
Iguana
Essen�als

Java Edi�on

Android Studio

Payload
publishing

Android Studio Iguana
Essentials

Java Edition

Android Studio Iguana Essentials – Java Edition

ISBN: 978-1-951442-89-7

© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Payload
publishing

Find more books at https://www.payloadbooks.com.
Copyright
“

https://www.payloadbooks.com

i

Contents
Table of Contents
1. Introduction ... 1

1.1 Downloading the Code Samples ... 1
1.2 Feedback ... 1
1.3 Errata... 2
1.4 Authors Wanted ... 2

2. Setting up an Android Studio Development Environment ... 3
2.1 System requirements ... 3
2.2 Downloading the Android Studio package ... 3
2.3 Installing Android Studio ... 4

2.3.1 Installation on Windows ... 4
2.3.2 Installation on macOS ... 4
2.3.3 Installation on Linux .. 5

2.4 The Android Studio setup wizard ... 5
2.5 Installing additional Android SDK packages .. 6
2.6 Installing the Android SDK Command-line Tools ... 9

2.6.1 Windows 8.1 ... 10
2.6.2 Windows 10 .. 11
2.6.3 Windows 11 .. 11
2.6.4 Linux .. 11
2.6.5 macOS .. 11

2.7 Android Studio memory management .. 11
2.8 Updating Android Studio and the SDK ... 12
2.9 Summary .. 13

3. Creating an Example Android App in Android Studio ... 15
3.1 About the Project .. 15
3.2 Creating a New Android Project ... 15
3.3 Creating an Activity .. 16
3.4 Defining the Project and SDK Settings .. 16
3.5 Enabling the New Android Studio UI .. 17
3.6 Modifying the Example Application ... 18
3.7 Modifying the User Interface .. 19
3.8 Reviewing the Layout and Resource Files .. 25
3.9 Adding Interaction .. 28
3.10 Summary .. 29

4. Creating an Android Virtual Device (AVD) in Android Studio ... 31
4.1 About Android Virtual Devices .. 31
4.2 Starting the Emulator .. 33
4.3 Running the Application in the AVD ... 34
4.4 Running on Multiple Devices .. 35
4.5 Stopping a Running Application ... 36
4.6 Supporting Dark Theme ... 36

Contents

ii

Table of Contents

4.7 Running the Emulator in a Separate Window ... 37
4.8 Removing the Device Frame .. 40
4.9 Summary .. 42

5. Using and Configuring the Android Studio AVD Emulator .. 43
5.1 The Emulator Environment ... 43
5.2 Emulator Toolbar Options ... 43
5.3 Working in Zoom Mode .. 45
5.4 Resizing the Emulator Window... 45
5.5 Extended Control Options ... 45

5.5.1 Location ... 46
5.5.2 Displays .. 46
5.5.3 Cellular .. 46
5.5.4 Battery .. 46
5.5.5 Camera ... 46
5.5.6 Phone ... 46
5.5.7 Directional Pad ... 46
5.5.8 Microphone ... 46
5.5.9 Fingerprint .. 46
5.5.10 Virtual Sensors ... 47
5.5.11 Snapshots ... 47
5.5.12 Record and Playback ... 47
5.5.13 Google Play ... 47
5.5.14 Settings .. 47
5.5.15 Help .. 47

5.6 Working with Snapshots ... 47
5.7 Configuring Fingerprint Emulation ... 48
5.8 The Emulator in Tool Window Mode ... 49
5.9 Creating a Resizable Emulator ... 50
5.10 Summary .. 52

6. A Tour of the Android Studio User Interface .. 53
6.1 The Welcome Screen ... 53
6.2 The Menu Bar .. 54
6.3 The Main Window .. 54
6.4 The Tool Windows .. 56
6.5 The Tool Window Menus ... 59
6.6 Android Studio Keyboard Shortcuts .. 59
6.7 Switcher and Recent Files Navigation .. 60
6.8 Changing the Android Studio Theme .. 61
6.9 Summary .. 62

7. Testing Android Studio Apps on a Physical Android Device .. 63
7.1 An Overview of the Android Debug Bridge (ADB) ... 63
7.2 Enabling USB Debugging ADB on Android Devices ... 63

7.2.1 macOS ADB Configuration .. 64
7.2.2 Windows ADB Configuration .. 65
7.2.3 Linux adb Configuration ... 66

7.3 Resolving USB Connection Issues .. 66

iii

Table of Contents

7.4 Enabling Wireless Debugging on Android Devices ... 67
7.5 Testing the adb Connection ... 69
7.6 Device Mirroring ... 69
7.7 Summary .. 69

8. The Basics of the Android Studio Code Editor .. 71
8.1 The Android Studio Editor... 71
8.2 Splitting the Editor Window .. 74
8.3 Code Completion .. 74
8.4 Statement Completion .. 76
8.5 Parameter Information ... 76
8.6 Parameter Name Hints ... 76
8.7 Code Generation ... 77
8.8 Code Folding .. 78
8.9 Quick Documentation Lookup ... 79
8.10 Code Reformatting.. 79
8.11 Finding Sample Code ... 80
8.12 Live Templates ... 80
8.13 Summary .. 81

9. An Overview of the Android Architecture .. 83
9.1 The Android Software Stack .. 83
9.2 The Linux Kernel ... 84
9.3 Hardware Abstraction Layer .. 84
9.4 Android Runtime – ART .. 84
9.5 Android Libraries .. 84

9.5.1 C/C++ Libraries ... 85
9.6 Application Framework .. 86
9.7 Applications ... 86
9.8 Summary .. 86

10. The Anatomy of an Android App ... 87
10.1 Android Activities ... 87
10.2 Android Fragments ... 87
10.3 Android Intents ... 88
10.4 Broadcast Intents ... 88
10.5 Broadcast Receivers .. 88
10.6 Android Services ... 88
10.7 Content Providers ... 89
10.8 The Application Manifest ... 89
10.9 Application Resources .. 89
10.10 Application Context .. 89
10.11 Summary .. 89

11. An Overview of Android View Binding ... 91
11.1 Find View by Id ... 91
11.2 View Binding .. 91
11.3 Converting the AndroidSample project ... 92
11.4 Enabling View Binding ... 92
11.5 Using View Binding .. 92

iv

Table of Contents

11.6 Choosing an Option ... 94
11.7 View Binding in the Book Examples .. 94
11.8 Migrating a Project to View Binding .. 94
11.9 Summary .. 95

12. Understanding Android Application and Activity Lifecycles ... 97
12.1 Android Applications and Resource Management ... 97
12.2 Android Process States ... 97

12.2.1 Foreground Process ... 98
12.2.2 Visible Process .. 98
12.2.3 Service Process ... 98
12.2.4 Background Process ... 98
12.2.5 Empty Process .. 99

12.3 Inter-Process Dependencies ... 99
12.4 The Activity Lifecycle .. 99
12.5 The Activity Stack .. 99
12.6 Activity States .. 100
12.7 Configuration Changes .. 100
12.8 Handling State Change ... 101
12.9 Summary .. 101

13. Handling Android Activity State Changes... 103
13.1 New vs. Old Lifecycle Techniques ... 103
13.2 The Activity and Fragment Classes ... 103
13.3 Dynamic State vs. Persistent State ... 105
13.4 The Android Lifecycle Methods .. 106
13.5 Lifetimes ... 107
13.6 Foldable Devices and Multi-Resume .. 108
13.7 Disabling Configuration Change Restarts ... 108
13.8 Lifecycle Method Limitations .. 109
13.9 Summary .. 109

14. Android Activity State Changes by Example ... 111
14.1 Creating the State Change Example Project .. 111
14.2 Designing the User Interface ... 112
14.3 Overriding the Activity Lifecycle Methods ... 113
14.4 Filtering the Logcat Panel... 115
14.5 Running the Application .. 117
14.6 Experimenting with the Activity ... 117
14.7 Summary .. 118

15. Saving and Restoring the State of an Android Activity ... 119
15.1 Saving Dynamic State ... 119
15.2 Default Saving of User Interface State .. 119
15.3 The Bundle Class ... 120
15.4 Saving the State .. 121
15.5 Restoring the State .. 122
15.6 Testing the Application ... 122
15.7 Summary .. 122

v

Table of Contents

16. Understanding Android Views, View Groups and Layouts .. 125
16.1 Designing for Different Android Devices .. 125
16.2 Views and View Groups ... 125
16.3 Android Layout Managers ... 125
16.4 The View Hierarchy .. 127
16.5 Creating User Interfaces ... 128
16.6 Summary .. 128

17. A Guide to the Android Studio Layout Editor Tool .. 129
17.1 Basic vs. Empty Views Activity Templates ... 129
17.2 The Android Studio Layout Editor ... 133
17.3 Design Mode .. 133
17.4 The Palette .. 134
17.5 Design Mode and Layout Views.. 135
17.6 Night Mode .. 136
17.7 Code Mode ... 136
17.8 Split Mode .. 137
17.9 Setting Attributes... 137
17.10 Transforms ... 139
17.11 Tools Visibility Toggles ... 140
17.12 Converting Views .. 141
17.13 Displaying Sample Data ... 142
17.14 Creating a Custom Device Definition .. 143
17.15 Changing the Current Device.. 143
17.16 Layout Validation .. 144
17.17 Summary .. 145

18. A Guide to the Android ConstraintLayout .. 147
18.1 How ConstraintLayout Works ... 147

18.1.1 Constraints .. 147
18.1.2 Margins .. 148
18.1.3 Opposing Constraints.. 148
18.1.4 Constraint Bias ... 149
18.1.5 Chains .. 150
18.1.6 Chain Styles ... 150

18.2 Baseline Alignment ... 151
18.3 Configuring Widget Dimensions .. 151
18.4 Guideline Helper ... 152
18.5 Group Helper ... 152
18.6 Barrier Helper .. 152
18.7 Flow Helper .. 154
18.8 Ratios .. 155
18.9 ConstraintLayout Advantages ... 155
18.10 ConstraintLayout Availability.. 156
18.11 Summary .. 156

19. A Guide to Using ConstraintLayout in Android Studio ... 157
19.1 Design and Layout Views ... 157
19.2 Autoconnect Mode ... 159

vi

Table of Contents

19.3 Inference Mode .. 159
19.4 Manipulating Constraints Manually ... 159
19.5 Adding Constraints in the Inspector .. 161
19.6 Viewing Constraints in the Attributes Window .. 161
19.7 Deleting Constraints ... 162
19.8 Adjusting Constraint Bias .. 163
19.9 Understanding ConstraintLayout Margins .. 163
19.10 The Importance of Opposing Constraints and Bias ... 165
19.11 Configuring Widget Dimensions .. 167
19.12 Design Time Tools Positioning ... 168
19.13 Adding Guidelines .. 169
19.14 Adding Barriers ... 171
19.15 Adding a Group ... 172
19.16 Working with the Flow Helper .. 173
19.17 Widget Group Alignment and Distribution .. 173
19.18 Converting other Layouts to ConstraintLayout .. 175
19.19 Summary ... 175

20. Working with ConstraintLayout Chains and Ratios in Android Studio .. 177
20.1 Creating a Chain.. 177
20.2 Changing the Chain Style .. 179
20.3 Spread Inside Chain Style... 180
20.4 Packed Chain Style .. 180
20.5 Packed Chain Style with Bias ... 180
20.6 Weighted Chain ... 180
20.7 Working with Ratios ... 181
20.8 Summary .. 183

21. An Android Studio Layout Editor ConstraintLayout Tutorial ... 185
21.1 An Android Studio Layout Editor Tool Example ... 185
21.2 Preparing the Layout Editor Environment .. 185
21.3 Adding the Widgets to the User Interface.. 186
21.4 Adding the Constraints .. 189
21.5 Testing the Layout ... 191
21.6 Using the Layout Inspector .. 191
21.7 Summary .. 192

22. Manual XML Layout Design in Android Studio ... 193
22.1 Manually Creating an XML Layout .. 193
22.2 Manual XML vs. Visual Layout Design .. 196
22.3 Summary .. 196

23. Managing Constraints using Constraint Sets .. 197
23.1 Java Code vs. XML Layout Files .. 197
23.2 Creating Views ... 197
23.3 View Attributes .. 198
23.4 Constraint Sets ... 198

23.4.1 Establishing Connections.. 198
23.4.2 Applying Constraints to a Layout .. 198
23.4.3 Parent Constraint Connections .. 198

vii

Table of Contents

23.4.4 Sizing Constraints .. 199
23.4.5 Constraint Bias ... 199
23.4.6 Alignment Constraints .. 199
23.4.7 Copying and Applying Constraint Sets ... 199
23.4.8 ConstraintLayout Chains .. 199
23.4.9 Guidelines ... 200
23.4.10 Removing Constraints ... 200
23.4.11 Scaling.. 200
23.4.12 Rotation ... 201

23.5 Summary .. 201
24. An Android ConstraintSet Tutorial ... 203

24.1 Creating the Example Project in Android Studio ... 203
24.2 Adding Views to an Activity .. 203
24.3 Setting View Attributes ... 205
24.4 Creating View IDs ... 205
24.5 Configuring the Constraint Set ... 206
24.6 Adding the EditText View .. 207
24.7 Converting Density Independent Pixels (dp) to Pixels (px) .. 208
24.8 Summary .. 210

25. A Guide to Using Apply Changes in Android Studio .. 211
25.1 Introducing Apply Changes ... 211
25.2 Understanding Apply Changes Options .. 211
25.3 Using Apply Changes .. 212
25.4 Configuring Apply Changes Fallback Settings .. 213
25.5 An Apply Changes Tutorial.. 213
25.6 Using Apply Code Changes ... 213
25.7 Using Apply Changes and Restart Activity .. 214
25.8 Using Run App .. 214
25.9 Summary .. 214

26. An Overview and Example of Android Event Handling ... 215
26.1 Understanding Android Events... 215
26.2 Using the android:onClick Resource .. 215
26.3 Event Listeners and Callback Methods .. 216
26.4 An Event Handling Example ... 216
26.5 Designing the User Interface ... 217
26.6 The Event Listener and Callback Method .. 217
26.7 Consuming Events .. 219
26.8 Summary .. 220

27. Android Touch and Multi-touch Event Handling ... 221
27.1 Intercepting Touch Events ... 221
27.2 The MotionEvent Object .. 221
27.3 Understanding Touch Actions ... 222
27.4 Handling Multiple Touches ... 222
27.5 An Example Multi-Touch Application ... 222
27.6 Designing the Activity User Interface .. 223
27.7 Implementing the Touch Event Listener .. 223

viii

Table of Contents

27.8 Running the Example Application .. 226
27.9 Summary .. 227

28. Detecting Common Gestures Using the Android Gesture Detector Class ... 229
28.1 Implementing Common Gesture Detection .. 229
28.2 Creating an Example Gesture Detection Project .. 230
28.3 Implementing the Listener Class ... 230
28.4 Creating the GestureDetectorCompat Instance .. 232
28.5 Implementing the onTouchEvent() Method .. 233
28.6 Testing the Application ... 233
28.7 Summary .. 234

29. Implementing Custom Gesture and Pinch Recognition on Android ... 235
29.1 The Android Gesture Builder Application ... 235
29.2 The GestureOverlayView Class ... 235
29.3 Detecting Gestures .. 235
29.4 Identifying Specific Gestures ... 235
29.5 Installing and Running the Gesture Builder Application .. 235
29.6 Creating a Gestures File ... 236
29.7 Creating the Example Project .. 236
29.8 Extracting the Gestures File from the SD Card .. 236
29.9 Adding the Gestures File to the Project ... 237
29.10 Designing the User Interface ... 237
29.11 Loading the Gestures File .. 238
29.12 Registering the Event Listener ... 239
29.13 Implementing the onGesturePerformed Method ... 239
29.14 Testing the Application... 240
29.15 Configuring the GestureOverlayView .. 240
29.16 Intercepting Gestures.. 241
29.17 Detecting Pinch Gestures ... 241
29.18 A Pinch Gesture Example Project ... 241
29.19 Summary .. 243

30. An Introduction to Android Fragments .. 245
30.1 What is a Fragment? ... 245
30.2 Creating a Fragment ... 245
30.3 Adding a Fragment to an Activity using the Layout XML File ... 246
30.4 Adding and Managing Fragments in Code ... 248
30.5 Handling Fragment Events .. 249
30.6 Implementing Fragment Communication... 250
30.7 Summary ... 251

31. Using Fragments in Android Studio - An Example ... 253
31.1 About the Example Fragment Application .. 253
31.2 Creating the Example Project .. 253
31.3 Creating the First Fragment Layout .. 253
31.4 Migrating a Fragment to View Binding ... 255
31.5 Adding the Second Fragment .. 256
31.6 Adding the Fragments to the Activity .. 257
31.7 Making the Toolbar Fragment Talk to the Activity .. 258

ix

Table of Contents

31.8 Making the Activity Talk to the Text Fragment .. 261
31.9 Testing the Application ... 262
31.10 Summary .. 263

32. Modern Android App Architecture with Jetpack .. 265
32.1 What is Android Jetpack? .. 265
32.2 The “Old” Architecture ... 265
32.3 Modern Android Architecture .. 265
32.4 The ViewModel Component ... 266
32.5 The LiveData Component .. 266
32.6 ViewModel Saved State... 267
32.7 LiveData and Data Binding .. 267
32.8 Android Lifecycles .. 268
32.9 Repository Modules .. 268
32.10 Summary .. 269

33. An Android ViewModel Tutorial ... 271
33.1 About the Project .. 271
33.2 Creating the ViewModel Example Project ... 271
33.3 Removing Unwanted Project Elements .. 271
33.4 Designing the Fragment Layout .. 272
33.5 Implementing the View Model .. 273
33.6 Associating the Fragment with the View Model ... 274
33.7 Modifying the Fragment .. 275
33.8 Accessing the ViewModel Data ... 276
33.9 Testing the Project ... 276
33.10 Summary .. 277

34. An Android Jetpack LiveData Tutorial .. 279
34.1 LiveData - A Recap ... 279
34.2 Adding LiveData to the ViewModel ... 279
34.3 Implementing the Observer ... 281
34.4 Summary .. 283

35. An Overview of Android Jetpack Data Binding .. 285
35.1 An Overview of Data Binding ... 285
35.2 The Key Components of Data Binding .. 285

35.2.1 The Project Build Configuration .. 285
35.2.2 The Data Binding Layout File ... 286
35.2.3 The Layout File Data Element .. 287
35.2.4 The Binding Classes ... 288
35.2.5 Data Binding Variable Configuration .. 288
35.2.6 Binding Expressions (One-Way) .. 289
35.2.7 Binding Expressions (Two-Way) .. 290
35.2.8 Event and Listener Bindings ... 290

35.3 Summary .. 291
36. An Android Jetpack Data Binding Tutorial ... 293

36.1 Removing the Redundant Code .. 293
36.2 Enabling Data Binding ... 294

x

Table of Contents

36.3 Adding the Layout Element ... 295
36.4 Adding the Data Element to Layout File .. 296
36.5 Working with the Binding Class ... 296
36.6 Assigning the ViewModel Instance to the Data Binding Variable ... 297
36.7 Adding Binding Expressions ... 298
36.8 Adding the Conversion Method ... 299
36.9 Adding a Listener Binding ... 299
36.10 Testing the App .. 299
36.11 Summary .. 300

37. An Android ViewModel Saved State Tutorial .. 301
37.1 Understanding ViewModel State Saving .. 301
37.2 Implementing ViewModel State Saving ... 301
37.3 Saving and Restoring State ... 303
37.4 Adding Saved State Support to the ViewModelDemo Project .. 303
37.5 Summary .. 304

38. Working with Android Lifecycle-Aware Components .. 305
38.1 Lifecycle Awareness .. 305
38.2 Lifecycle Owners ... 305
38.3 Lifecycle Observers ... 306
38.4 Lifecycle States and Events ... 307
38.5 Summary .. 308

39. An Android Jetpack Lifecycle Awareness Tutorial .. 309
39.1 Creating the Example Lifecycle Project .. 309
39.2 Creating a Lifecycle Observer .. 309
39.3 Adding the Observer .. 311
39.4 Testing the Observer ... 311
39.5 Creating a Lifecycle Owner .. 311
39.6 Testing the Custom Lifecycle Owner .. 313
39.7 Summary .. 313

40. An Overview of the Navigation Architecture Component .. 315
40.1 Understanding Navigation ... 315
40.2 Declaring a Navigation Host .. 316
40.3 The Navigation Graph .. 318
40.4 Accessing the Navigation Controller .. 319
40.5 Triggering a Navigation Action ... 319
40.6 Passing Arguments .. 320
40.7 Summary .. 320

