams = ConsumeParams.newBuilder ()

.setPurchaseToken (purchase.purchaseToken)

.build()

coroutineScope.launch {
val result = billingClient.consumePurchase (consumeParams)

if (result.billingResult.responseCode ==
BillingClient.BillingResponseCode.OK) {

// Purchase successfully consumed

)
92.8 Querying Previous Purchases

When working with in-app billing, checking whether a user has already purchased a product or subscription is a
common requirement. A list of all the user’s previous purchases of a specific type can be generated by calling the
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queryPurchasesAsync() method of the BillingClient instance and implementing a PurchaseResponseListener.
The following code, for example, obtains a list of all previously purchased items that have not yet been consumed:

val queryPurchasesParams = QueryPurchasesParams.newBuilder ()
.setProductType (BillingClient.ProductType.INAPP)
.build()

billingClient.queryPurchasesAsync (
queryPurchasesParams,

purchasesListener

private val purchasesListener =

PurchasesResponselListener { billingResult, purchases ->

if (!purchases.isEmpty()) {

// Access existing active purchases
} else {

// No

}
To obtain a list of active subscriptions, change the ProductType value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for each product, make a call to the BillingClient
queryPurchaseHistoryAsync() method:

val queryPurchaseHistoryParams = QueryPurchaseHistoryParams.newBuilder ()
.setProductType (BillingClient.ProductType.INAPP)
.build()

billingClient.queryPurchaseHistoryAsync (queryPurchaseHistoryParams) {
billingResult, historyList ->
// Process purchase history list

}
92.9 Summary

In-app purchases provide a way to generate revenue from within Android apps by selling virtual products and
subscriptions to users. This chapter explored managed products and subscriptions and explained the difference
between consumable and non-consumable products. In-app purchasing support is added to an app using the
Google Play In-app Billing Library. It involves creating and initializing a billing client on which methods are
called to perform tasks such as making purchases, listing available products, and consuming existing purchases.
The next chapter contains a tutorial demonstrating the addition of in-app purchases to an Android Studio
project.
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