41. An Android Jetpack Navigation Component Tutorial .. 321
41.1 Creating the NavigationDemo Project ... 321
41.2 Adding Navigation to the Build Configuration... 321
41.3 Creating the Navigation Graph Resource File ... 322
41.4 Declaring a Navigation Host .. 323
41.5 Adding Navigation Destinations ... 324
41.6 Designing the Destination Fragment Layouts ... 326
41.7 Adding an Action to the Navigation Graph... 328

xi

Table of Contents

41.8 Implement the OnFragmentInteractionListener .. 329
41.9 Adding View Binding Support to the Destination Fragments .. 330
41.10 Triggering the Action ... 331
41.11 Passing Data Using Safeargs .. 332
41.12 Summary .. 335

42. An Introduction to MotionLayout ... 337
42.1 An Overview of MotionLayout ... 337
42.2 MotionLayout .. 337
42.3 MotionScene .. 337
42.4 Configuring ConstraintSets ... 338
42.5 Custom Attributes ... 339
42.6 Triggering an Animation .. 341
42.7 Arc Motion ... 342
42.8 Keyframes ... 342

42.8.1 Attribute Keyframes ... 342
42.8.2 Position Keyframes .. 343

42.9 Time Linearity ... 346
42.10 KeyTrigger .. 346
42.11 Cycle and Time Cycle Keyframes ... 347
42.12 Starting an Animation from Code .. 347
42.13 Summary .. 348

43. An Android MotionLayout Editor Tutorial ... 349
43.1 Creating the MotionLayoutDemo Project ... 349
43.2 ConstraintLayout to MotionLayout Conversion .. 349
43.3 Configuring Start and End Constraints ... 351
43.4 Previewing the MotionLayout Animation ... 354
43.5 Adding an OnClick Gesture .. 354
43.6 Adding an Attribute Keyframe to the Transition .. 356
43.7 Adding a CustomAttribute to a Transition .. 358
43.8 Adding Position Keyframes ... 360
43.9 Summary .. 362

44. A MotionLayout KeyCycle Tutorial ... 363
44.1 An Overview of Cycle Keyframes ... 363
44.2 Using the Cycle Editor .. 367
44.3 Creating the KeyCycleDemo Project .. 368
44.4 Configuring the Start and End Constraints ... 368
44.5 Creating the Cycles ... 370
44.6 Previewing the Animation ... 372
44.7 Adding the KeyFrameSet to the MotionScene .. 372
44.8 Summary .. 374

45. Working with the Floating Action Button and Snackbar .. 375
45.1 The Material Design .. 375
45.2 The Design Library ... 375
45.3 The Floating Action Button (FAB) ... 375
45.4 The Snackbar .. 376
45.5 Creating the Example Project .. 377

xii

Table of Contents

45.6 Reviewing the Project ... 377
45.7 Removing Navigation Features.. 378
45.8 Changing the Floating Action Button .. 378
45.9 Adding an Action to the Snackbar .. 380
45.10 Summary .. 380

46. Creating a Tabbed Interface using the TabLayout Component .. 381
46.1 An Introduction to the ViewPager2 ... 381
46.2 An Overview of the TabLayout Component ... 381
46.3 Creating the TabLayoutDemo Project .. 382
46.4 Creating the First Fragment ... 383
46.5 Duplicating the Fragments... 384
46.6 Adding the TabLayout and ViewPager2 ... 385
46.7 Performing the Initialization Tasks ... 387
46.8 Testing the Application ... 389
46.9 Customizing the TabLayout ... 389
46.10 Summary .. 391

47. Working with the RecyclerView and CardView Widgets .. 393
47.1 An Overview of the RecyclerView .. 393
47.2 An Overview of the CardView .. 395
47.3 Summary .. 396

48. An Android RecyclerView and CardView Tutorial ... 397
48.1 Creating the CardDemo Project.. 397
48.2 Modifying the Basic Views Activity Project .. 397
48.3 Designing the CardView Layout ... 398
48.4 Adding the RecyclerView ... 399
48.5 Adding the Image Files ... 399
48.6 Creating the RecyclerView Adapter .. 400
48.7 Initializing the RecyclerView Component ... 402
48.8 Testing the Application ... 403
48.9 Responding to Card Selections.. 403
48.10 Summary .. 405

49. A Layout Editor Sample Data Tutorial .. 407
49.1 Adding Sample Data to a Project .. 407
49.2 Using Custom Sample Data ... 411
49.3 Summary .. 414

50. Working with the AppBar and Collapsing Toolbar Layouts ... 415
50.1 The Anatomy of an AppBar ... 415
50.2 The Example Project ... 416
50.3 Coordinating the RecyclerView and Toolbar .. 416
50.4 Introducing the Collapsing Toolbar Layout .. 418
50.5 Changing the Title and Scrim Color .. 421
50.6 Summary .. 422

51. An Android Studio Primary/Detail Flow Tutorial .. 423
51.1 The Primary/Detail Flow .. 423

xiii

Table of Contents

51.2 Creating a Primary/Detail Flow Activity ... 424
51.3 Adding the Primary/Detail Flow Activity .. 424
51.4 Modifying the Primary/Detail Flow Template .. 425
51.5 Changing the Content Model .. 425
51.6 Changing the Detail Pane .. 427
51.7 Modifying the ItemDetailFragment Class ... 428
51.8 Modifying the ItemListFragment Class .. 429
51.9 Adding Manifest Permissions .. 430
51.10 Running the Application .. 430
51.11 Summary .. 430

52. An Overview of Android Services .. 431
52.1 Intent Service ... 431
52.2 Bound Service .. 431
52.3 The Anatomy of a Service .. 432
52.4 Controlling Destroyed Service Restart Options.. 432
52.5 Declaring a Service in the Manifest File ... 432
52.6 Starting a Service Running on System Startup .. 433
52.7 Summary .. 434

53. An Overview of Android Intents ... 435
53.1 An Overview of Intents .. 435
53.2 Explicit Intents ... 435
53.3 Returning Data from an Activity .. 436
53.4 Implicit Intents .. 437
53.5 Using Intent Filters .. 438
53.6 Automatic Link Verification .. 438
53.7 Manually Enabling Links ... 441
53.8 Checking Intent Availability .. 442
53.9 Summary .. 443

54. Android Explicit Intents – A Worked Example ... 445
54.1 Creating the Explicit Intent Example Application .. 445
54.2 Designing the User Interface Layout for MainActivity .. 445
54.3 Creating the Second Activity Class ... 446
54.4 Designing the User Interface Layout for SecondActivity .. 447
54.5 Reviewing the Application Manifest File ... 447
54.6 Creating the Intent .. 448
54.7 Extracting Intent Data .. 449
54.8 Launching SecondActivity as a Sub-Activity ... 450
54.9 Returning Data from a Sub-Activity... 451
54.10 Testing the Application... 451
54.11 Summary .. 452

55. Android Implicit Intents – A Worked Example .. 453
55.1 Creating the Android Studio Implicit Intent Example Project ... 453
55.2 Designing the User Interface ... 453
55.3 Creating the Implicit Intent ... 454
55.4 Adding a Second Matching Activity ... 454
55.5 Adding the Web View to the UI .. 455

xiv

Table of Contents

55.6 Obtaining the Intent URL .. 455
55.7 Modifying the MyWebView Project Manifest File ... 457
55.8 Installing the MyWebView Package on a Device .. 458
55.9 Testing the Application ... 459
55.10 Manually Enabling the Link .. 459
55.11 Automatic Link Verification .. 461
55.12 Summary .. 463

56. Android Broadcast Intents and Broadcast Receivers .. 465
56.1 An Overview of Broadcast Intents .. 465
56.2 An Overview of Broadcast Receivers ... 466
56.3 Obtaining Results from a Broadcast ... 467
56.4 Sticky Broadcast Intents ... 467
56.5 The Broadcast Intent Example ... 468
56.6 Creating the Example Application .. 468
56.7 Creating and Sending the Broadcast Intent ... 468
56.8 Creating the Broadcast Receiver ... 469
56.9 Registering the Broadcast Receiver ... 470
56.10 Testing the Broadcast Example ... 471
56.11 Listening for System Broadcasts .. 471
56.12 Summary .. 472

57. Android Local Bound Services – A Worked Example ... 473
57.1 Understanding Bound Services ... 473
57.2 Bound Service Interaction Options .. 473
57.3 A Local Bound Service Example ... 473
57.4 Adding a Bound Service to the Project .. 474
57.5 Implementing the Binder ... 474
57.6 Binding the Client to the Service .. 477
57.7 Completing the Example .. 478
57.8 Testing the Application ... 479
57.9 Summary .. 479

58. Android Remote Bound Services – A Worked Example ... 481
58.1 Client to Remote Service Communication .. 481
58.2 Creating the Example Application .. 481
58.3 Designing the User Interface ... 481
58.4 Implementing the Remote Bound Service ... 481
58.5 Configuring a Remote Service in the Manifest File .. 483
58.6 Launching and Binding to the Remote Service ... 484
58.7 Sending a Message to the Remote Service ... 485
58.8 Summary .. 486

59. An Overview of Java Threads, Handlers and Executors .. 487
59.1 The Application Main Thread .. 487
59.2 Thread Handlers .. 487
59.3 A Threading Example ... 487
59.4 Building the App ... 488
59.5 Creating a New Thread ... 489
59.6 Implementing a Thread Handler ... 490

xv

Table of Contents

59.7 Passing a Message to the Handler ... 492
59.8 Java Executor Concurrency ... 492
59.9 Working with Runnable Tasks ... 493
59.10 Shutting down an Executor Service .. 494
59.11 Working with Callable Tasks and Futures ... 494
59.12 Handling a Future Result ... 496
59.13 Scheduling Tasks ... 497
59.14 Summary .. 498

60. Making Runtime Permission Requests in Android ... 499
60.1 Understanding Normal and Dangerous Permissions ... 499
60.2 Creating the Permissions Example Project .. 501
60.3 Checking for a Permission ... 501
60.4 Requesting Permission at Runtime ... 503
60.5 Providing a Rationale for the Permission Request ... 504
60.6 Testing the Permissions App .. 506
60.7 Summary .. 506

61. An Android Notifications Tutorial .. 507
61.1 An Overview of Notifications .. 507
61.2 Creating the NotifyDemo Project ... 509
61.3 Designing the User Interface ... 509
61.4 Creating the Second Activity ... 509
61.5 Creating a Notification Channel ... 510
61.6 Requesting Notification Permission ... 511
61.7 Creating and Issuing a Notification .. 514
61.8 Launching an Activity from a Notification .. 516
61.9 Adding Actions to a Notification .. 518
61.10 Bundled Notifications ... 519
61.11 Summary .. 521

62. An Android Direct Reply Notification Tutorial .. 523
62.1 Creating the DirectReply Project .. 523
62.2 Designing the User Interface ... 523
62.3 Requesting Notification Permission ... 524
62.4 Creating the Notification Channel .. 525
62.5 Building the RemoteInput Object ... 526
62.6 Creating the PendingIntent .. 527
62.7 Creating the Reply Action .. 528
62.8 Receiving Direct Reply Input ... 530
62.9 Updating the Notification .. 531
62.10 Summary .. 533

63. Foldable Devices and Multi-Window Support ... 535
63.1 Foldables and Multi-Window Support ... 535
63.2 Using a Foldable Emulator ... 536
63.3 Entering Multi-Window Mode ... 537
63.4 Enabling and using Freeform Support ... 538
63.5 Checking for Freeform Support .. 538
63.6 Enabling Multi-Window Support in an App ... 538

xvi

Table of Contents

63.7 Specifying Multi-Window Attributes ... 539
63.8 Detecting Multi-Window Mode in an Activity ... 540
63.9 Receiving Multi-Window Notifications ... 540
63.10 Launching an Activity in Multi-Window Mode ... 541
63.11 Configuring Freeform Activity Size and Position ... 541
63.12 Summary .. 542

64. An Overview of Android SQLite Databases .. 543
64.1 Understanding Database Tables .. 543
64.2 Introducing Database Schema .. 543
64.3 Columns and Data Types .. 543
64.4 Database Rows .. 544
64.5 Introducing Primary Keys ... 544
64.6 What is SQLite? ... 544
64.7 Structured Query Language (SQL) ... 544
64.8 Trying SQLite on an Android Virtual Device (AVD) .. 545
64.9 Android SQLite Classes .. 546

64.9.1 Cursor .. 547
64.9.2 SQLiteDatabase .. 547
64.9.3 SQLiteOpenHelper .. 547
64.9.4 ContentValues... 548

64.10 The Android Room Persistence Library... 548
64.11 Summary .. 548

65. An Android SQLite Database Tutorial .. 549
65.1 About the Database Example ... 549
65.2 Creating the SQLDemo Project ... 549
65.3 Designing the User interface ... 549
65.4 Creating the Data Model .. 550
65.5 Implementing the Data Handler ... 551
65.6 The Add Handler Method .. 553
65.7 The Query Handler Method .. 553
65.8 The Delete Handler Method .. 554
65.9 Implementing the Activity Event Methods .. 554
65.10 Testing the Application... 556
65.11 Summary .. 556

66. Understanding Android Content Providers .. 557
66.1 What is a Content Provider? .. 557
66.2 The Content Provider ... 557

66.2.1 onCreate() ... 557
66.2.2 query() ... 557
66.2.3 insert() ... 557
66.2.4 update() ... 558
66.2.5 delete() ... 558
66.2.6 getType() ... 558

66.3 The Content URI ... 558
66.4 The Content Resolver ... 558
66.5 The <provider> Manifest Element .. 559

xvii

Table of Contents

66.6 Summary .. 559
67. An Android Content Provider Tutorial ... 561

67.1 Copying the SQLDemo Project ... 561
67.2 Adding the Content Provider Package ... 561
67.3 Creating the Content Provider Class .. 562
67.4 Constructing the Authority and Content URI .. 563
67.5 Implementing URI Matching in the Content Provider .. 564
67.6 Implementing the Content Provider onCreate() Method ... 565
67.7 Implementing the Content Provider insert() Method ... 565
67.8 Implementing the Content Provider query() Method ... 566
67.9 Implementing the Content Provider update() Method ... 567
67.10 Implementing the Content Provider delete() Method ... 569
67.11 Declaring the Content Provider in the Manifest File ... 570
67.12 Modifying the Database Handler .. 571
67.13 Summary .. 573

68. An Android Content Provider Client Tutorial .. 575
68.1 Creating the SQLDemoClient Project .. 575
68.2 Designing the User interface ... 575
68.3 Accessing the Content Provider .. 575
68.4 Adding the Query Permission ... 576
68.5 Testing the Project ... 577
68.6 Summary .. 577

69. The Android Room Persistence Library .. 579
69.1 Revisiting Modern App Architecture ... 579
69.2 Key Elements of Room Database Persistence .. 579

69.2.1 Repository ... 580
69.2.2 Room Database .. 580
69.2.3 Data Access Object (DAO) ... 580
69.2.4 Entities ... 580
69.2.5 SQLite Database ... 580

69.3 Understanding Entities ... 581
69.4 Data Access Objects .. 584
69.5 The Room Database .. 585
69.6 The Repository ... 586
69.7 In-Memory Databases .. 587
69.8 Database Inspector .. 587
69.9 Summary .. 587

70. An Android TableLayout and TableRow Tutorial ... 589
70.1 The TableLayout and TableRow Layout Views .. 589
70.2 Creating the Room Database Project ... 590
70.3 Converting to a LinearLayout.. 590
70.4 Adding the TableLayout to the User Interface... 591
70.5 Configuring the TableRows ... 592
70.6 Adding the Button Bar to the Layout ... 593
70.7 Adding the RecyclerView ... 594
70.8 Adjusting the Layout Margins ... 595

xviii

Table of Contents

70.9 Summary .. 595
71. An Android Room Database and Repository Tutorial .. 597

71.1 About the RoomDemo Project .. 597
71.2 Modifying the Build Configuration .. 597
71.3 Building the Entity .. 598
71.4 Creating the Data Access Object ... 600
71.5 Adding the Room Database ... 601
71.6 Adding the Repository ... 601
71.7 Adding the ViewModel .. 604
71.8 Creating the Product Item Layout .. 605
71.9 Adding the RecyclerView Adapter .. 606
71.10 Preparing the Main Activity .. 607
71.11 Adding the Button Listeners .. 608
71.12 Adding LiveData Observers .. 609
71.13 Initializing the RecyclerView ... 610
71.14 Testing the RoomDemo App ... 610
71.15 Using the Database Inspector .. 610
71.16 Summary .. 611

72. Accessing Cloud Storage using the Android Storage Access Framework ... 613
72.1 The Storage Access Framework ... 613
72.2 Working with the Storage Access Framework .. 614
72.3 Filtering Picker File Listings .. 614
72.4 Handling Intent Results .. 615
72.5 Reading the Content of a File .. 615
72.6 Writing Content to a File ... 616
72.7 Deleting a File .. 617
72.8 Gaining Persistent Access to a File.. 617
72.9 Summary .. 617

73. An Android Storage Access Framework Example ... 619
73.1 About the Storage Access Framework Example .. 619
73.2 Creating the Storage Access Framework Example .. 619
73.3 Designing the User Interface ... 619
73.4 Adding the Activity Launchers .. 620
73.5 Creating a New Storage File ... 622
73.6 Saving to a Storage File ... 622
73.7 Opening and Reading a Storage File .. 624
73.8 Testing the Storage Access Application .. 625
73.9 Summary .. 626

74. Video Playback on Android using the VideoView and MediaController Classes 627
74.1 Introducing the Android VideoView Class ... 627
74.2 Introducing the Android MediaController Class ... 628
74.3 Creating the Video Playback Example ... 628
74.4 Designing the VideoPlayer Layout ... 628
74.5 Downloading the Video File .. 629
74.6 Configuring the VideoView ... 629
74.7 Adding the MediaController to the Video View ... 631

xix

Table of Contents

74.8 Setting up the onPreparedListener ... 631
74.9 Summary .. 632

75. Android Picture-in-Picture Mode .. 633
75.1 Picture-in-Picture Features .. 633
75.2 Enabling Picture-in-Picture Mode .. 634
75.3 Configuring Picture-in-Picture Parameters .. 634
75.4 Entering Picture-in-Picture Mode .. 635
75.5 Detecting Picture-in-Picture Mode Changes .. 635
75.6 Adding Picture-in-Picture Actions ... 636
75.7 Summary .. 636

76. An Android Picture-in-Picture Tutorial .. 639
76.1 Adding Picture-in-Picture Support to the Manifest ... 639
76.2 Adding a Picture-in-Picture Button ... 639
76.3 Entering Picture-in-Picture Mode .. 640
76.4 Detecting Picture-in-Picture Mode Changes .. 641
76.5 Adding a Broadcast Receiver ... 641
76.6 Adding the PiP Action .. 642
76.7 Testing the Picture-in-Picture Action .. 645
76.8 Summary .. 646

77. Android Audio Recording and Playback using MediaPlayer and MediaRecorder 647
77.1 Playing Audio .. 647
77.2 Recording Audio and Video using the MediaRecorder Class ... 648
77.3 About the Example Project .. 649
77.4 Creating the AudioApp Project ... 649
77.5 Designing the User Interface ... 649
77.6 Checking for Microphone Availability ... 650
77.7 Initializing the Activity ... 651
77.8 Implementing the recordAudio() Method ... 652
77.9 Implementing the stopAudio() Method ... 652
77.10 Implementing the playAudio() method ... 653
77.11 Configuring and Requesting Permissions ... 653
77.12 Testing the Application... 655
77.13 Summary .. 656

78. Working with the Google Maps Android API in Android Studio .. 657
78.1 The Elements of the Google Maps Android API .. 657
78.2 Creating the Google Maps Project .. 658
78.3 Creating a Google Cloud Billing Account ... 658
78.4 Creating a New Google Cloud Project ... 659
78.5 Enabling the Google Maps SDK .. 660
78.6 Generating a Google Maps API Key ... 661
78.7 Adding the API Key to the Android Studio Project ... 662
78.8 Testing the Application ... 662
78.9 Understanding Geocoding and Reverse Geocoding .. 662
78.10 Adding a Map to an Application ... 664
78.11 Requesting Current Location Permission .. 664
78.12 Displaying the User’s Current Location ... 666

xx

Table of Contents

78.13 Changing the Map Type ... 667
78.14 Displaying Map Controls to the User ... 668
78.15 Handling Map Gesture Interaction ... 669

78.15.1 Map Zooming Gestures ... 669
78.15.2 Map Scrolling/Panning Gestures ... 669
78.15.3 Map Tilt Gestures ... 669
78.15.4 Map Rotation Gestures .. 669

78.16 Creating Map Markers .. 670
78.17 Controlling the Map Camera .. 671
78.18 Summary .. 672

79. Printing with the Android Printing Framework ... 673
79.1 The Android Printing Architecture .. 673
79.2 The Print Service Plugins ... 673
79.3 Google Cloud Print ... 674
79.4 Printing to Google Drive .. 674
79.5 Save as PDF .. 675
79.6 Printing from Android Devices .. 675
79.7 Options for Building Print Support into Android Apps .. 676

79.7.1 Image Printing .. 676
79.7.2 Creating and Printing HTML Content ... 677
79.7.3 Printing a Web Page ... 678
79.7.4 Printing a Custom Document .. 679

79.8 Summary .. 679
80. An Android HTML and Web Content Printing Example ... 681

80.1 Creating the HTML Printing Example Application ... 681
80.2 Printing Dynamic HTML Content ... 681
80.3 Creating the Web Page Printing Example .. 684
80.4 Removing the Floating Action Button ... 684
80.5 Removing Navigation Features.. 684
80.6 Designing the User Interface Layout .. 686
80.7 Accessing the WebView from the Main Activity .. 686
80.8 Loading the Web Page into the WebView .. 687
80.9 Adding the Print Menu Option ... 688
80.10 Summary .. 690

81. A Guide to Android Custom Document Printing ... 691
81.1 An Overview of Android Custom Document Printing ... 691

81.1.1 Custom Print Adapters .. 691
81.2 Preparing the Custom Document Printing Project .. 692
81.3 Creating the Custom Print Adapter .. 693
81.4 Implementing the onLayout() Callback Method .. 694
81.5 Implementing the onWrite() Callback Method .. 697
81.6 Checking a Page is in Range .. 699
81.7 Drawing the Content on the Page Canvas ... 700
81.8 Starting the Print Job .. 702
81.9 Testing the Application ... 703
81.10 Summary .. 703

xxi

Table of Contents

82. An Introduction to Android App Links ... 705
82.1 An Overview of Android App Links .. 705
82.2 App Link Intent Filters ... 705
82.3 Handling App Link Intents .. 706
82.4 Associating the App with a Website.. 706
82.5 Summary .. 707

83. An Android Studio App Links Tutorial ... 709
83.1 About the Example App ... 709
83.2 The Database Schema ... 709
83.3 Loading and Running the Project ... 709
83.4 Adding the URL Mapping .. 711
83.5 Adding the Intent Filter .. 714
83.6 Adding Intent Handling Code ... 714
83.7 Testing the App .. 717
83.8 Creating the Digital Asset Links File .. 717
83.9 Testing the App Link ... 718
83.10 Summary .. 718

84. An Android Biometric Authentication Tutorial.. 719
84.1 An Overview of Biometric Authentication .. 719
84.2 Creating the Biometric Authentication Project .. 719
84.3 Configuring Device Fingerprint Authentication .. 720
84.4 Adding the Biometric Permission to the Manifest File .. 720
84.5 Designing the User Interface ... 721
84.6 Adding a Toast Convenience Method .. 721
84.7 Checking the Security Settings .. 722
84.8 Configuring the Authentication Callbacks .. 723
84.9 Adding the CancellationSignal .. 724
84.10 Starting the Biometric Prompt .. 724
84.11 Testing the Project ... 725
84.12 Summary .. 726

85. Creating, Testing, and Uploading an Android App Bundle .. 727
85.1 The Release Preparation Process ... 727
85.2 Android App Bundles ... 727
85.3 Register for a Google Play Developer Console Account .. 728
85.4 Configuring the App in the Console .. 729
85.5 Enabling Google Play App Signing ... 730
85.6 Creating a Keystore File ... 730
85.7 Creating the Android App Bundle .. 731
85.8 Generating Test APK Files ... 733
85.9 Uploading the App Bundle to the Google Play Developer Console 734
85.10 Exploring the App Bundle ... 735
85.11 Managing Testers .. 736
85.12 Rolling the App Out for Testing .. 736
85.13 Uploading New App Bundle Revisions .. 737
85.14 Analyzing the App Bundle File ... 738
85.15 Summary .. 739

xxii

Table of Contents

86. An Overview of Android In-App Billing ... 741
86.1 Preparing a Project for In-App Purchasing ... 741
86.2 Creating In-App Products and Subscriptions ... 741
86.3 Billing Client Initialization... 742
86.4 Connecting to the Google Play Billing Library ... 743
86.5 Querying Available Products ... 744
86.6 Starting the Purchase Process .. 744
86.7 Completing the Purchase ... 745
86.8 Querying Previous Purchases .. 746
86.9 Summary .. 747

87. An Android In-App Purchasing Tutorial .. 749
87.1 About the In-App Purchasing Example Project .. 749
87.2 Creating the InAppPurchase Project .. 749
87.3 Adding Libraries to the Project ... 749
87.4 Designing the User Interface ... 750
87.5 Adding the App to the Google Play Store .. 751
87.6 Creating an In-App Product .. 751
87.7 Enabling License Testers .. 752
87.8 Initializing the Billing Client ... 753
87.9 Querying the Product ... 754
87.10 Launching the Purchase Flow ... 756
87.11 Handling Purchase Updates .. 756
87.12 Consuming the Product ... 757
87.13 Restoring a Previous Purchase .. 758
87.14 Testing the App .. 759
87.15 Troubleshooting .. 760
87.16 Summary .. 760

88. Creating and Managing Overflow Menus on Android .. 761
88.1 The Overflow Menu .. 761
88.2 Creating an Overflow Menu .. 761
88.3 Displaying an Overflow Menu ... 762
88.4 Responding to Menu Item Selections ... 762
88.5 Creating Checkable Item Groups .. 763
88.6 Menus and the Android Studio Menu Editor .. 764
88.7 Creating the Example Project .. 765
88.8 Designing the Menu.. 765
88.9 Modifying the onOptionsItemSelected() Method .. 767
88.10 Testing the Application... 768
88.11 Summary .. 769

89. Working with Material Design 3 Theming .. 771
89.1 Material Design 2 vs. Material Design 3 .. 771
89.2 Understanding Material Design Theming ... 771
89.3 Material Design 3 Theming ... 771
89.4 Building a Custom Theme.. 773
89.5 Summary .. 774

90. A Material Design 3 Theming and Dynamic Color Tutorial ... 775

xxiii

Table of Contents

90.1 Creating the ThemeDemo Project .. 775
90.2 Designing the User Interface ... 775
90.3 Building a New Theme ... 777
90.4 Adding the Theme to the Project .. 778
90.5 Enabling Dynamic Color Support .. 779
90.6 Previewing Dynamic Colors .. 780
90.7 Summary .. 781

91. An Overview of Gradle in Android Studio .. 783
91.1 An Overview of Gradle .. 783
91.2 Gradle and Android Studio ... 783

91.2.1 Sensible Defaults .. 783
91.2.2 Dependencies.. 783
91.2.3 Build Variants ... 784
91.2.4 Manifest Entries ... 784
91.2.5 APK Signing .. 784
91.2.6 ProGuard Support .. 784

91.3 The Property and Settings Gradle Build File ... 784
91.4 The Top-level Gradle Build File ... 785
91.5 Module Level Gradle Build Files ... 786
91.6 Configuring Signing Settings in the Build File .. 788
91.7 Running Gradle Tasks from the Command Line ... 789
91.8 Summary .. 790

Index ... 791

1

Chapter 1

1. Introduction
This book, fully updated for Android Studio Iguana (2023.2.1) and the new UI, teaches you how to develop
Android-based applications using the Java programming language..

This book begins with the basics and outlines how to set up an Android development and testing environment,
followed by an overview of areas such as tool windows, the code editor, and the Layout Editor tool. An
introduction to the architecture of Android is followed by an in-depth look at the design of Android applications
and user interfaces using the Android Studio environment.

Chapters also cover the Android Architecture Components, including view models, lifecycle management,
Room database access, content providers, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the
ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers,
and direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App Links, Gradle build configuration, in-app
billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some Java programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples
The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.payloadbooks.com/product/iguanajava

The steps to load a project from the code samples into Android Studio are as follows:

1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback
We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at info@payloadbooks.com.

https://www.payloadbooks.com/product/iguanajava

2

Introduction

1.3 Errata
While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.payloadbooks.com/iguanajava

If you find an error not listed in the errata, please let us know by emailing our technical support team at info@
payloadbooks.com. They are there to help you and will work to resolve any problems you may encounter.

1.4 Authors Wanted
Payload Publishing is looking for authors.

Are you an aspiring author with a book idea in mind? When you publish with us, you’ll receive our full support
every step of the way. We offer guidance and technical and editorial assistance to help you bring your book
to life. Once your book is completed, we will publish and market it worldwide through our distribution and
channel partnerships while paying you higher royalties than traditional publishers.

Find out more at:

https://www.payloadbooks.com/authors-wanted

or email us at:

authors@payloadbooks.com

https://www.payloadbooks.com/iguanajava
https://www.payloadbooks.com/authors-wanted

3

Chapter 2

2. Setting up an Android Studio
Development Environment
Before any work can begin on developing an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE), including the Android Software Development Kit (SDK) and the
OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements
Android application development may be performed on any of the following system types:

• Windows 8/10/11 64-bit

• macOS 10.14 or later running on Intel or Apple silicon

• Chrome OS device with Intel i5 or higher

• Linux systems with version 2.31 or later of the GNU C Library (glibc)

• Minimum of 8GB of RAM

• Approximately 8GB of available disk space

• 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package
Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Iguana 2023.2.1
using the Android API 34 SDK (UpsideDownCake), which, at the time of writing, are the latest stable releases.

Android Studio is, however, subject to frequent updates, so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page, which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio, there may be differences
between this book and the software. A web search for “Android Studio Iguana” should provide the option to
download the older version if these differences become a problem. Alternatively, visit the following web page to
find Android Studio Iguana 2023.2.1 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

4

Setting up an Android Studio Development Environment

2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is performed.

2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation to
meet your requirements in terms of the file system location into which Android Studio should be installed and
whether or not it should be made available to other system users. When prompted to select the components to
install, ensure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11, this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS
Android Studio for macOS is downloaded as a disk image (.dmg) file. Once the android-studio-<version>-mac.
dmg file has been downloaded, locate it in a Finder window and double-click on it to open it, as shown in Figure
2-1:

Figure 2-1
To install the package, drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

5

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed, and execute the following command:
tar xvfz /<path to package>/android-studio-<version>-linux.tar.gz

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Therefore,
assuming that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory,
and execute the following command:
./studio.sh

2.4 The Android Studio setup wizard
If you have previously installed an earlier version of Android Studio, the first time this new version is launched,
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have
settings from a previous version and would like to import them into the latest installation, select the appropriate
option and location. Alternatively, indicate that you do not need to import any previous settings and click the
OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2
If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select
the Standard installation option before clicking Next.

6

Setting up an Android Studio Development Environment

Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click the Finish
button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen using your chosen UI theme:

Figure 2-4

2.5 Installing additional Android SDK packages
The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

7

Setting up an Android Studio Development Environment

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Settings dialog
will appear as shown in Figure 2-5:

Figure 2-5
Google pairs each release of Android Studio with a maximum supported Application Programming Interface
(API) level of the Android SDK. In the case of Android Studio Iguana, this is Android UpsideDownCake (API
Level 34). This information can be confirmed using the following link:

https://developer.android.com/studio/releases#api-level-support

Immediately after installing Android Studio for the first time, it is likely that only the latest supported version
of the Android SDK has been installed. To install older versions of the Android SDK, select the checkboxes
corresponding to the versions and click the Apply button. The rest of this book assumes that the Android
UpsideDownCake (API Level 34) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo).
This ensures that the apps run on a wide range of Android devices. Within the list of SDK versions, enable
the checkbox next to Android 8.0 (Oreo) and click the Apply button. Click the OK button to install the SDK
in the resulting confirmation dialog. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

https://developer.android.com/studio/releases#api-level-support

8

Setting up an Android Studio Development Environment

Figure 2-6
The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7
Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

• Android SDK Build-tools

• Android Emulator

• Android SDK Platform-tools

• Google Play Services

• Intel x86 Emulator Accelerator (HAXM installer)*

• Google USB Driver (Windows only)

• Layout Inspector image server for API 31-34
*Note that the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based
Macs.

If any of the above packages are listed as Not Installed or requiring an update, select the checkboxes next to those
packages and click the Apply button to initiate the installation process. If the HAXM emulator settings dialog
appears, select the recommended memory allocation:

9

Setting up an Android Studio Development Environment

Figure 2-8
Once the installation is complete, review the package list and ensure that the selected packages are listed as
Installed in the Status column. If any are listed as Not installed, make sure they are selected and click the Apply
button again.

2.6 Installing the Android SDK Command-line Tools
Android Studio includes tools that allow some tasks to be performed from your operating system command
line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab, and locate the
Android SDK Command-line Tools (latest) package as shown in Figure 2-9:

Figure 2-9

If the command-line tools package is not already installed, enable it and click Apply, followed by OK to complete
the installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add
them to the system’s PATH environment variable.

10

Setting up an Android Studio Development Environment

Regardless of your operating system, you will need to configure the PATH environment variable to include the
following paths (where <path_to_android_sdk_installation> represents the file system location into which you
installed the Android SDK):
<path_to_android_sdk_installation>/sdk/cmdline-tools/latest/bin

<path_to_android_sdk_installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:

Figure 2-10
Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1
1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from

the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of
icons, select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it, and click
the Edit… button. Using the New button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the following
entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering cmd into the Run
dialog. Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.

Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:

11

Setting up an Android Studio Development Environment

'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.3 Windows 11
Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux
This configuration can be achieved on Linux by adding a command to the .bashrc file in your home directory
(specifics may differ depending on the particular Linux distribution in use). Assuming that the Android SDK
bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file would read as
follows:
export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS
Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory, it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management
Android Studio is a large and complex software application with many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded, it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

12

Setting up an Android Studio Development Environment

Figure 2-11
To view and modify the current memory configuration, select the File -> Settings... main menu option (Android
Studio -> Settings... on macOS) and, in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure
2-12 below:

Figure 2-12
When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the
currently loaded project. On the other hand, when a project is built and run from within Android Studio,
several background processes (referred to as daemons) perform the task of compiling and running the app.
When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an
open project, select the Tools -> SDK Manager... menu option from the main menu.

2.8 Updating Android Studio and the SDK
From time to time, new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

13

Setting up an Android Studio Development Environment

2.9 Summary
Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). This chapter covers the steps necessary to install these packages on Windows,
macOS, and Linux.

15

Chapter 3

3. Creating an Example Android App
in Android Studio
The preceding chapters of this book have explained how to configure an environment suitable for developing
Android applications using the Android Studio IDE. Before moving on to slightly more advanced topics, now
is a good time to validate that all required development packages are installed and functioning correctly. The
best way to achieve this goal is to create an Android application and compile and run it. This chapter will cover
creating an Android application project using Android Studio. Once the project has been created, a later chapter
will explore using the Android emulator environment to perform a test run of the application.

3.1 About the Project
The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also use one of the most basic Android Studio project templates. This simplicity allows us to introduce some key
aspects of Android app development without overwhelming the beginner by introducing too many concepts,
such as the recommended app architecture and Android architecture components, at once. When following
the tutorial in this chapter, rest assured that the techniques and code used in this initial example project will be
covered in much greater detail later.

3.2 Creating a New Android Project
The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

16

Creating an Example Android App in Android Studio

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity
The next step is to define the type of initial activity to be created for the application. Options are available to
create projects for Phone and Tablet, Wear OS, Television, or Automotive. A range of different activity types is
available when developing Android applications, many of which will be covered extensively in later chapters.
For this example, however, select the Phone and Tablet option from the Templates panel, followed by the option
to create an Empty Views Activity. The Empty Views Activity option creates a template user interface consisting
of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings
In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name uniquely identifies the application within the Android application ecosystem. Although this
can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your
domain name followed by the application’s name. For example, if your domain is www.mycompany.com, and the
application has been named AndroidSample, then the package name might be specified as follows:
com.mycompany.androidsample

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This minimum SDK will be used in most projects
created in this book unless a necessary feature is only available in a more recent version. The objective here is to

17

Creating an Example Android App in Android Studio

build an app using the latest Android SDK while retaining compatibility with devices running older versions of
Android (in this case, as far back as Android 8.0). The text beneath the Minimum SDK setting will outline the
percentage of Android devices currently in use on which the app will run. Click on the Help me choose button
(highlighted in Figure 3-3) to see a full breakdown of the various Android versions still in use:

Figure 3-3
Finally, change the Language menu to Java and select Kotlin DSL (build.gradle.kts) as the build configuration
language before clicking Finish to create the project.

3.5 Enabling the New Android Studio UI
Android Studio is transitioning to a new, modern user interface that is not enabled by default in the Iguana
version. If your installation of Android Studio resembles b below, then you will need to enable the new UI before
proceeding:

Figure 3-4
Enable the new UI by selecting the File -> Settings... menu option (Android Studio -> Settings... on macOS) and
selecting the New UI option under Appearance and Behavior in the left-hand panel. From the main panel, turn
on the Enable new UI checkbox before clicking Apply, followed by OK to commit the change:

18

Creating an Example Android App in Android Studio

Figure 3-5
When prompted, restart Android Studio to activate the new user interface.

3.6 Modifying the Example Application
Once Android Studio has restarted, the main window will reappear using the new UI and containing our
AndroidSample project as illustrated in Figure 3-5 below:

Figure 3-6
The newly created project and references to associated files are listed in the Project tool window on the left side
of the main project window. The Project tool window has several modes in which information can be displayed.
By default, this panel should be in Android mode. This setting is controlled by the menu at the top of the panel
as highlighted in Figure 3-6. If the panel is not currently in Android mode, use the menu to switch mode:

19

Creating an Example Android App in Android Studio

Figure 3-7

3.7 Modifying the User Interface
The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the Project tool window file hierarchy. Once located in the Project tool window,
double-click on the file to load it into the user interface Layout Editor tool, which will appear in the center panel
of the Android Studio main window:

Figure 3-8
In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A range of other

20

Creating an Example Android App in Android Studio

device options are available by clicking on this menu.

Use the System UI Mode button () to turn Night mode on and off for the device screen layout. To change
the orientation of the device representation between landscape and portrait, use the drop-down menu showing
the icon.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user
interface components that may be used to construct a user interface, such as buttons, labels, and text fields.
However, it should be noted that not all user interface components are visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel, which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-8:

Figure 3-9
As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
called main and a TextView child object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to ensure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by
a U-shaped icon. When disabled, the icon appears with a diagonal line through it (Figure 3-9). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-10
The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns, with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-10, for example, the Button view is currently selected within the Buttons category:

21

Creating an Example Android App in Android Studio

Figure 3-11
Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-12
The next step is to change the text currently displayed by the Button component. The panel located to the right
of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected
component in the layout. Within this panel, locate the text property in the Common Attributes section and
change the current value from “Button” to “Convert”, as shown in Figure 3-12:

22

Creating an Example Android App in Android Studio

Figure 3-13
The second text property with a wrench next to it allows a text property to be set, which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing how a visual component and the layout
will behave with different settings without running the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer Constraints
button (Figure 3-13) to add any missing constraints to the layout:

Figure 3-14
It is important to explain the warning button in the top right-hand corner of the Layout Editor tool, as indicated
in Figure 3-14. This warning indicates potential problems with the layout. For details on any problems, click on
the button:

Figure 3-15
When clicked, the Problems tool window (Figure 3-15) will appear, describing the nature of the problems:

Figure 3-16
This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected

23

Creating an Example Android App in Android Studio

within the layout file. In our example, only the following problem is listed:
button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:
Hardcoded string "Convert", should use @string resource

The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This I18N message informs us that a potential issue exists concerning the future internationalization of the
project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an “N”
and has 18 letters in between). The warning reminds us that attributes and values such as text strings should be
stored as resources wherever possible when developing Android applications. Doing so enables changes to the
appearance of the application to be made by modifying resource files instead of changing the application source
code. This can be especially valuable when translating a user interface to a different spoken language. If all of the
text in a user interface is contained in a single resource file, for example, that file can be given to a translator, who
will then perform the translation work and return the translated file for inclusion in the application. This enables
multiple languages to be targeted without the necessity for any source code changes to be made. In this instance,
we are going to create a new resource named convert_string and assign to it the string “Convert”.

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-16:

Figure 3-17
After selecting this option, the Extract Resource panel (Figure 3-17) will appear. Within this panel, change the
resource name field to convert_string and leave the resource value set to Convert before clicking on the OK
button:

Figure 3-18

24

Creating an Example Android App in Android Studio

The next widget to be added is an EditText widget, into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars”. Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout, as shown in Figure 3-18:

Figure 3-19
Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

Figure 3-20
Repeat the steps to set the id of the TextView widget to textView, if necessary.

Add any missing layout constraints by clicking on the Infer Constraints button. At this point, the layout should
resemble that shown in Figure 3-20:

25

Creating an Example Android App in Android Studio

Figure 3-21

3.8 Reviewing the Layout and Resource Files
Before moving on to the next step, we will look at some internal aspects of user interface design and resource
handling. In the previous section, we changed the user interface by modifying the activity_main.xml file using
the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a user-friendly way to edit the
underlying XML content of the file. In practice, there is no reason why you cannot modify the XML directly to
make user interface changes, and, in some instances, this may actually be quicker than using the Layout Editor
tool. In the top right-hand corner of the Layout Editor panel are the View Modes buttons marked A through C
in Figure 3-21 below:

Figure 3-22
By default, the editor will be in Design mode (button C), whereby only the visual representation of the layout is
displayed. In Code mode (A), the editor will display the XML for the layout, while in Split mode (B), both the
layout and XML are displayed, as shown in Figure 3-22:

26

Creating an Example Android App in Android Studio

Figure 3-23
The button to the left of the View Modes button (marked B in Figure 3-21 above) is used to toggle between Code
and Split modes quickly.

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button, and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although complexity and content vary, all user
interface layouts are structured in this hierarchical, XML-based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel, with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 android:background="#ff2438" >
.

.

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the layout color changes in real-time to match the new setting in the XML file. Note also that a small
red square appears in the XML editor’s left margin (also called the gutter) next to the line containing the color
setting. This is a visual cue to the fact that the color red has been set on a property. Clicking on the red square
will display a color chooser allowing a different color to be selected:

27

Creating an Example Android App in Android Studio

Figure 3-24
Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently, the XML should read as follows:
<resources>

 <string name="app_name">AndroidSample</string>

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

</resources>

To demonstrate resources in action, change the string value currently assigned to the convert_string resource to
“Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file in the editor
panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor
tool in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights, and
then press Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml
file and take you to the line in that file where this resource is declared. Use this opportunity to revert the string
resource to the original “Convert” text and to add the following additional entry for a string resource that will
be referenced later in the app code:
<resources>

 <string name="app_name">AndroidSample</string>

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

 <string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor by clicking on the Open editor
link in the top right-hand corner of the editor window. This will display the Translation Editor in the main panel
of the Android Studio window:

28

Creating an Example Android App in Android Studio

Figure 3-25
This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.9 Adding Interaction
The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button, the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can
be implemented in several ways and is covered in a later chapter entitled “An Overview and Example of Android
Event Handling”. Return the layout editor to Design mode, select the Button widget in the layout editor, refer to
the Attributes tool window, and specify a method named convertCurrency as shown below:

Figure 3-26
Next, double-click on the MainActivity.java file in the Project tool window (app -> java -> <package name> ->
MainActivity) to load it into the code editor and add the code for the convertCurrency method to the class file so
that it reads as follows, noting that it is also necessary to import some additional Android packages:
package com.ebookfrenzy.androidsample;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;
import android.widget.EditText;
import android.widget.TextView;
.

.

29

Creating an Example Android App in Android Studio

import java.util.Locale;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void convertCurrency(View view) {

 EditText dollarText = findViewById(R.id.dollarText);
 TextView textView = findViewById(R.id.textView);

 if (!dollarText.getText().toString().isEmpty()) {

 float dollarValue = Float.parseFloat(dollarText.getText().toString());
 float euroValue = dollarValue * 0.85F;
 textView.setText(String.format(Locale.ENGLISH,"%.2f", euroValue));
 } else {
 textView.setText(R.string.no_value_string);
 }
 }
}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewById, passing through the id assigned within the layout file. A check is then made to ensure
that the user has entered a dollar value, and if so, that value is extracted, converted from a String to a floating
point value, and converted to euros. Finally, the result is displayed on the TextView widget.

If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters. In
particular, the topic of accessing widgets from within code using findByViewId and an introduction to an
alternative technique referred to as view binding will be covered in the chapter entitled “An Overview of Android
View Binding”.

3.10 Summary
While not excessively complex, several steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to ensure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly string values, and briefly touched on layouts. Next, we looked at the
underlying XML used to store Android application user interface designs.

Finally, an onClick event was added to a Button connected to a method implemented to extract the user input
from the EditText component, convert it from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

43

Chapter 5

5. Using and Configuring the
Android Studio AVD Emulator
Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features available to
customize the environment in both standalone and tool window modes.

5.1 The Emulator Environment
When launched in standalone mode, the emulator displays an initial splash screen during the loading process.
Once loaded, the main emulator window appears, containing a representation of the chosen device type (in the
case of Figure 5-1, this is a Pixel 4 device):

Figure 5-1
The toolbar positioned along the right-hand edge of the window provides quick access to the emulator controls
and configuration options.

5.2 Emulator Toolbar Options
The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

44

Using and Configuring the Android Studio AVD Emulator

Figure 5-2
Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

• Exit / Minimize – The uppermost ‘x’ button in the toolbar exits the emulator session when selected, while the
‘-’ option minimizes the entire window.

• Power – The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power off ” request sequence.

• Volume Up / Down – Two buttons that control the audio volume of playback within the simulator environment.

• Rotate Left/Right – Rotates the emulated device between portrait and landscape orientations.

• Take Screenshot – Takes a screenshot of the content displayed on the device screen. The captured image is
stored at the location specified in the Settings screen of the extended controls panel, as outlined later in this
chapter.

• Zoom Mode – This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

• Back – Performs the standard Android “Back” navigation to return to a previous screen.

• Home – Displays the device’s home screen.

• Overview – Simulates selection of the standard Android “Overview” navigation, which displays the currently
running apps on the device.

45

Using and Configuring the Android Studio AVD Emulator

• Fold Device – Simulates the folding and unfolding of a foldable device. This option is only available if the
emulator is running a foldable device system image.

• Extended Controls – Displays the extended controls panel, allowing for the configuration of options
such as simulated location and telephony activity, battery strength, cellular network type, and fingerprint
identification.

5.3 Working in Zoom Mode
The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active,
the toolbar button is depressed, and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button off reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode, the screen’s visible area may be panned using the horizontal and vertical scrollbars located
within the emulator window.

5.4 Resizing the Emulator Window
The emulator window’s size (and the device’s corresponding representation) can be changed at any time by
enabling Zoom mode and clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options
The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 5-3

46

Using and Configuring the Android Studio AVD Emulator

5.5.1 Location
The location controls allow simulated location information to be sent to the emulator as decimal or sexigesimal
coordinates. Location information can take the form of a single location or a sequence of points representing
the device’s movement, the latter being provided via a file in either GPS Exchange (GPX) or Keyhole Markup
Language (KML) format. Alternatively, the integrated Google Maps panel may be used to select single points or
travel routes visually.

5.5.2 Displays
In addition to the main display shown within the emulator screen, the Displays option allows additional displays
to be added running within the same Android instance. This can be useful for testing apps for dual-screen
devices such as the Microsoft Surface Duo. These additional screens can be configured to be any required size
and appear within the same emulator window as the main screen.

5.5.3 Cellular
The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA, etc.) in addition to a range of voice and data
scenarios, such as roaming and denied access.

5.5.4 Battery
Various battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health, and whether the AC charger is currently connected.

5.5.5 Camera
The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.6 Phone
The phone extended controls provide two straightforward but helpful simulations within the emulator. The first
option simulates an incoming call from a designated phone number. This can be particularly useful when testing
how an app handles high-level interrupts.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.7 Directional Pad
A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.8 Microphone
The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.9 Fingerprint
Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on configuring fingerprint testing within the emulator will be covered later in this
chapter.

47

Using and Configuring the Android Studio AVD Emulator

5.5.10 Virtual Sensors
The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device, such as rotation, movement, and tilting through yaw, pitch, and roll settings.

5.5.11 Snapshots
Snapshots contain the state of the currently running AVD session to be saved and rapidly restored, making it
easy to return the emulator to an exact state. Snapshots are covered later in this chapter.

5.5.12 Record and Playback
Allows the emulator screen and audio to be recorded and saved in WebM or animated GIF format.

5.5.13 Google Play
If the emulator is running a version of Android with Google Play Services installed, this option displays the
current Google Play version. It also provides the option to update the emulator to the latest version.

5.5.14 Settings
The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and configure the emulator window to appear on top of other windows on
the desktop.

5.5.15 Help
The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

5.6 Working with Snapshots
When an emulator starts for the first time, it performs a cold boot, much like a physical Android device when
powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory, and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can store additional snapshots at any point during the
execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be restored
to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken using the
Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list (B) and
click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the snapshot
name and description and to delete (E) the currently selected snapshot:

48

Using and Configuring the Android Studio AVD Emulator

Figure 5-4
You can also choose whether to start an emulator using either a cold boot, the most recent quick-boot snapshot,
or a previous snapshot by making a selection from the run target menu in the main toolbar, as illustrated in
Figure 5-5:

Figure 5-5

5.7 Configuring Fingerprint Emulation
The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication
within Android apps. Configuring simulated fingerprints begins by launching the emulator, opening the Settings
app, and selecting the Security option.

Within the Security settings screen, select the fingerprint option. On the resulting information screen, click on
the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled, a backup
screen unlocking method (such as a PIN) must be configured. Enter and confirm a suitable PIN and complete
the PIN entry process by accepting the default notifications option.

49

Using and Configuring the Android Studio AVD Emulator

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point,
display the extended controls dialog, select the Fingerprint category in the left-hand panel, and make sure that
Finger 1 is selected in the main settings panel:

Figure 5-6
Click on the Touch Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will report
the successful addition of the fingerprint:

Figure 5-7
To add additional fingerprints, click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch Sensor button again.

5.8 The Emulator in Tool Window Mode
As outlined in the previous chapter (“Creating an Android Virtual Device (AVD) in Android Studio”), Android
Studio can be configured to launch the emulator in an embedded tool window so that it does not appear in a

50

Using and Configuring the Android Studio AVD Emulator

separate window. When running in this mode, the same controls available in standalone mode are provided in
the toolbar, as shown in Figure 5-8:

Figure 5-8
From left to right, these buttons perform the following tasks (details of which match those for standalone mode):

• Power

• Volume Up

• Volume Down

• Rotate Left

• Rotate Right

• Back

• Home

• Overview

• Screenshot

• Snapshots

• Extended Controls

5.9 Creating a Resizable Emulator
In addition to emulators configured to match specific Android device models, Android Studio also provides a
resizable AVD that allows you to switch between phone, tablet, and foldable device sizes. To create a resizable
emulator, open the Device Manager and click the ‘+’ toolbar button. Next, select the Resizable device definition
illustrated in Figure 5-9, and follow the usual steps to create a new AVD:

Figure 5-9
When you run an app on the new emulator within a tool window, the Display mode option will appear in the
toolbar, allowing you to switch between emulator configurations as shown in Figure 5-10:

51

Using and Configuring the Android Studio AVD Emulator

Figure 5-10
If the emulator is running in standalone mode, the Display mode option can be found in the side toolbar, as
shown below:

Figure 5-11
Once a foldable display mode has been selected, the Change posture menu may be used to test the app in open,
closed, and half-open configurations:

52

Using and Configuring the Android Studio AVD Emulator

Figure 5-12

5.10 Summary
Android Studio contains an Android Virtual Device emulator environment designed to make it easier to test
applications without running them on a physical Android device. This chapter has provided a brief tour of
the emulator and highlighted key features available to configure and customize the environment to simulate
different testing conditions.

63

Chapter 7

7. Testing Android Studio Apps on a
Physical Android Device
While much can be achieved by testing applications using an Android Virtual Device (AVD), there is no substitute
for performing real-world application testing on a physical Android device, and some Android features are only
available on physical Android devices.

Communication with both AVD instances and connected Android devices is handled by the Android Debug
Bridge (ADB). This chapter explains how to configure the adb environment to enable application testing on an
Android device with macOS, Windows, and Linux-based systems.

7.1 An Overview of the Android Debug Bridge (ADB)
The primary purpose of the ADB is to facilitate interaction between a development system, in this case, Android
Studio, and both AVD emulators and Android devices to run and debug applications. ADB allows you to connect
to devices via WiFi or USB cable.

The ADB consists of a client, a server process running in the background on the development system, and a
daemon background process running in either AVDs or real Android devices such as phones and tablets.

The ADB client can take a variety of forms. For example, a client is provided as a command-line tool named adb
in the Android SDK platform-tools sub-directory. Similarly, Android Studio also has a built-in client.

A variety of tasks may be performed using the adb command-line tool. For example, active virtual or physical
devices may be listed using the devices command-line argument. The following command output indicates the
presence of an AVD on the system but no physical devices:
$ adb devices

List of devices attached

emulator-5554 device

7.2 Enabling USB Debugging ADB on Android Devices
Before ADB can connect to an Android device, that device must be configured to allow the connection. On
phone and tablet devices running Android 6.0 or later, the steps to achieve this are as follows:

1. Open the Settings app on the device and select the About tablet or About phone option (on some versions of
Android, this can be found on the System page of the Settings app).

2. On the About screen, scroll down to the Build number field (Figure 7-1) and tap it seven times until a
message indicates that developer mode has been enabled. If the Build number is not listed on the About
screen, it may be available via the Software information option. Alternatively, unfold the Advanced section
of the list if available.

64

Testing Android Studio Apps on a Physical Android Device

Figure 7-1
3. Return to the main Settings screen and note the appearance of a new option titled Developer options (on

newer versions of Android, this option is listed on the System settings screen). Select this option, and on the
resulting screen, locate the USB debugging option as illustrated in Figure 7-2:

Figure 7-2
4. Enable the USB debugging option and tap the Allow button when confirmation is requested.

If you use a Samsung Galaxy device, you may need to turn off the Auto Blocker feature in the Settings app before
enabling the debugging option.

The device is now configured to accept debugging connections from adb on the development system over a USB
connection. All that remains is to configure the development system to detect the device when it is attached.
While this is a relatively straightforward process, the steps differ depending on whether the development system
runs Windows, macOS, or Linux. Note that the following steps assume that the Android SDK platform-tools
directory is included in the operating system PATH environment variable as described in the chapter entitled
“Setting up an Android Studio Development Environment”.

7.2.1 macOS ADB Configuration
To configure the ADB environment on a macOS system, connect the device to the computer system using a USB
cable, open a terminal window, and execute the following command to restart the adb server:
$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following command to verify that the device has been
detected:
$ adb devices

List of devices attached

74CE000600000001 offline

If the device is listed as offline, go to the Android device and check for the dialog shown in Figure 7-3 seeking
permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow from this
computer before clicking OK.

65

Testing Android Studio Apps on a Physical Android Device

Figure 7-3
Repeating the adb devices command should now list the device as being available:
List of devices attached

015d41d4454bf80c device

If the device is not listed, try logging out and back into the macOS desktop and rebooting the system if the
problem persists.

7.2.2 Windows ADB Configuration
The first step in configuring a Windows-based development system to connect to an Android device using ADB
is to install the appropriate USB drivers on the system. The USB drivers to install will depend on the model of
the Android Device. If you have a Google device such as a Pixel phone, installing and configuring the Google
USB Driver package on your Windows system will be necessary. Detailed steps to achieve this are outlined on
the following web page:

https://developer.android.com/sdk/win-usb.html

For Android devices not supported by the Google USB driver, it will be necessary to download the drivers
provided by the device manufacturer. A listing of drivers, together with download and installation information,
can be obtained online at:

https://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as the correct device type, open a Command
Prompt window and execute the following command:
adb devices

This command should output information about the connected device similar to the following:
List of devices attached

HT4CTJT01906 offline

If the device is listed as offline or unauthorized, go to the device display and check for the dialog shown in Figure
7-3 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer before clicking OK. Repeating the adb devices command should now list the device as being
ready:
List of devices attached

HT4CTJT01906 device

If the device is not listed, execute the following commands to restart the ADB server:
adb kill-server

adb start-server

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html

66

Testing Android Studio Apps on a Physical Android Device

If the device is still not listed, try executing the following command:
android update adb

Note that it may also be necessary to reboot the system.

7.2.3 Linux adb Configuration
For this chapter, we will again use Ubuntu Linux as a reference example in configuring adb on Linux to connect
to a physical Android device for application testing.

Physical device testing on Ubuntu Linux requires the installation of a package named android-tools-adb which,
in turn, requires the Android Studio user to be a member of the plugdev group. This is the default for user
accounts on most Ubuntu versions and can be verified by running the id command. If the plugdev group is not
listed, run the following command to add your account to the group:
sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-adb package can be installed by
executing the following command:
sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once the system has restarted, open a
Terminal window, start the adb server, and check the list of attached devices:
$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454bf80c offline

If the device is listed as offline or unauthorized, go to the Android device and check for the dialog shown in
Figure 7-3 seeking permission to Allow USB debugging.

7.3 Resolving USB Connection Issues
If you are unable to successfully connect to the device using the above steps, display the run target menu (Figure
7-4) and select the Troubleshoot Device Connections option:

Figure 7-4

67

Testing Android Studio Apps on a Physical Android Device

The connection assistant will scan for devices and report problems and possible solutions.

7.4 Enabling Wireless Debugging on Android Devices
Follow steps 1 through 3 from section 7.2 above, this time enabling the Wireless Debugging option as shown in
Figure 7-5:

Figure 7-5
Next, tap the above Wireless debugging entry to display the screen shown in Figure 7-6:

Figure 7-6
If your device has a camera, select Pair device with QR code, otherwise select the Pair device with pairing code
option. Depending on your selection, the Settings app will either start a camera session or display a pairing code,
as shown in Figure 7-7:

Figure 7-7

68

Testing Android Studio Apps on a Physical Android Device

With an option selected, return to Android Studio and select the Pair Devices Using WiFi option from the run
target menu as illustrated in Figure 7-8:

Figure 7-8
In the pairing dialog, select either Pair using QR code or Pair using pairing code depending on your previous
selection in the Settings app on the device:

Figure 7-9
Either scan the QR code using the Android device or enter the pairing code displayed on the device screen into
the Android Studio dialog (Figure 7-10) to complete the pairing process:

Figure 7-10

69

Testing Android Studio Apps on a Physical Android Device

If the pairing process fails, try rebooting both the development system and the Android device and try again.

7.5 Testing the adb Connection
Assuming that the adb configuration has been successful on your chosen development platform, the next step is
to try running the test application created in the chapter entitled “Creating an Example Android App in Android
Studio” on the device. Launch Android Studio, open the AndroidSample project, and verify that the device
appears in the device selection menu as highlighted in Figure 7-11:

Figure 7-11
Select the device from the list and click the run button to install and run the app.

7.6 Device Mirroring
Device mirroring allows you to run an app on a physical device while viewing the display within Android
Studio’s Running Devices tool window. In other words, although your app is running on a physical device, it
appears within Android Studio in the same way as an AVD instance.

With a device connected to Android Studio, display the Running Devices tool window and click the Device
Mirror settings link to display the Settings dialog. Within the Settings dialog, enable the mirroring of physical
Android devices and click OK. The next time the app is run, Android Studio will mirror the display of the
physical device in the Running Devices tool window.

7.7 Summary
While the Android Virtual Device emulator provides an excellent testing environment, it is essential to remember
that there is no real substitute for ensuring an application functions correctly on a physical Android device.

By default, however, the Android Studio environment is not configured to detect Android devices as a target
testing device. It is necessary, therefore, to perform some steps to load applications directly onto an Android
device from within the Android Studio development environment via a USB cable or over a WiFi network. The
exact steps to achieve this goal differ depending on the development platform. In this chapter, we have covered
those steps for Linux, macOS, and Windows-based platforms.

87

Chapter 10

10. The Anatomy of an Android App
Regardless of your prior programming experiences, be it Windows, macOS, Linux, or even iOS based, the
chances are good that Android development is quite unlike anything you have encountered before.

Therefore, this chapter’s objective is to provide an understanding of the high-level concepts behind the
architecture of Android applications. In doing so, we will explore in detail the various components that can
be used to construct an application and the mechanisms that allow these to work together to create a cohesive
application.

10.1 Android Activities
Those familiar with object-oriented programming languages such as Java, Kotlin, C++, or C# will be familiar
with the concept of encapsulating elements of application functionality into classes that are then instantiated as
objects and manipulated to create an application. This is still true since Android applications are written in Java
and Kotlin. Android, however, also takes the concept of reusable components to a higher level.

Android applications are created by combining one or more components known as Activities. An activity is a
single, standalone module of application functionality that usually correlates directly to a single user interface
screen and its corresponding functionality. An appointment application might, for example, have an activity
screen that displays appointments set up for the current day. An appointment application might have an activity
screen that displays appointments set up for the current day. The application might also utilize a second activity
consisting of a screen where the user may enter new appointments.

Activities are intended as fully reusable and interchangeable building blocks that can be shared amongst different
applications. An existing email application may contain an activity for composing and sending an email message.
A developer might be writing an application that is also required to send an email message. Rather than develop
an email composition activity specifically for the new application, the developer can use the activity from the
existing email application.

Activities are created as subclasses of the Android Activity class and must be implemented so as to be entirely
independent of other activities in the application. In other words, a shared activity cannot rely on being called at
a known point in a program flow (since other applications may use the activity in unanticipated ways), and one
activity cannot directly call methods or access instance data of another activity. This, instead, is achieved using
Intents and Content Providers.

By default, an activity cannot return results to the activity from which it was invoked. If this functionality is
required, the activity must be started explicitly as a sub-activity of the originating activity.

10.2 Android Fragments
As described above, an activity typically represents a single user interface screen within an app. One option is
constructing the activity using a single user interface layout and one corresponding activity class file. A better
alternative, however, is to break the activity into different sections. Each section is a fragment consisting of part
of the user interface layout and a matching class file (declared as a subclass of the Android Fragment class). In
this scenario, an activity becomes a container into which one or more fragments are embedded.

Fragments provide an efficient alternative to having each user interface screen represented by a separate activity.
Instead, an app can have a single activity that switches between fragments, each representing a different app

88

The Anatomy of an Android App

screen.

10.3 Android Intents
Intents are the mechanism by which one activity can launch another and implement the flow through the
activities that make up an application. Intents consist of a description of the operation to be performed and,
optionally, the data on which it is to be performed.

Intents can be explicit, in that they request the launch of a specific activity by referencing the activity by class
name, or implicit by stating either the type of action to be performed or providing data of a specific type on
which the action is to be performed. In the case of implicit intents, the Android runtime will select the activity
to launch that most closely matches the criteria specified by the Intent using a process referred to as Intent
Resolution.

10.4 Broadcast Intents
Another type of Intent, the Broadcast Intent, is a system-wide intent sent out to all applications that have
registered an “interested” Broadcast Receiver. The Android system, for example, will typically send out Broadcast
Intents to indicate changes in device status, such as the completion of system start-up, connection of an external
power source to the device, or the screen being turned on or off.

A Broadcast Intent can be normal (asynchronous) in that it is sent to all interested Broadcast Receivers at more
or less the same time or ordered in that it is sent to one receiver at a time where it can be processed and then
either aborted or allowed to be passed to the next Broadcast Receiver.

10.5 Broadcast Receivers
Broadcast Receivers are the mechanism by which applications can respond to Broadcast Intents. A Broadcast
Receiver must be registered by an application and configured with an Intent Filter to indicate the types of
broadcast it is interested in. When a matching intent is broadcast, the receiver will be invoked by the Android
runtime regardless of whether the application that registered the receiver is currently running. The receiver
then has 5 seconds to complete required tasks (such as launching a Service, making data updates, or issuing a
notification to the user) before returning. Broadcast Receivers operate in the background and do not have a user
interface.

10.6 Android Services
Android Services are processes that run in the background and do not have a user interface. They can be started
and managed from activities, Broadcast Receivers, or other Services. Android Services are ideal for situations
where an application needs to continue performing tasks but does not necessarily need a user interface to
be visible to the user. Although Services lack a user interface, they can still notify the user of events using
notifications and toasts (small notification messages that appear on the screen without interrupting the currently
visible activity) and are also able to issue Intents.

The Android runtime gives Services a higher priority than many other processes and will only be terminated as a
last resort by the system to free up resources. If the runtime needs to kill a Service, however, it will be automatically
restarted as soon as adequate resources become available. A Service can reduce the risk of termination by
declaring itself as needing to run in the foreground. This is achieved by making a call to startForeground(). This is
only recommended for situations where termination would be detrimental to the user experience (for example,
if the user is listening to audio being streamed by the Service).

Example situations where a Service might be a practical solution include, as previously mentioned, the streaming
of audio that should continue when the application is no longer active or a stock market tracking application
that needs to notify the user when a share hits a specified price.

89

The Anatomy of an Android App

10.7 Content Providers
Content Providers implement a mechanism for the sharing of data between applications. Any application can
provide other applications with access to its underlying data by implementing a Content Provider, including the
ability to add, remove and query the data (subject to permissions). Access to the data is provided via a Universal
Resource Identifier (URI) defined by the Content Provider. Data can be shared as a file or an entire SQLite
database.

The native Android applications include several standard Content Providers allowing applications to access
data such as contacts and media files. The Content Providers currently available on an Android system may be
located using a Content Resolver.

10.8 The Application Manifest
The Application Manifest file is the glue that pulls together the various elements that comprise an application.
Within this XML-based file, the application outlines the activities, services, broadcast receivers, data providers,
and permissions that comprise the complete application.

10.9 Application Resources
In addition to the manifest file and the Dex files containing the byte code, an Android application package
typically contains a collection of resource files. These files contain resources such as strings, images, fonts, and
colors that appear in the user interface, together with the XML representation of the user interface layouts. These
files are stored in the /res sub-directory of the application project’s hierarchy by default.

10.10 Application Context
When an application is compiled, a class named R is created containing references to the application resources.
The application manifest file and these resources combine to create what is known as the Application Context.
This context, represented by the Android Context class, may be used in the application code to gain access to the
application resources at runtime. In addition, a wide range of methods may be called on an application’s context
to gather information and change the application’s environment at runtime.

10.11 Summary
A number of different elements can be brought together to create an Android application. In this chapter, we
have provided a high-level overview of Activities, Fragments, Services, Intents, and Broadcast Receivers and an
overview of the manifest file and application resources.

Maximum reuse and interoperability are promoted by creating individual, standalone functionality modules
in the form of activities and intents while implementing content providers to achieve data sharing between
applications.

While activities are focused on areas where the user interacts with the application (an activity essentially
equating to a single user interface screen and often made up of one or more fragments), background processing
is typically handled by Services and Broadcast Receivers.

The components that make up the application are outlined for the Android runtime system in a manifest file
which, combined with the application’s resources, represents the application’s context.

Much has been covered in this chapter that is likely new to the average developer. Rest assured, however, that
extensive exploration and practical use of these concepts will be made in subsequent chapters to ensure a solid
knowledge foundation on which to build your own applications.

97

Chapter 12

12. Understanding Android
Application and Activity Lifecycles
In earlier chapters, we learned that Android applications run within processes and comprise multiple components
in the form of activities, services, and broadcast receivers. This chapter aims to expand on this knowledge by
looking at the lifecycle of applications and activities within the Android runtime system.

Regardless of the fanfare about how much memory and computing power resides in the mobile devices of
today compared to the desktop systems of yesterday, it is important to keep in mind that these devices are
still considered to be “resource constrained” by the standards of modern desktop and laptop-based systems,
particularly in terms of memory. As such, a key responsibility of the Android system is to ensure that these
limited resources are managed effectively and that the operating system and the applications running on it
remain responsive to the user at all times. To achieve this, Android is given complete control over the lifecycle
and state of the processes in which the applications run and the individual components that comprise those
applications.

An important factor in developing Android applications, therefore, is to understand Android’s application and
activity lifecycle management models of Android, and how an application can react to the state changes likely to
be imposed upon it during its execution lifetime.

12.1 Android Applications and Resource Management
The operating system views each running Android application as a separate process. If the system identifies that
resources on the device are reaching capacity, it will take steps to terminate processes to free up memory.

When determining which process to terminate to free up memory, the system considers both the priority and
state of all currently running processes, combining these factors to create what is referred to by Google as
an importance hierarchy. Processes are then terminated, starting with the lowest priority and working up the
hierarchy until sufficient resources have been liberated for the system to function.

12.2 Android Process States
Processes host applications, and applications are made up of components. Within an Android system, the
current state of a process is defined by the highest-ranking active component within the application it hosts. As
outlined in Figure 12-1, a process can be in one of the following five states at any given time:

98

Understanding Android Application and Activity Lifecycles

Figure 12-1
12.2.1 Foreground Process
These processes are assigned the highest level of priority. At any one time, there are unlikely to be more than one
or two foreground processes active, which are usually the last to be terminated by the system. A process must
meet one or more of the following criteria to qualify for foreground status:

• Hosts an activity with which the user is currently interacting.

• Hosts a Service connected to the activity with which the user is interacting.

• Hosts a Service that has indicated, via a call to startForeground(), that termination would disrupt the user
experience.

• Hosts a Service executing either its onCreate(), onResume(), or onStart() callbacks.

• Hosts a Broadcast Receiver that is currently executing its onReceive() method.

12.2.2 Visible Process
A process containing an activity that is visible to the user but is not the activity with which the user is interacting
is classified as a “visible process”. This is typically the case when an activity in the process is visible to the user,
but another activity, such as a partial screen or dialog, is in the foreground. A process is also eligible for visible
status if it hosts a Service that is, itself, bound to a visible or foreground activity.

12.2.3 Service Process
Processes that contain a Service that has already been started and is currently executing.

12.2.4 Background Process
A process that contains one or more activities that are not currently visible to the user and does not host a
Service that qualifies for Service Process status. Processes that fall into this category are at high risk of termination
if additional memory needs to be freed for higher-priority processes. Android maintains a dynamic list of
background processes, terminating processes in chronological order such that processes that were the least
recently in the foreground are killed first.

99

Understanding Android Application and Activity Lifecycles

12.2.5 Empty Process
Empty processes no longer contain active applications and are held in memory, ready to serve as hosts for
newly launched applications. This is analogous to keeping the doors open and the engine running on a bus in
anticipation of passengers arriving. Such processes are considered the lowest priority and are the first to be killed
to free up resources.

12.3 Inter-Process Dependencies
Determining the highest priority process is more complex than outlined in the preceding section because
processes can often be interdependent. As such, when determining the priority of a process, the Android
system will also consider whether the process is in some way serving another process of higher priority (for
example, a service process acting as the content provider for a foreground process). As a basic rule, the Android
documentation states that a process can never be ranked lower than another process that it is currently serving.

12.4 The Activity Lifecycle
As we have previously determined, the state of an Android process is primarily determined by the status of
the activities and components that make up the application it hosts. It is important to understand, therefore,
that these activities also transition through different states during the execution lifetime of an application. The
current state of an activity is determined, in part, by its position in something called the Activity Stack.

12.5 The Activity Stack
The runtime system maintains an Activity Stack for each application running on an Android device. When an
application is launched, the first of the application’s activities to be started is placed onto the stack. When a second
activity is started, it is placed on the top of the stack, and the previous activity is pushed down. The activity at the
top of the stack is called the active (or running) activity. When the active activity exits, it is popped off the stack
by the runtime and the activity located immediately beneath it in the stack becomes the current active activity.
For example, the activity at the top of the stack might exit because the task for which it is responsible has been
completed. Alternatively, the user may have selected a “Back” button on the screen to return to the previous
activity, causing the current activity to be popped off the stack by the runtime system and destroyed. A visual
representation of the Android Activity Stack is illustrated in Figure 12-2.

As shown in the diagram, new activities are pushed onto the top of the stack when they are started. The current
active activity is located at the top of the stack until it is either pushed down the stack by a new activity or popped
off the stack when it exits or the user navigates to the previous activity. If resources become constrained, the
runtime will kill activities, starting with those at the bottom of the stack.

The Activity Stack is what is referred to in programming terminology as a Last-In-First-Out (LIFO) stack in that
the last item to be pushed onto the stack is the first to be popped off.

100

Understanding Android Application and Activity Lifecycles

Figure 12-2

12.6 Activity States
An activity can be in one of several states during the course of its execution within an application:

• Active / Running – The activity is at the top of the Activity Stack, is the foreground task visible on the device
screen, has focus, and is currently interacting with the user. This is the least likely activity to be terminated in
the event of a resource shortage.

• Paused – The activity is visible to the user but does not currently have focus (typically because the current
active activity partially obscures this activity). Paused activities are held in memory, remain attached to the
window manager, retain all state information, and can quickly be restored to active status when moved to the
top of the Activity Stack.

• Stopped – The activity is currently not visible to the user (in other words, it is obscured on the device display
by other activities). As with paused activities, it retains all state and member information but is at higher risk
of termination in low-memory situations.

• Killed – The runtime system has terminated the activity to free up memory and is no longer present on the
Activity Stack. Such activities must be restarted if required by the application.

12.7 Configuration Changes
So far in this chapter, we have looked at two causes for the change in the state of an Android activity, namely
the movement of an activity between the foreground and background and the termination of an activity by
the runtime system to free up memory. In fact, there is a third scenario in which the state of an activity can
dramatically change, which involves a change to the device configuration.

101

Understanding Android Application and Activity Lifecycles

By default, any configuration change that impacts the appearance of an activity (such as rotating the orientation
of the device between portrait and landscape or changing a system font setting) will cause the activity to be
destroyed and recreated. The reasoning behind this is that such changes affect resources such as the layout of the
user interface, and destroying and recreating impacted activities is the quickest way for an activity to respond to
the configuration change. It is, however, possible to configure an activity so that the system does not restart it in
response to specific configuration changes.

12.8 Handling State Change
It should be clear from this chapter that an application and, by definition, the components contained therein will
transition through many states during its lifespan. Of particular importance is the fact that these state changes
(up to and including complete termination) are imposed upon the application by the Android runtime subject
to the user’s actions and the availability of resources on the device.

In practice, however, these state changes are not imposed entirely without notice, and an application will, in most
circumstances, be notified by the runtime system of the changes and given the opportunity to react accordingly.
This will typically involve saving or restoring both internal data structures and user interface state, thereby
allowing the user to switch seamlessly between applications and providing at least the appearance of multiple
concurrently running applications.

Android provides two ways to handle the changes to the lifecycle states of the objects within an app. One
approach involves responding to state change method calls from the operating system and is covered in detail in
the next chapter entitled “Handling Android Activity State Changes”.

A new approach that Google recommends involves the lifecycle classes included with the Jetpack Android
Architecture components, introduced in “Modern Android App Architecture with Jetpack” and explained in more
detail in the chapter entitled “Working with Android Lifecycle-Aware Components”.

12.9 Summary
Mobile devices are typically considered to be resource constrained, particularly in terms of onboard memory
capacity. Consequently, a prime responsibility of the Android operating system is to ensure that applications,
and the operating system in general, remain responsive to the user.

Applications are hosted on Android within processes. Each application, in turn, comprises components in the
form of activities and Services.

The Android runtime system has the power to terminate both processes and individual activities to free up
memory. Process state is considered by the runtime system when deciding whether a process is a suitable
candidate for termination. The state of a process largely depends upon the status of the activities hosted by that
process.

The key message of this chapter is that an application moves through various states during its execution
lifespan and has very little control over its destiny within the Android runtime environment. Those processes
and activities not directly interacting with the user run a higher risk of termination by the runtime system.
An essential element of Android application development, therefore, involves the ability of an application to
respond to state change notifications from the operating system.

129

Chapter 17

17. A Guide to the Android Studio
Layout Editor Tool
It is challenging to think of an Android application concept that does not require some form of user interface.
Most Android devices come equipped with a touch screen and keyboard (either virtual or physical), and taps
and swipes are the primary interaction between the user and the application. Invariably these interactions take
place through the application’s user interface.

A well-designed and implemented user interface, an essential factor in creating a successful and popular Android
application, can vary from simple to highly complex, depending on the design requirements of the individual
application. Regardless of the level of complexity, the Android Studio Layout Editor tool significantly simplifies
the task of designing and implementing Android user interfaces.

17.1 Basic vs. Empty Views Activity Templates
As outlined in the chapter entitled “The Anatomy of an Android App”, Android applications comprise one or
more activities. An activity is a standalone module of application functionality that usually correlates directly to
a single user interface screen. As such, when working with the Android Studio Layout Editor, we are invariably
work on the layout for an activity.

When creating a new Android Studio project, several templates are available to be used as the starting point for
the user interface of the main activity. The most basic templates are the Basic Views Activity and Empty Views
Activity templates. Although these seem similar at first glance, there are considerable differences between the
two options. To see these differences within the layout editor, use the View Options menu to enable Show System
UI, as shown in Figure 17-1 below:

Figure 17-1
The Empty Views Activity template creates a single layout file consisting of a ConstraintLayout manager instance
containing a TextView object, as shown in Figure 17-2:

130

A Guide to the Android Studio Layout Editor Tool

Figure 17-2
The Basic Views Activity, on the other hand, consists of multiple layout files. The top-level layout file has a
CoordinatorLayout as the root view, a configurable app bar (which contains a toolbar) that appears across the
top of the device screen (marked A in Figure 17-3), and a floating action button (the email button marked B).
In addition to these items, the activity_main.xml layout file contains a reference to a second file named content_
main.xml containing the content layout (marked C):

Figure 17-3
The Basic Views Activity contains layouts for two screens containing a button and a text view. This template
aims to demonstrate how to implement navigation between multiple screens within an app. If an unmodified
app using the Basic Views Activity template were to be run, the first of these two screens would appear (marked
A in Figure 17-4). Pressing the Next button would navigate to the second screen (B), which, in turn, contains a
button to return to the first screen:

131

A Guide to the Android Studio Layout Editor Tool

Figure 17-4
This app behavior uses of two Android features referred to as fragments and navigation, which will be covered
starting with the chapters entitled “An Introduction to Android Fragments” and “An Overview of the Navigation
Architecture Component” respectively.

The content_main.xml file contains a special fragment, known as a Navigation Host Fragment which allows
different content to be switched in and out of view depending on the settings configured in the res -> layout
-> nav_graph.xml file. In the case of the Basic Views Activity template, the nav_graph.xml file is configured to
switch between the user interface layouts defined in the fragment_first.xml and fragment_second.xml files based
on the Next and Previous button selections made by the user.

The Empty Views Activity template is helpful if you need neither a floating action button nor a menu in your
activity and do not need the special app bar behavior provided by the CoordinatorLayout, such as options to
make the app bar and toolbar collapse from view during certain scrolling operations (a topic covered in the
chapter entitled “Working with the AppBar and Collapsing Toolbar Layouts”). However, the Basic Views Activity
is helpful because it provides these elements by default. In fact, it is often quicker to create a new activity using
the Basic Views Activity template and delete the elements you do not require than to use the Empty Views
Activity template and manually implement behavior such as collapsing toolbars, a menu, or a floating action
button.

Since not all of the examples in this book require the features of the Basic Views Activity template, however,
most of the examples in this chapter will use the Empty Views Activity template unless the example requires one
or other of the features provided by the Basic Views Activity template.

For future reference, if you need a menu but not a floating action button, use the Basic Views Activity and follow
these steps to delete the floating action button:

1. Double-click on the main activity_main.xml layout file in the Project tool window under app -> res ->
layout to load it into the Layout Editor. With the layout loaded into the Layout Editor tool, select the floating
action button and tap the keyboard Delete key to remove the object from the layout.

2. Locate and edit the Java code for the activity (located under app -> java -> <package name> -> <activity
class name> and remove the floating action button code from the onCreate method as follows:

132

A Guide to the Android Studio Layout Editor Tool

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 setSupportActionBar(binding.toolbar);

 NavController navController = Navigation.findNavController(this, R.id.nav_
host_fragment_content_main);

 appBarConfiguration = new AppBarConfiguration.Builder(navController.
getGraph()).build();

 NavigationUI.setupActionBarWithNavController(this, navController,
appBarConfiguration);

 binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_
LONG)

 .setAction("Action", null).show();

 }

 });

}

If you need a floating action button but no menu, use the Basic Views Activity template and follow these steps:

1. Edit the main activity class file and delete the onCreateOptionsMenu and onOptionsItemSelected methods.

2. Select the res -> menu item in the Project tool window and tap the keyboard Delete key to remove the folder
and corresponding menu resource files from the project.

If you need to use the Basic Views Activity template but need neither the navigation features nor the second
content fragment, follow these steps:

1. Within the Project tool window, navigate to and double-click on the app -> res -> navigation -> nav_graph.
xml file to load it into the navigation editor.

2. Within the editor, select the SecondFragment entry in the graph panel and tap the keyboard delete key to
remove it from the graph.

3. Locate and delete the SecondFragment.java (app -> java -> <package name> -> SecondFragment) and
fragment_second.xml (app -> res -> layout -> fragment_second.xml) files.

4. The final task is to remove some code from the FirstFragment class so that the Button view no longer
navigates to the now non-existent second fragment when clicked. Locate the FirstFragment.java file, double-
click on it to load it into the editor, and remove the code from the onViewCreated() method so that it reads
as follows:

public void onViewCreated(@NonNull View view, Bundle savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

133

A Guide to the Android Studio Layout Editor Tool

 binding.buttonFirst.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 NavHostFragment.findNavController(FirstFragment.this)

 .navigate(R.id.action_FirstFragment_to_SecondFragment);

 }

 });

}

17.2 The Android Studio Layout Editor
As demonstrated in previous chapters, the Layout Editor tool provides a “what you see is what you get”
(WYSIWYG) environment in which views can be selected from a palette and then placed onto a canvas
representing the display of an Android device. Once a view has been placed on the canvas, it can be moved,
deleted, and resized (subject to the constraints of the parent view). Moreover, various properties relating to the
selected view may be modified using the Attributes tool window.

Under the surface, the Layout Editor tool constructs an XML resource file containing the definition of the user
interface that is being designed. As such, the Layout Editor tool operates in three distinct modes: Design, Code,
and Split.

17.3 Design Mode
In design mode, the user interface can be visually manipulated by directly working with the view palette and the
graphical representation of the layout. Figure 17-5 highlights the key areas of the Android Studio Layout Editor
tool in design mode:

Figure 17-5

134

A Guide to the Android Studio Layout Editor Tool

A – Palette – The palette provides access to the range of view components the Android SDK provides. These are
grouped into categories for easy navigation. Items may be added to the layout by dragging a view component
from the palette and dropping it at the desired position on the layout.

B – Device Screen – The device screen provides a visual “what you see is what you get” representation of the
user interface layout as it is being designed. This layout allows direct design manipulation by allowing views to
be selected, deleted, moved, and resized. The device model represented by the layout can be changed anytime
using a menu in the toolbar.

C – Component Tree – As outlined in the previous chapter (“Understanding Android Views, View Groups and
Layouts”), user interfaces are constructed using a hierarchical structure. The component tree provides a visual
overview of the hierarchy of the user interface design. Selecting an element from the component tree will cause
the corresponding view in the layout to be selected. Similarly, selecting a view from the device screen layout will
select that view in the component tree hierarchy.

D – Attributes – All of the component views listed in the palette have associated with them a set of attributes
that can be used to adjust the behavior and appearance of that view. The Layout Editor’s attributes panel provides
access to the attributes of the currently selected view in the layout allowing changes to be made.

E – Toolbar – The Layout Editor toolbar provides quick access to a wide range of options, including, amongst
other options, the ability to zoom in and out of the device screen layout, change the device model currently
displayed, rotate the layout between portrait and landscape and switch to a different Android SDK API level.
The toolbar also has a set of context-sensitive buttons which will appear when relevant view types are selected
in the device screen layout.

F – Mode Switching Controls – These three buttons provide a way to switch back and forth between the Layout
Editor tool’s Design, Code, and Split modes.

G - Zoom and Pan Controls - This control panel allows you to zoom in and out of the design canvas, grab the
canvas, and pan around to find obscured areas when zoomed in.

17.4 The Palette
The Layout Editor palette is organized into two panels designed to make it easy to locate and preview view
components for addition to a layout design. The category panel (marked A in Figure 17-6) lists the different
categories of view components supported by the Android SDK. When a category is selected from the list, the
second panel (B) updates to display a list of the components that fall into that category:

Figure 17-6

135

A Guide to the Android Studio Layout Editor Tool

To add a component from the palette onto the layout canvas, select the item from the component list or the
preview panel, drag it to the desired location on the canvas, and drop it into place.

A search for a specific component within the selected category may be initiated by clicking the search button
(marked C in Figure 17-6 above) in the palette toolbar and typing in the component name. As characters are
typed, matching results will appear in the component list panel. If you are unsure of the component’s category,
select the All Results category before or during the search operation.

17.5 Design Mode and Layout Views
The layout editor will appear in Design mode by default, as shown in Figure 17-5 above. This mode provides a
visual representation of the user interface. Design mode can be selected by clicking on the button marked C in
Figure 17-7:

Figure 17-7
When the Layout Editor tool is in Design mode, the layout can be viewed in two ways. The view shown in Figure
17-5 above is the Design view and shows the layout and widgets as they will appear in the running app. A second
mode, the Blueprint view, can be shown instead of or concurrently with the Design view. The toolbar menu in
Figure 17-8 provides options to display the Design, Blueprint, or both views. Settings are also available to adjust
for color blindness. A fifth option, Force Refresh Layout, causes the layout to rebuild and redraw. This can be
useful when the layout enters an unexpected state or is not accurately reflecting the current design settings:

Figure 17-8
Whether to display the layout view, design view, or both is a matter of personal preference. A good approach is
to begin with both displayed as shown in Figure 17-9:

136

A Guide to the Android Studio Layout Editor Tool

Figure 17-9

17.6 Night Mode
To view the layout in night mode during the design work, select the menu shown in Figure 17-10 below and
change the setting to Night:

Figure 17-10
The mode menu also includes options for testing dynamic colors, a topic covered in the chapter “A Material
Design 3 Theming and Dynamic Color Tutorial”.

17.7 Code Mode
It is important to remember when using the Android Studio Layout Editor tool that all it is doing is providing a
user-friendly approach to creating XML layout resource files. The underlying XML can be viewed and directly
edited during the design process by selecting the button marked A in Figure 17-7 above.

Figure 17-11 shows the Android Studio Layout Editor tool in Code mode, allowing changes to be made to the
user interface declaration by modifying the XML:

137

A Guide to the Android Studio Layout Editor Tool

Figure 17-11

17.8 Split Mode
In Split mode, the editor shows the Design and Code views side-by-side, allowing the user interface to be
modified visually using the design canvas and making changes directly to the XML declarations. Split mode is
selected using the button marked B Figure 17-7 above.

Any changes to the XML are automatically reflected in the design canvas and vice versa. Figure 17-12 shows the
editor in Split mode:

Figure 17-12

17.9 Setting Attributes
The Attributes panel provides access to all available settings for the currently selected component. Figure 17-13,
for example, shows some of the attributes for the TextView widget:

138

A Guide to the Android Studio Layout Editor Tool

Figure 17-13
The Attributes tool window is divided into the following different sections.

• id - Contains the id property, which defines the name by which the currently selected object will be referenced
in the app’s source code.

• Declared Attributes - Contains all of the properties already assigned a value.

• Layout - The settings that define how the currently selected view object is positioned and sized relative to the
screen and other objects in the layout.

• Transforms - Contains controls allowing the currently selected object to be rotated, scaled, and offset.

• Common Attributes - A list of attributes that commonly need to be changed for the class of view object
currently selected.

• All Attributes - A complete list of all the attributes available for the currently selected object.

A search for a specific attribute may also be performed by selecting the search button in the toolbar of the
attributes tool window and typing in the attribute name.

Some attributes contain a narrow button to the right of the value field. This indicates that the Resources dialog is
available to assist in selecting a suitable property value. To display the dialog, click on the button. The appearance
of this button changes to reflect whether or not the corresponding property value is stored in a resource file or
hard-coded. If the value is stored in a resource file, the button to the right of the text property field will be filled
in to indicate that the value is not hard-coded, as highlighted in Figure 17-14 below:

139

A Guide to the Android Studio Layout Editor Tool

Figure 17-14
Attributes for which a finite number of valid options are available will present a drop-down menu (Figure 17-15)
from which a selection may be made.

Figure 17-15
A dropper icon can be clicked to display the color selection palette. Similarly, when a flag icon appears, it can
be clicked to display a list of options available for the attribute, while an image icon opens the resource manager
panel allowing images and other resource types to be selected for the attribute.

17.10 Transforms
The transforms panel within the Attributes tool window (Figure 17-16) provides a set of controls and properties
that control visual aspects of the currently selected object in terms of rotation, alpha (used to fade a view in and
out), scale (size), and translation (offset from current position):

Figure 17-16
The panel contains a visual representation of the view, which updates as properties are changed. These changes
are also reflected in the view within the layout canvas.

140

A Guide to the Android Studio Layout Editor Tool

17.11 Tools Visibility Toggles
When reviewing the content of an Android Studio XML layout file in Code mode, you will notice that many
attributes that define how a view appears and behaves begin with the android: prefix. This indicates that the
attributes are set within the android namespace and will take effect when the app is run. The following excerpt
from a layout file, for example, sets a variety of attributes on a Button view:
<Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button"

.

.

In addition to the android namespace, Android Studio also provides a tools namespace. When attributes are
set within this namespace, they only take effect within the layout editor preview. While designing a layout, you
might find it helpful for an EditText view to display some text but require the view to be blank when the app
runs. To achieve this, you would set the text property of the view using the tools namespace as follows:
<EditText

 android:id="@+id/editTextTextPersonName"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:ems="10"

 android:inputType="textPersonName"

 tools:text="Sample Text"
.

.

A tool attribute of this type is set in the Attributes tool window by entering the value into the property fields
marked by the wrench icon, as shown in Figure 17-17:

Figure 17-17
Tools attributes are particularly useful for changing the visibility of a view during the design process. A layout
may contain a view that is programmatically displayed and hidden when the app runs, depending on user actions.
To simulate the hiding of the view, the following tools attribute could be added to the view XML declaration:
tools:visibility="invisible"

Although the view will no longer be visible when using the invisible setting, it is still present in the layout and
occupies the same space it did when it was visible. To make the layout behave as though the view no longer
exists, the visibility attribute should be set to gone as follows:
tools:visibility="gone"

In both examples above, the visibility settings only apply within the layout editor and will have no effect in the
running app. To control visibility in both the layout editor and running app, the same attribute would be set
using the android namespace:

141

A Guide to the Android Studio Layout Editor Tool

android:visibility="gone"

While these visibility tools attributes are useful, having to manually edit the XML layout file is a cumbersome
process. To make it easier to change these settings, Android Studio provides a set of toggles within the layout
editor Component Tree panel. To access these controls, click in the margin to the right of the corresponding
view in the panel. Figure 17-18, for example, shows the tools visibility toggle controls for a Button view named
myButton:

Figure 17-18
These toggles control the visibility of the corresponding view for both the android and tools namespaces and
provide not set, visible, invisible and gone options. When conflicting attributes are set (for example, an android
namespace toggle is set to visible while the tools value is set to invisible), the tools namespace takes precedence
within the layout preview. When a toggle selection is made, Android Studio automatically adds the appropriate
attribute to the XML view element in the layout file.

In addition to the visibility toggles in the Component Tree panel, the layout editor also includes the tools visibility
and position toggle button shown highlighted in Figure 17-19 below:

Figure 17-19
This button toggles the current tools visibility settings. If the Button view shown above currently has the tools
visibility attribute set to gone, for example, toggling this button will make it visible. This makes it easy to quickly
check the layout behavior as the view is added to and removed from the layout. This toggle is also useful for
checking that the views in the layout are correctly constrained, a topic covered in the chapter entitled “A Guide
to Using ConstraintLayout in Android Studio”.

17.12 Converting Views
Changing a view in a layout from one type to another (such as converting a TextView to an EditText) can be
performed easily within the Android Studio layout editor by right-clicking on the view either within the screen
layout or Component tree window and selecting the Convert view... menu option (Figure 17-20):

142

A Guide to the Android Studio Layout Editor Tool

Figure 17-20
Once selected, a dialog containing a list of compatible view types to which the selected object is eligible for
conversion will appear. Figure 17-21, for example, shows the types to which an existing TextView view may be
converted:

Figure 17-21
This technique is also helpful in converting layouts from one type to another (for example, converting a
ConstraintLayout to a LinearLayout).

17.13 Displaying Sample Data
When designing layouts in Android Studio, situations will arise where the content to be displayed within the
user interface will not be available until the app is completed and running. This can sometimes make it difficult
to assess how the layout will appear at app runtime from within the layout editor. To address this issue, the
layout editor allows sample data to be specified, which will populate views within the layout editor with sample
images and data. This sample data only appears within the layout editor and is not displayed when the app runs.
Sample data may be configured either by directly editing the XML for the layout or visually using the design-
time helper by right-clicking on the widget in the design area and selecting the Set Sample Data menu option.
The design-time helper panel will display a range of preconfigured options for sample data to be displayed on
the selected view item, including combinations of text and images in various configurations. Figure 17-22, for
example, shows the sample data options displayed when selecting sample data to appear in a RecyclerView list:

143

A Guide to the Android Studio Layout Editor Tool

Figure 17-22
Alternatively, custom text and images may be provided for display during the layout design process. An example
of using sample data within the layout editor is included in a later chapter entitled “A Layout Editor Sample Data
Tutorial”. Since sample data is implemented as a tools attribute, the visibility of the data within the preview can
be controlled using the toggle button highlighted in Figure 17-19 above.

17.14 Creating a Custom Device Definition
The device menu in the Layout Editor toolbar (Figure 17-23) provides a list of pre-configured device types,
which, when selected, will appear as the device screen canvas. In addition to the pre-configured device types,
any AVD instances previously configured within the Android Studio environment will also be listed within the
menu. To add additional device configurations, display the device menu, select the Add Device Definition option
and follow the steps outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android
Studio”.

Figure 17-23

17.15 Changing the Current Device
As an alternative to the device selection menu, the current device format may be changed by selecting the
Custom option from the device menu, clicking on the resize handle located next to the bottom right-hand corner
of the device screen (Figure 17-24), and dragging to select an alternate device display format. As the screen

144

A Guide to the Android Studio Layout Editor Tool

resizes, markers will appear indicating the various size options and orientations available for selection:

Figure 17-24

17.16 Layout Validation
The layout validation option allows the user interface layout to be previewed simultaneously on a range of
Pixel-sized screens. To access the layout validation tool window, click on the tab on the right-hand edge of the
Android Studio main window or use the Tool Window menu in the bottom left-hand corner of the window.
Once loaded, the panel will appear as shown in Figure 17-25, with the layout rendered on multiple device screen
configurations:

Figure 17-25

145

A Guide to the Android Studio Layout Editor Tool

17.17 Summary
A key part of developing Android applications involves the creation of the user interface. This is performed
within the Android Studio environment using the Layout Editor tool, which operates in three modes. In Design
mode, view components are selected from a palette, positioned on a layout representing an Android device
screen, and configured using a list of attributes. The underlying XML representing the user interface layout can
be directly edited in Code mode. Split mode, on the other hand, allows the layout to be created and modified
both visually and via direct XML editing. These modes combine to provide an extensive and intuitive user
interface design environment.

The layout validation panel allows user interface layouts to be quickly previewed on various device screen sizes.

147

Chapter 18

18. A Guide to the Android
ConstraintLayout
As discussed in the chapter entitled “Understanding Android Views, View Groups and Layouts”, Android provides
several layout managers to design user interfaces. With Android 7, Google introduced a layout that addressed
many of the shortcomings of the older layout managers. This layout, called ConstraintLayout, combines a
simple, expressive, and flexible layout system with powerful features built into the Android Studio Layout Editor
tool to ease the creation of responsive user interface layouts that adapt automatically to different screen sizes and
changes in device orientation.

This chapter will outline the basic concepts of ConstraintLayout, while the next chapter will provide a detailed
overview of how constraint-based layouts can be created using ConstraintLayout within the Android Studio
Layout Editor tool.

18.1 How ConstraintLayout Works
In common with all other layouts, ConstraintLayout manages the positioning and sizing behavior of the visual
components (also referred to as widgets) it contains. It does this based on the constraint connections set on each
child widget.

To fully understand and use ConstraintLayout, it is essential to gain an appreciation of the following key concepts:

• Constraints

• Margins

• Opposing Constraints

• Constraint Bias

• Chains

• Chain Styles

• Guidelines

• Groups

• Barriers

• Flow

18.1.1 Constraints
Constraints are sets of rules that dictate how a widget is aligned and distanced relative to other widgets, the sides
of the containing ConstraintLayout, and special elements called guidelines. Constraints also dictate how the
user interface layout of an activity will respond to changes in device orientation or when displayed on devices
of differing screen sizes. To be adequately configured, a widget must have sufficient constraint connections
such that its position can be resolved by the ConstraintLayout layout engine in both the horizontal and vertical

148

A Guide to the Android ConstraintLayout

planes.

18.1.2 Margins
A margin is a form of constraint that specifies a fixed distance. Consider a Button object that needs to be
positioned near the top right-hand corner of the device screen. This might be achieved by implementing margin
constraints from the top and right-hand edges of the Button connected to the corresponding sides of the parent
ConstraintLayout, as illustrated in Figure 18-1:

Figure 18-1
As indicated in the above diagram, each of these constraint connections has associated with it a margin value
dictating the fixed distances of the widget from two sides of the parent layout. Under this configuration,
regardless of screen size or the device orientation, the Button object will always be positioned 20 and 15 device-
independent pixels (dp) from the top and right-hand edges of the parent ConstraintLayout, respectively, as
specified by the two constraint connections.

While the above configuration will be acceptable for some situations, it does not provide any flexibility in terms
of allowing the ConstraintLayout layout engine to adapt the position of the widget to respond to device rotation
and to support screens of different sizes. To add this responsiveness to the layout, it is necessary to implement
opposing constraints.

18.1.3 Opposing Constraints
Two constraints operating along the same axis on a single widget are considered opposing constraints. In other
words, a widget with constraints on both its left and right-hand sides is considered to have horizontally opposing
constraints. Figure 18-2, for example, illustrates the addition of both horizontally and vertically opposing
constraints to the previous layout:

Figure 18-2

149

A Guide to the Android ConstraintLayout

The key point to understand here is that once opposing constraints are implemented on a particular axis, the
positioning of the widget becomes percentage rather than coordinate-based. Instead of being fixed at 20dp from
the top of the layout, for example, the widget is now positioned at 30% from the top. In different orientations
and when running on larger or smaller screens, the Button will always be in the same location relative to the
dimensions of the parent layout.

It is now important to understand that the layout outlined in Figure 18-2 has been implemented using not only
opposing constraints, but also by applying constraint bias.

18.1.4 Constraint Bias
It has now been established that a widget in a ConstraintLayout can potentially be subject to opposing
constraint connections. By default, opposing constraints are equal, resulting in the corresponding widget being
centered along the axis of opposition. Figure 18-3, for example, shows a widget centered within the containing
ConstraintLayout using opposing horizontal and vertical constraints:

Figure 18-3
To allow for the adjustment of widget position in the case of opposing constraints, the ConstraintLayout
implements a feature known as constraint bias. Constraint bias allows the positioning of a widget along the axis
of opposition to be biased by a specified percentage in favor of one constraint. Figure 18-4, for example, shows
the previous constraint layout with a 75% horizontal bias and 10% vertical bias:

Figure 18-4
The next chapter, entitled “A Guide to Using ConstraintLayout in Android Studio”, will cover these concepts in
greater detail and explain how these features have been integrated into the Android Studio Layout Editor tool.

150

A Guide to the Android ConstraintLayout

In the meantime, however, a few more areas of the ConstraintLayout class need to be covered.

18.1.5 Chains
ConstraintLayout chains provide a way for the layout behavior of two or more widgets to be defined as a group.
Chains can be declared in either the vertical or horizontal axis and configured to define how the widgets in the
chain are spaced and sized.

Widgets are chained when connected by bi-directional constraints. Figure 18-5, for example, illustrates three
widgets chained in this way:

Figure 18-5
The first element in the chain is the chain head which translates to the top widget in a vertical chain or, in the
case of a horizontal chain, the left-most widget. The layout behavior of the entire chain is primarily configured
by setting attributes on the chain head widget.

18.1.6 Chain Styles
The layout behavior of a ConstraintLayout chain is dictated by the chain style setting applied to the chain head
widget. The ConstraintLayout class currently supports the following chain layout styles:

• Spread Chain – The widgets within the chain are distributed evenly across the available space. This is the
default behavior for chains.

Figure 18-6
• Spread Inside Chain – The widgets within the chain are spread evenly between the chain head and the last

widget. The head and last widgets are not included in the distribution of spacing.

Figure 18-7
• Weighted Chain – Allows the space taken up by each widget in the chain to be defined via weighting properties.

151

A Guide to the Android ConstraintLayout

Figure 18-8
• Packed Chain – The widgets that make up the chain are packed together without spacing. A bias may be

applied to control the horizontal or vertical positioning of the chain relative to the parent container.

Figure 18-9

18.2 Baseline Alignment
So far, this chapter has only referred to constraints that dictate alignment relative to the sides of a widget (typically
referred to as side constraints). A common requirement, however, is for a widget to be aligned relative to the
content that it displays rather than the boundaries of the widget itself. To address this need, ConstraintLayout
provides baseline alignment support.

For example, assume that the previous theoretical layout from Figure 18-1 requires a TextView widget to be
positioned 40dp to the left of the Button. In this case, the TextView needs to be baseline aligned with the Button
view. This means that the text within the Button needs to be vertically aligned with the text within the TextView.
The additional constraints for this layout would need to be connected as illustrated in Figure 18-10:

Figure 18-10
The TextView is now aligned vertically along the baseline of the Button and positioned 40dp horizontally from
the Button object’s left-hand edge.

18.3 Configuring Widget Dimensions
Controlling the dimensions of a widget is a key element of the user interface design process. The ConstraintLayout
provides three options that can be set on individual widgets to manage sizing behavior. These settings are
configured individually for height and width dimensions:

• Fixed – The widget is fixed to specified dimensions.

• Match Constraint –Allows the widget to be resized by the layout engine to satisfy the prevailing constraints.

152

A Guide to the Android ConstraintLayout

Also referred to as the AnySize or MATCH_CONSTRAINT option.

• Wrap Content – The widget’s size is dictated by its content (i.e., text or graphics).

18.4 Guideline Helper
Guidelines are special elements available within the ConstraintLayout that provide an additional target to
which constraints may be connected. Multiple guidelines may be added to a ConstraintLayout instance which
may, in turn, be configured in horizontal or vertical orientations. Once added, constraint connections may be
established from widgets in the layout to the guidelines. This is particularly useful when multiple widgets must
be aligned along an axis. In Figure 18-11, for example, three Button objects contained within a ConstraintLayout
are constrained along a vertical guideline:

Figure 18-11

18.5 Group Helper
This feature of ConstraintLayout allows widgets to be placed into logical groups, and the visibility of those
widgets controlled as a single entity. A Group is a list of references to other widgets in a layout. Once defined,
changing the visibility attribute (visible, invisible, or gone) of the group instance will apply the change to all
group members. This makes hiding and showing multiple widgets with a single attribute change easy. A single
layout may contain multiple groups, and a widget can belong to more than one group. If a conflict occurs
between groups, the last group to be declared in the XML file takes priority.

18.6 Barrier Helper
Rather like guidelines, barriers are virtual views that can be used to constrain views within a layout. As with
guidelines, a barrier can be vertical or horizontal, and one or more views may be constrained to it (to avoid
confusion, these will be referred to as constrained views). Unlike guidelines, where the guideline remains at a
fixed position within the layout, however, the position of a barrier is defined by a set of so-called reference views.
Barriers were introduced to address an issue that occurs with some frequency involving overlapping views.
Consider, for example, the layout illustrated in Figure 18-12 below:

153

A Guide to the Android ConstraintLayout

Figure 18-12
The key points to note about the above layout are that the width of View 3 is set to match constraint mode, and
the left-hand edge of the view is connected to the right-hand edge of View 1. As currently implemented, an
increase in width of View 1 will have the desired effect of reducing the width of View 3:

Figure 18-13
A problem arises, however, if View 2 increases in width instead of View 1:

Figure 18-14
Because View 3 is only constrained by View 1, it does not resize to accommodate the increase in width of View

154

A Guide to the Android ConstraintLayout

2, causing the views to overlap.

A solution to this problem is to add a vertical barrier and assign Views 1 and 2 as the barrier’s reference views
so that they control the barrier position. The left-hand edge of View 3 will then be constrained relative to the
barrier, making it a constrained view.

Now when either View 1 or View 2 increases in width, the barrier will move to accommodate the widest of the
two views, causing the width of View 3 to change relative to the new barrier position:

Figure 18-15
When working with barriers, there is no limit to the number of reference and constrained views that can be
associated with a single barrier.

18.7 Flow Helper
The ConstraintLayout Flow helper allows groups of views to be displayed in a flowing grid-style layout. As
with the Group helper, Flow contains references to the views it is responsible for positioning and provides
various configuration options, including vertical and horizontal orientations, wrapping behavior (including the
maximum number of widgets before wrapping), spacing, and alignment properties. Chain behavior may also be
applied to a Flow layout, including spread, spread inside, and packed options.

Figure 18-16 represents the layout of five uniformly sized buttons positioned using a Flow helper instance in
horizontal mode with no wrap settings:

Figure 18-16
Figure 18-17 shows the same buttons in a horizontal flow configuration with wrapping set to occur after every
third widget:

155

A Guide to the Android ConstraintLayout

Figure 18-17
Figure 18-18, on the other hand, shows the buttons with wrapping set to chain mode using spread inside (the
effects of which are only visible on the second row since the first row is full). The configuration also has the gap
attribute set to add spacing between buttons:

Figure 18-18
As a final demonstration of the flexibility of the Flow helper, Figure 18-19 shows five buttons of varying sizes
configured in horizontal, packed chain mode with wrapping after each third widget. In addition, the grid content
has been right-aligned by setting a horizontal-bias value of 1.0 (a value of 0.0 would cause left-alignment while
0.5 would center-align the grid content):

Figure 18-19

18.8 Ratios
The dimensions of a widget may be defined using ratio settings. A widget could, for example, be constrained
using a ratio setting such that, regardless of any resizing behavior, the width is always twice the height dimension.

18.9 ConstraintLayout Advantages
ConstraintLayout provides a level of flexibility that allows many of the features of older layouts to be achieved
with a single layout instance where it would previously have been necessary to nest multiple layouts. This can
avoid the problems inherent in layout nesting by allowing so-called “flat” or “shallow” layout hierarchies to be
designed, leading both to less complex layouts and improved user interface rendering performance at runtime.

ConstraintLayout was also implemented to address the wide range of Android device screen sizes available

156

A Guide to the Android ConstraintLayout

today. The flexibility of ConstraintLayout makes it easier for user interfaces to be designed that respond and
adapt to the device on which the app is running.

Finally, as will be demonstrated in the chapter entitled “A Guide to Using ConstraintLayout in Android Studio”,
the Android Studio Layout Editor tool has been enhanced specifically for ConstraintLayout-based user interface
design.

18.10 ConstraintLayout Availability
Although introduced with Android 7, ConstraintLayout is provided as a separate support library from the main
Android SDK and is compatible with older Android versions as far back as API Level 9 (Gingerbread). This
allows apps that use this layout to run on devices running much older versions of Android.

18.11 Summary
ConstraintLayout is a layout manager introduced with Android 7. It is designed to ease the creation of flexible
layouts that adapt to the size and orientation of the many Android devices on the market. ConstraintLayout uses
constraints to control the alignment and positioning of widgets relative to the parent ConstraintLayout instance,
guidelines, barriers, and the other widgets in the layout. ConstraintLayout is the default layout for newly created
Android Studio projects and is recommended when designing user interface layouts. This simple yet flexible
approach to layout management allows complex and responsive user interfaces to be easily implemented.

265

Chapter 32

32. Modern Android App
Architecture with Jetpack
For many years, Google did not recommend a specific approach to building Android apps other than to provide
tools and development kits while letting developers decide what worked best for a particular project or individual
programming style. That changed in 2017 with the introduction of the Android Architecture Components,
which, in turn, became part of Android Jetpack when it was released in 2018.

This chapter provides an overview of the concepts of Jetpack, Android app architecture recommendations, and
some key architecture components. Once the basics have been covered, these topics will be covered in more
detail and demonstrated through practical examples in later chapters.

32.1 What is Android Jetpack?
Android Jetpack consists of Android Studio, the Android Architecture Components, the Android Support
Library, and a set of guidelines recommending how an Android App should be structured. The Android
Architecture Components are designed to make it quicker and easier to perform common tasks when developing
Android apps while also conforming to the key principle of the architectural guidelines.

While all Android Architecture Components will be covered in this book, this chapter will focus on the key
architectural guidelines and the ViewModel, LiveData, and Lifecycle components while introducing Data
Binding and Repositories.

Before moving on, it is important to understand that the Jetpack approach to app development is optional.
While highlighting some of the shortcomings of other techniques that have gained popularity over the years,
Google stopped short of completely condemning those approaches to app development. Google is taking the
position that while there is no right or wrong way to develop an app, there is a recommended way.

32.2 The “Old” Architecture
In the chapter entitled “Creating an Example Android App in Android Studio”, an Android project was created
consisting of a single activity that contained all of the code for presenting and managing the user interface
together with the back-end logic of the app. Until the introduction of Jetpack, the most common architecture
followed this paradigm with apps consisting of multiple activities (one for each screen within the app), with each
activity class to some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example, an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

32.3 Modern Android Architecture
At the most basic level, Google now advocates single-activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept referred to as “separation of concerns”). One of the keys to this approach

266

Modern Android App Architecture with Jetpack

is the ViewModel component.

32.4 The ViewModel Component
The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the
code responsible for displaying and managing the user interface and interacting with the operating system.
When designed this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data those controllers need.

The ViewModel only knows about the data model and corresponding logic. It knows nothing about the user
interface and does not attempt to directly access or respond to events relating to views within the user interface.
When a UI controller needs data to display, it asks the ViewModel to provide it. Similarly, when the user enters
data into a view within the user interface, the UI controller passes it to the ViewModel for handling.

This separation of responsibility addresses the issues relating to the lifecycle of UI controllers. Regardless of how
often the UI controller is recreated during the lifecycle of an app, the ViewModel instances remain in memory,
thereby maintaining data consistency. For example, a ViewModel used by an activity will remain in memory
until the activity finishes, which, in the single activity app, is not until the app exits.

Figure 32-1

32.5 The LiveData Component
Consider an app that displays real-time data, such as the current price of a financial stock. The app could
use a stock price web service to continuously update the data model within the ViewModel with the latest
information. This real-time data is of use only if it is displayed to the user promptly. There are only two ways that
the UI controller can ensure that the latest data is displayed in the user interface. One option is for the controller
to continuously check with the ViewModel to determine if the data has changed since it was last displayed.
However, the problem with this approach is that it could be more efficient. To maintain the real-time nature of
the data feed, the UI controller would have to run on a loop, continuously checking for the data to change.

A better solution would be for the UI controller to receive a notification when a specific data item within a
ViewModel changes. This is made possible by using the LiveData component. LiveData is a data holder that
allows a value to become observable. In basic terms, an observable object can notify other objects when changes
to its data occur, thereby solving the problem of ensuring that the user interface always matches the data within
the ViewModel.

This means, for example, that a UI controller interested in a ViewModel value can set up an observer, which will,
in turn, be notified when that value changes. In our hypothetical application, for example, the stock price would

267

Modern Android App Architecture with Jetpack

be wrapped in a LiveData object within the ViewModel, and the UI controller would assign an observer to the
value, declaring a method to be called when the value changes. When triggered by data change, this method will
read the updated value from the ViewModel and use it to update the user interface.

Figure 32-2
A LiveData instance may also be declared as mutable, allowing the observing entity to update the underlying
value held within the LiveData object. The user might, for example, enter a value in the user interface that needs
to overwrite the value stored in the ViewModel.

Another of the key advantages of using LiveData is that it is aware of the lifecycle state of its observers. If,
for example, an activity contains a LiveData observer, the corresponding LiveData object will know when the
activity’s lifecycle state changes and respond accordingly. If the activity is paused (perhaps the app is put into the
background), the LiveData object will stop sending events to the observer. Suppose the activity has just started
or resumes after being paused. In that case, the LiveData object will send a LiveData event to the observer so
that the activity has the most up-to-date value. Similarly, the LiveData instance will know when the activity is
destroyed and remove the observer to free up resources.

So far, we’ve only talked about UI controllers using observers. In practice, however, an observer can be used
within any object that conforms to the Jetpack approach to lifecycle management.

32.6 ViewModel Saved State
Android allows the user to place an active app in the background and return to it after performing other tasks
on the device (including running other apps). When a device runs low on resources, the operating system will
rectify this by terminating background app processes, starting with the least recently used app. However, when
the user returns to the terminated background app, it should appear in the same state as when it was placed in
the background, regardless of whether it was terminated. In terms of the data associated with a ViewModel, this
can be implemented using the ViewModel Saved State module. This module allows values to be stored in the
app’s saved state and restored in case of system-initiated process termination. This topic will be covered later in
the “An Android ViewModel Saved State Tutorial” chapter.

32.7 LiveData and Data Binding
Android Jetpack includes the Data Binding Library, which allows data in a ViewModel to be mapped directly to
specific views within the XML user interface layout file. In the AndroidSample project created earlier, code had
to be written to obtain references to the EditText and TextView views and to set and get the text properties to

268

Modern Android App Architecture with Jetpack

reflect data changes. Data binding allows the LiveData value stored in the ViewModel to be referenced directly
within the XML layout file avoiding the need to write code to keep the layout views updated.

Figure 32-3
Data binding will be covered in greater detail, starting with the chapter “An Overview of Android Jetpack Data
Binding”.

32.8 Android Lifecycles
The duration from when an Android component is created to the point that it is destroyed is called the lifecycle.
During this lifecycle, the component will change between different lifecycle states, usually under the operating
system’s control and in response to user actions. An activity, for example, will begin in the initialized state before
transitioning to the created state. Once the activity runs, it will switch to the started state, from which it will cycle
through various states, including created, started, resumed, and destroyed.

Many Android Framework classes and components allow other objects to access their current state. Lifecycle
observers may also be used so that an object receives a notification when the lifecycle state of another object
changes. The ViewModel component uses this technique behind the scenes to identify when an observer
has restarted or been destroyed. This functionality is not limited to Android framework and architecture
components. It may also be built into any other classes using a set of lifecycle components included with the
architecture components.

Objects that can detect and react to lifecycle state changes in other objects are said to be lifecycle-aware. In
contrast, objects that provide access to their lifecycle state are called lifecycle owners. The chapter entitled
“Working with Android Lifecycle-Aware Components” will cover Lifecycles in greater detail.

32.9 Repository Modules
If a ViewModel obtains data from one or more external sources (such as databases or web services, it is important
to separate the code involved in handling those data sources from the ViewModel class. Failure to do this would,
after all, violate the separation of concerns guidelines. To avoid mixing this functionality with the ViewModel,
Google’s architecture guidelines recommend placing this code in a separate Repository module.

A repository is not an Android architecture component but a Java class created by the app developer that is
responsible for interfacing with the various data sources. The class then provides an interface to the ViewModel,
allowing that data to be stored in the model.

269

Modern Android App Architecture with Jetpack

Figure 32-4

32.10 Summary
Until recently, Google has tended not to recommend any particular approach to structuring an Android app.
That has now changed with the introduction of Android Jetpack, consisting of tools, components, libraries, and
architecture guidelines. Google now recommends that an app project be divided into separate modules, each
responsible for a particular area of functionality, otherwise known as “separation of concerns”.

In particular, the guidelines recommend separating the view data model of an app from the code responsible
for handling the user interface. In addition, the code responsible for gathering data from data sources such as
web services or databases should be built into a separate repository module instead of being bundled with the
view model.

Android Jetpack includes the Android Architecture Components, designed to make developing apps that
conform to the recommended guidelines easier. This chapter has introduced the ViewModel, LiveData, and
Lifecycle components. These will be covered in more detail, starting with the next chapter. Other architecture
components not mentioned in this chapter will be covered later in the book.

285

Chapter 35

35. An Overview of Android Jetpack
Data Binding
In the chapter entitled “Modern Android App Architecture with Jetpack”, we introduced the concept of Android
Data Binding. We explained how it is used to directly connect the views in a user interface layout to the methods
and data located in other objects within an app without the need to write code. This chapter will provide more
details on data binding, emphasizing how data binding is implemented within an Android Studio project. The
tutorial in the next chapter (“An Android Jetpack Data Binding Tutorial”) will provide a practical example of data
binding in action.

35.1 An Overview of Data Binding
The Android Jetpack Data Binding Library provides data binding support, primarily providing a simple way to
connect the views in a user interface layout to the data stored within the app’s code (typically within ViewModel
instances). Data binding also provides a convenient way to map user interface controls, such as Button widgets,
to event and listener methods within other objects, such as UI controllers and ViewModel instances.

Data binding becomes particularly powerful when used in conjunction with the LiveData component. Consider,
for example, an EditText view bound to a LiveData variable within a ViewModel using data binding. When
connected in this way, any changes to the data value in the ViewModel will automatically appear within the
EditText view, and when using two-way binding, any data typed into the EditText will automatically be used
to update the LiveData value. Perhaps most impressive is that this can be achieved with no code beyond that
necessary to initially set up the binding.

Connecting an interactive view, such as a Button widget, to a method within a UI controller traditionally
required that the developer write code to implement a listener method to be called when the button is clicked.
Data binding makes this as simple as referencing the method to be called within the Button element in the layout
XML file.

35.2 The Key Components of Data Binding
An Android Studio project is not configured for data binding support by default. Several elements must be
combined before an app can begin using data binding. These involve the project build configuration, the
layout XML file, data binding classes, and the use of the data binding expression language. While this may
appear overwhelming at first, when taken separately, these are quite simple steps that, once completed, are
more than worthwhile in terms of saved coding effort. Each element will be covered in detail in the remainder
of this chapter. Once these basics have been covered, the next chapter will work through a detailed tutorial
demonstrating these steps.

35.2.1 The Project Build Configuration
Before a project can use data binding, it must be configured to use the Android Data Binding Library and to
enable support for data binding classes and the binding syntax. Fortunately, this can be achieved with just a few
lines added to the module level build.gradle.kts file (the one listed as build.gradle.kts (Module: app) under Gradle
Scripts in the Project tool window). The following lists a partial build file with data binding enabled:
.

286

An Overview of Android Jetpack Data Binding

.

android {

 buildFeatures {
 dataBinding = true
 }
.

.

35.2.2 The Data Binding Layout File
As we have seen in previous chapters, the user interfaces for an app are typically contained within an XML layout
file. Before the views contained within one of these layout files can take advantage of data binding, the layout file
must be converted to a data binding layout file.

As outlined earlier in the book, XML layout files define the hierarchy of components in the layout, starting with a
top-level or root view. Invariably, this root view takes the form of a layout container such as a ConstraintLayout,
FrameLayout, or LinearLayout instance, as is the case in the fragment_main.xml file for the ViewModelDemo
project:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

</androidx.constraintlayout.widget.ConstraintLayout>

To use data binding, the layout hierarchy must have a layout component as the root view, which, in turn, becomes
the parent of the current root view.

In the case of the above example, this would require that the following changes be made to the existing layout
file:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/main"

 android:layout_width="match_parent"

287

An Overview of Android Jetpack Data Binding

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

 </androidx.constraintlayout.widget.ConstraintLayout>

</layout>

35.2.3 The Layout File Data Element
The data binding layout file needs some way to declare the classes within the project to which the views in the
layout are to be bound (for example, a ViewModel or UI controller). Having declared these classes, the layout
file will need a variable name to reference those instances within binding expressions.

This is achieved using the data element, an example of which is shown below:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <data>
 <variable
 name="myViewModel"
 type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />
 </data>

 <androidx.constraintlayout.widget.ConstraintLayout

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

</layout>

The above data element declares a new variable named myViewModel of type MainViewModel (note that it is
necessary to declare the full package name of the MyViewModel class when declaring the variable).

The data element can import other classes that may then be referenced within binding expressions elsewhere in
the layout file. For example, if you have a class containing a method that needs to be called on a value before it
is displayed to the user, the class could be imported as follows:
<data>

 <import type="com.ebookfrenzy.MyFormattingTools" />

 <variable

 name="viewModel"

 type="com.ebookfrenzy.myapp.ui.main.MainViewModel" />

 </data>

288

An Overview of Android Jetpack Data Binding

35.2.4 The Binding Classes
For each class referenced in the data element within the binding layout file, Android Studio will automatically
generate a corresponding binding class. This subclass of the Android ViewDataBinding class will be named
based on the layout filename using word capitalization and the Binding suffix. Therefore, the binding class for a
layout file named fragment_main.xml file will be named FragmentMainBinding. The binding class contains the
bindings specified within the layout file and maps them to the variables and methods within the bound objects.

Although the binding class is generated automatically, code must be written to create an instance of the class
based on the corresponding data binding layout file. Fortunately, this can be achieved by making use of the
DataBindingUtil class.

The initialization code for an Activity or Fragment will typically set the content view or “inflate” the user
interface layout file. This means that the code opens the layout file, parses the XML, and creates and configures
all of the view objects in memory. In the case of an existing Activity class, the code to achieve this can be found
in the onCreate() method and will read as follows:
setContentView(R.layout.activity_main);

In the case of a Fragment, this takes place in the onCreateView() method:
return inflater.inflate(R.layout.fragment_main, container, false);

All that is needed to create the binding class instances within an Activity class is to modify this initialization
code as follows:
ActivityMainBinding binding;

binding = DataBindingUtil.setContentView(this, R.layout.activity_main, false);

In the case of a Fragment, the code would read as follows:
FragmentMainBinding binding;

binding = DataBindingUtil.inflate(

 inflater, R.layout.fragment_main, container, false);

binding.setLifecycleOwner(this);

View view = binding.getRoot();

return view;

35.2.5 Data Binding Variable Configuration
As outlined above, the data binding layout file contains the data element, which contains variable elements
consisting of variable names and the class types to which the bindings are to be established. For example:
<data>

 <variable

 name="viewModel"

 type="com.ebookfrenzy.viewmodeldemo.ui.main.MainViewModel" />

 <variable

 name="uiController"

 type="com.ebookfrenzy.viewmodeldemo_databinding.ui.main.MainFragment"
/>

</data>

289

An Overview of Android Jetpack Data Binding

In the above example, the first variable knows that it will be binding to an instance of a ViewModel class of type
MainViewModel but has yet to be connected to an actual MainViewModel object instance. This requires the
additional step of assigning the MainViewModel instance used within the app to the variable declared in the
layout file. This is performed via a call to the setVariable() method of the data binding instance, a reference to
which was obtained in the previous chapter:
MainViewModel mViewModel = new ViewModelProvider(this).get(MainViewModel.class);

binding.setVariable(viewModel, mViewModel);

The second variable in the above data element references a UI controller class in the form of a Fragment named
MainFragment. In this situation, the code within a UI controller (be it an Activity or Fragment) would need to
assign itself to the variable as follows:
binding.setVariable(uiController, this);

35.2.6 Binding Expressions (One-Way)
Binding expressions define how a particular view interacts with bound objects. For example, a binding expression
on a Button might declare which method on an object is called in response to a click. Alternatively, a binding
expression might define which data value stored in a ViewModel is to appear within a TextView and how it is to
be presented and formatted.

Binding expressions use a declarative language that allows logic and access to other classes and methods to
decide how bound data is used. Expressions can, for example, include mathematical expressions, method calls,
string concatenations, access to array elements, and comparison operations. In addition, all standard Java
language libraries are imported by default, so many things that can be achieved in Java can also be performed in
a binding expression. As already discussed, the data element may also be used to import custom classes to add
more capability to expressions.

A binding expression begins with an @ symbol followed by the expression enclosed in curly braces ({}).

Consider, for example, a ViewModel instance containing a variable named result. Assume that this class has been
assigned to a variable named viewModel within the data binding layout file and needs to be bound to a TextView
object so that the view always displays the latest result value. If this value were stored as a String object, this
would be declared within the layout file as follows:
<TextView

 android:id="@+id/resultText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@{viewModel.result}"
 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

In the above XML, the text property is set to the value stored in the result LiveData property of the viewModel
object.

Consider, however, that the result is stored within the model as a Float value instead of a String. That being
the case, the above expression would cause a compilation error. Clearly, the Float value must be converted to a
string before the TextView can display it. To resolve issues such as this, the binding expression can include the
necessary steps to complete the conversion using the standard Java language classes:
android:text="@{String.valueOf(viewModel.result)}"

290

An Overview of Android Jetpack Data Binding

When running the app after making this change, it is important to be aware that the following warning may
appear in the Android Studio console:
warning: myViewModel.result.getValue() is a boxed field but needs to be un-boxed
to execute String.valueOf(viewModel.result.getValue()).

Values in Java can take the form of primitive values such as the boolean type (referred to as being unboxed) or
wrapped in a Java object such as the Boolean type and accessed via reference to that object (i.e., boxed). The
unboxing process involves unwrapping the primitive value from the object.

To avoid this message, wrap the offending operation in a safeUnbox() call as follows:
android:text="@{String.valueOf(safeUnbox(myViewModel.result))}"

String concatenation may also be used. For example, to include the word “dollars” after the result string value,
the following expression would be used:
android:text='@{String.valueOf(safeUnbox(myViewModel.result)) + " dollars"}'

Note that since the appended result string is wrapped in double quotes, the expression is now encapsulated with
single quotes to avoid syntax errors.

The expression syntax also allows ternary statements to be declared. In the following expression, the view will
display different text depending on whether or not the result value is greater than 10.
@{myViewModel.result > 10 ? "Out of range" : "In range"}

Expressions may also be constructed to access specific elements in a data array:
@{myViewModel.resultsArray[3]}

35.2.7 Binding Expressions (Two-Way)
The type of expression covered so far is called one-way binding. In other words, the layout is constantly updated
as the corresponding value changes, but changes to the value from within the layout do not update the stored
value.

A two-way binding, on the other hand, allows the data model to be updated in response to changes in the layout.
An EditText view, for example, could be configured with a two-way binding so that when the user enters a
different value, that value is used to update the corresponding data model value. When declaring a two-way
expression, the syntax is similar to a one-way expression except that it begins with @=. For example:
android:text="@={myViewModel.result}"

35.2.8 Event and Listener Bindings
Binding expressions may also trigger method calls in response to events on a view. A Button view, for example,
can be configured to call a method when clicked. In the chapter entitled “Creating an Example Android App in
Android Studio”, for example, the onClick property of a button was configured to call a method within the app’s
main activity named convertCurrency(). Within the XML file, this was represented as follows:
android:onClick="convertCurrency"

The convertCurrency() method was declared along the following lines:
public void convertCurrency(View view) {

.

.

}

Note that this type of method call is always passed a reference to the view on which the event occurred. The same
effect can be achieved in data binding using the following expression (assuming the layout has been bound to a

291

An Overview of Android Jetpack Data Binding

class with a variable name of uiController):
android:onClick="@{uiController::convertCurrency}"

Another option, and one which provides the ability to pass parameters to the method, is referred to as a listener
binding. The following expression uses this approach to call a method on the same viewModel instance with no
parameters:
android:onClick='@{() -> myViewModel.methodOne()}'

The following expression calls a method that expects three parameters:
android:onClick='@{() -> myViewModel.methodTwo(viewModel.result, 10, "A
String")}'

Binding expressions provide a rich and flexible language to bind user interface views to data and methods
in other objects. This chapter has only covered the most common use cases. To learn more about binding
expressions, review the Android documentation online at:
https://developer.android.com/topic/libraries/data-binding/expressions

35.3 Summary
Android data bindings provide a system for creating connections between the views in a user interface layout
and the data and methods of other objects within the app architecture without writing code. Once some initial
configuration steps have been performed, data binding involves using binding expressions within the view
elements of the layout file. These binding expressions can be either one-way or two-way and may also be used to
bind methods to be called in response to events such as button clicks within the user interface.

315

Chapter 40

40. An Overview of the Navigation
Architecture Component
Very few Android apps today consist of just a single screen. In reality, most apps comprise multiple screens
through which the user navigates using screen gestures, button clicks, and menu selections. Before the
introduction of Android Jetpack, implementing navigation within an app was largely a manual coding process
with no easy way to view and organize potentially complex navigation paths. However, this situation has
improved considerably with the introduction of the Android Navigation Architecture Component combined
with support for navigation graphs in Android Studio.

40.1 Understanding Navigation
Every app has a home screen that appears after the app has launched and after any splash screen has appeared
(a splash screen being the app branding screen that appears temporarily while the app loads). The user will
typically perform tasks from this home screen, resulting in other screens appearing. These screens will usually
take the form of other activities and fragments within the app. For example, a messaging app may have a home
screen listing current messages from which users can navigate to another screen to access a contact list or a
settings screen. The contacts list screen, in turn, might allow the user to navigate to other screens where new
users can be added or existing contacts updated. Graphically, the app’s navigation graph might be represented as
shown in Figure 40-1:

Figure 40-1
Each screen that makes up an app, including the home screen, is referred to as a destination and is usually a
fragment or activity. The Android navigation architecture uses a navigation stack to track the user’s path through
the destinations within the app. When the app first launches, the home screen is the first destination placed
onto the stack and becomes the current destination. When the user navigates to another destination, that screen

316

An Overview of the Navigation Architecture Component

becomes the current destination and is pushed onto the stack above the home destination. As the user navigates
to other screens, they are also pushed onto the stack. Figure 40-2, for example, shows the current state of the
navigation stack for the hypothetical messaging app after the user has launched the app and is navigating to the
“Add Contact” screen:

Figure 40-2
As the user navigates back through the screens using the system back button, each destination is popped off the
stack until the home screen is once again the only destination on the stack. In Figure 40-3, the user has navigated
back from the Add Contact screen, popping it off the stack and making the Contacts List screen the current
destination:

Figure 40-3
All of the work involved in navigating between destinations and managing the navigation stack is handled by a
navigation controller, represented by the NavController class.

Adding navigation to an Android project using the Navigation Architecture Component is a straightforward
process involving a navigation host, navigation graph, navigation actions, and minimal code writing to obtain a
reference to, and interact with, the navigation controller instance.

40.2 Declaring a Navigation Host
A navigation host is a special fragment (NavHostFragment) embedded into the user interface layout of an
activity and serves as a placeholder for the destinations through which the user will navigate. Figure 40-4, for
example, shows a typical activity screen and highlights the area represented by the navigation host fragment:

317

An Overview of the Navigation Architecture Component

Figure 40-4
A NavHostFragment can be placed into an activity layout within the Android Studio layout editor either by
dragging and dropping an instance from the Containers section of the palette or by manually editing the XML
as follows:
<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/container"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity" >

 <androidx.fragment.app.FragmentContainerView
 android:id="@+id/demo_nav_host_fragment"
 android:name="androidx.navigation.fragment.NavHostFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:defaultNavHost="true"
 app:navGraph="@navigation/navigation_graph" />
</FrameLayout>

The points of note in the above navigation host fragment element are the reference to the NavHostFragment in
the name property, the setting of defaultNavHost to true, and the assignment of the file containing the navigation
graph to the navGraph property.

When the activity launches, this navigation host fragment is replaced by the home destination designated in
the navigation graph. As the user navigates through the app screens, the host fragment will be replaced by the
appropriate fragment for the destination.

318

An Overview of the Navigation Architecture Component

40.3 The Navigation Graph
A navigation graph is an XML file that contains the destinations that will be included in the app navigation. In
addition to these destinations, the file contains navigation actions that define navigation between destinations
and optional arguments for passing data from one destination to another. Android Studio includes a navigation
graph editor that can be used to design graphs and implement actions either visually or by manually editing the
XML.

Figure 40-5 shows the Android Studio navigation graph editor in Design mode:

Figure 40-5
The destinations list (A) lists all destinations within the graph. Selecting a destination from the list will locate and
select the corresponding destination in the graph (particularly useful for locating specific destinations in a large
graph). The navigation graph panel (B) contains a dialog for each destination representing the user interface
layout. In this example, this graph contains two destinations named mainFragment and secondFragment.
Arrows between destinations (C) represent navigation action connections. Actions are added by hovering the
mouse pointer over the edge of the origin until a circle appears, then clicking and dragging from the circle to
the destination. The Attributes panel (D) allows the properties of the currently selected destination or action
connection to be viewed and modified. In the above figure, the attributes for the action are displayed. New
destinations are added by clicking on the button marked E and selecting options from a menu. Options are
available to add existing fragments or activities as destinations or to create new blank fragment destinations. The
Component Tree panel (F) provides a hierarchical overview of the navigation graph.

The underlying XML for the navigation graph can be viewed and modified by switching the editor into Code
mode. The following XML listing represents the navigation graph for the destinations and action connection
shown in Figure 40-5 above:
<?xml version="1.0" encoding="utf-8"?>

<navigation xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/navigation_graph"

 app:startDestination="@id/mainFragment">

 <fragment

 android:id="@+id/mainFragment"

319

An Overview of the Navigation Architecture Component

 android:name="com.ebookfrenzy.navigationdemo.ui.main.MainFragment"

 android:label="fragment_main"

 tools:layout="@layout/fragment_main" >

 <action

 android:id="@+id/mainToSecond"

 app:destination="@id/secondFragment" />

 </fragment>

 <fragment

 android:id="@+id/secondFragment"

 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"

 android:label="fragment_second"

 tools:layout="@layout/fragment_second" >

 </fragment>

</navigation>

Navigation graphs can also be split over multiple files to improve organization and promote reuse. When
structured in this way, nested graphs are embedded into root graphs. To create a nested graph, shift-click on the
destinations to be nested, right-click over the first destination and select the Move to Nested Graph -> New Graph
menu option. The nested graph will then appear as a new node in the graph. Double-click on the nested graph
node to load the graph file into the editor to access the nested graph.

40.4 Accessing the Navigation Controller
Navigating from one destination to another usually occurs in response to an event within an app, such as a
button click or menu selection. Before a navigation action can be triggered, the code must first obtain a reference
to the navigation controller instance. This requires a call to the findNavController() method of the Navigation or
NavHostFragment classes. The following code, for example, can be used to access the navigation controller of an
activity. Note that for the code to work, the activity must contain a navigation host fragment:
NavController controller =

 Navigation.findNavController(activity, R.id.demo_nav_host_fragment);

In this case, the method call is passed a reference to the activity and the id of the NavHostFragment embedded
in the activity’s layout.

Alternatively, the navigation controller associated with any view may be identified by passing that view to the
method:
NavController controller = Navigation.findNavController(binding.button);

The final option finds the navigation controller for a fragment by calling the findNavController() method of the
NavHostFragment class, passing through a reference to the fragment:
NavController controller = NavHostFragment.findNavController(fragment);

40.5 Triggering a Navigation Action
Once the navigation controller has been found, a navigation action is triggered by calling the controller’s
navigate() method and passing through the resource id of the action to be performed. For example:
controller.navigate(R.id.goToContactsList);

The id of the action is defined within the Attributes panel of the navigation graph editor when an action
connection is selected.

320

An Overview of the Navigation Architecture Component

40.6 Passing Arguments
Data may be passed from one destination to another during a navigation action by using arguments declared
within the navigation graph file. An argument consists of a name, type, and an optional default value and may
be added manually within the XML or using the Attributes panel when an action arrow or destination is selected
within the graph. In Figure 40-6, for example, an integer argument named contactsCount has been declared with
a default value of 0:

Figure 40-6
Once added, arguments are placed within the XML element of the receiving destination, for example:
<fragment

 android:id="@+id/secondFragment"

 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"

 android:label="fragment_second"

 tools:layout="@layout/fragment_second" >

 <argument

 android:name="contactsCount"

 android:defaultValue=0

 app:type="integer" />

</fragment>

The Navigation Architecture Component provides two techniques for passing data between destinations. One
approach involves placing the data into a Bundle object that is passed to the destination during an action, where
it is then unbundled and the arguments extracted.

The main drawback to this particular approach is that it is not “type safe”. In other words, if the receiving
destination treats an argument as a different type than it was declared (for example, treating a string as an
integer) this error will not be caught by the compiler and will likely cause problems at runtime.

A better option, which is used in this book, is safeargs. Safeargs is a plugin for the Android Studio Gradle build
system which automatically generates special classes that allow arguments to be passed in a type-safe way. The
safeargs approach to argument passing will be described and demonstrated in the next chapter (“An Android
Jetpack Navigation Component Tutorial”).

40.7 Summary
Navigation within the context of an Android app user interface refers to the ability of a user to move back and
forth between different screens. Once time-consuming to implement and difficult to organize, Android Studio
and the Navigation Architecture Component now make it easier to implement and manage navigation within
Android app projects.

The different screens within an app are referred to as destinations and are usually represented by fragments
or activities. All apps have a home destination, including the screen displayed when the app first loads. The
content area of this layout is replaced by a navigation host fragment which is swapped out for other destination
fragments as the user navigates the app. The navigation path is defined by the navigation graph file consisting of
destinations and the actions that connect them together with any arguments to be passed between destinations.
Navigation is handled by navigation controllers, which, in addition to managing the navigation stack, provide
methods to initiate navigation actions from within app code.

337

Chapter 42

42. An Introduction to MotionLayout
The MotionLayout class provides an easy way to add animation effects to the views of a user interface layout.
This chapter will begin by providing an overview of MotionLayout and introduce the concepts of MotionScenes,
Transitions, and Keyframes. Once these basics have been covered, the next two chapters (entitled “An Android
MotionLayout Editor Tutorial” and “A MotionLayout KeyCycle Tutorial”) will provide additional detail and
examples of MotionLayout animation in action through the creation of example projects.

42.1 An Overview of MotionLayout
MotionLayout is a layout container, the primary purpose of which is to animate the transition of views within
a layout from one state to another. MotionLayout could, for example, animate the motion of an ImageView
instance from the top left-hand corner of the screen to the bottom right-hand corner over a specified time.
In addition to the position of a view, other attribute changes may also be animated, such as the color, size, or
rotation angle. These state changes can also be interpolated (such that a view moves, rotates, and changes size
throughout the animation).

The motion of a view using MotionLayout may be performed in a straight line between two points or
implemented to follow a path comprising intermediate points at different positions between the start and end
points. MotionLayout also supports using touches and swipes to initiate and control animation.

MotionLayout animations are declared entirely in XML and do not typically require writing code. These XML
declarations may be implemented manually in the Android Studio code editor, visually using the MotionLayout
editor, or combining both approaches.

42.2 MotionLayout
When implementing animation, the ConstraintLayout container typically used in a user interface must first be
converted to a MotionLayout instance (a task which can be achieved by right-clicking on the ConstraintLayout
in the layout editor and selecting the Convert to MotionLayout menu option). MotionLayout also requires at
least version 2.0.0 of the ConstraintLayout library.

Unsurprisingly since it is a subclass of ConstraintLayout, MotionLayout supports all of the layout features of the
ConstraintLayout. Therefore, a user interface layout can be similarly designed when using MotionLayout for
views that do not require animation.

For views that are to be animated, two ConstraintSets are declared, defining the appearance and location of the
view at the start and end of the animation. A transition declaration defines keyframes to apply additional effects
to the target view between these start and end states and click and swipe handlers used to start and control the
animation.

The start and end ConstraintSets and the transitions are declared within a MotionScene XML file.

42.3 MotionScene
As we have seen in earlier chapters, an XML layout file contains the information necessary to configure the
appearance and layout behavior of the static views presented to the user, and this is still the case when using
MotionLayout. For non-static views (in other words, the views that will be animated), those views are still
declared within the layout file, but the start, end, and transition declarations related to those views are stored
in a separate XML file referred to as the MotionScene file (so called because all of the declarations are defined

338

An Introduction to MotionLayout

within a MotionScene element). This file is imported into the layout XML file and contains the start and end
ConstraintSets and Transition declarations (a single file can contain multiple ConstraintSet pairs and Transition
declarations, allowing different animations to be targeted to specific views within the user interface layout).

The following listing shows a template for a MotionScene file:
<?xml version="1.0" encoding="utf-8"?>

<MotionScene

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:motion="http://schemas.android.com/apk/res-auto">

 <Transition

 motion:constraintSetEnd="@+id/end"

 motion:constraintSetStart="@id/start"

 motion:duration="1000">

 <KeyFrameSet>

 </KeyFrameSet>

 </Transition>

 <ConstraintSet android:id="@+id/start">

 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">

 </ConstraintSet>

</MotionScene>

In the above XML, ConstraintSets named start and end (though any name can be used) have been declared,
which, at this point, are yet to contain any constraint elements. The Transition element defines that these
ConstraintSets represent the animation start and end points and contain an empty KeyFrameSet element ready
to be populated with additional animation keyframe entries. The Transition element also includes a millisecond
duration property to control the running time of the animation.

ConstraintSets do not have to imply the motion of a view. It is possible to have the start and end sets declare the
same location on the screen and then use the transition to animate other property changes, such as scale and
rotation angle.

ConstraintSets do not have to imply the motion of a view. It is possible, for example, to have the start and end
sets declare the same location on the screen and then use the transition to animate other property changes, such
as scale and rotation angle.

42.4 Configuring ConstraintSets
The ConstraintSets in the MotionScene file allow the full set of ConstraintLayout settings to be applied to a view
regarding positioning, sizing, and relation to the parent and other views. In addition, the following attributes
may also be included within the ConstraintSet declarations:

• alpha

• visibility

• elevation

• rotation

339

An Introduction to MotionLayout

• rotationX

• rotationY

• translationX

• translationY

• translationZ

• scaleX

• scaleY

For example, to rotate the view by 180° during the animation, the following could be declared within the start
and end constraints:
<ConstraintSet android:id="@+id/start">

 <Constraint

.

.

 motion:layout_constraintStart_toStartOf="parent"

 android:rotation="0">
 </Constraint>

</ConstraintSet>

<ConstraintSet android:id="@+id/end">

 <Constraint

.

.

 motion:layout_constraintBottom_toBottomOf="parent"

 android:rotation="180">
 </Constraint>

</ConstraintSet>

The above changes tell MotionLayout that the view is to start at 0° and then, during the animation, rotate a full
180° before coming to rest upside-down.

42.5 Custom Attributes
In addition to the standard attributes listed above, it is possible to specify a range of custom attributes (declared
using CustomAttribute). In fact, just about any property available on the view type can be specified as a
custom attribute for inclusion in an animation. To identify the attribute’s name, find the getter/setter name
from the documentation for the target view class, remove the get/set prefix, and lower the case of the first
remaining character. For example, to change the background color of a Button view in code, we might call the
setBackgroundColor() setter method as follows:
myButton.setBackgroundColor(Color.RED)

When setting this attribute in a constraint set or keyframe, the attribute name will be backgroundColor. In
addition to the attribute name, the value must also be declared using the appropriate type from the following
list of options:

• motion:customBoolean - Boolean attribute values.

340

An Introduction to MotionLayout

• motion:customColorValue - Color attribute values.

• motion:customDimension - Dimension attribute values.

• motion:customFloatValue - Floating point attribute values.

• motion:customIntegerValue - Integer attribute values.

• motion:customStringValue - String attribute values

For example, a color setting will need to be assigned using the customColorValue type:
<CustomAttribute

 motion:attributeName="backgroundColor"

 motion:customColorValue="#43CC76" />

The following excerpt from a MotionScene file, for example, declares start and end constraints for a view in
addition to changing the background color from green to red:
.

.

 <ConstraintSet android:id="@+id/start">

 <Constraint
 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 motion:layout_editor_absoluteX="21dp"

 android:id="@+id/button"

 motion:layout_constraintTop_toTopOf="parent"

 motion:layout_constraintStart_toStartOf="parent" >

 <CustomAttribute
 motion:attributeName="backgroundColor"
 motion:customColorValue="#33CC33" />
 </Constraint>
 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">

 <Constraint

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 motion:layout_editor_absoluteY="21dp"

 android:id="@+id/button"

 motion:layout_constraintEnd_toEndOf="parent"

 motion:layout_constraintBottom_toBottomOf="parent" >

 <CustomAttribute
 motion:attributeName="backgroundColor"
 motion:customColorValue="#F80A1F" />
 </Constraint>
 </ConstraintSet>

.

.

341

An Introduction to MotionLayout

42.6 Triggering an Animation
Without some event to tell MotionLayout to start the animation, none of the settings in the MotionScene file will
affect the layout (except that the view will be positioned based on the setting in the start ConstraintSet).

The animation can be configured to start in response to either screen tap (OnClick) or swipe motion (OnSwipe)
gesture. The OnClick handler causes the animation to start and run until completion, while OnSwipe will
synchronize the animation to move back and forth along the timeline to match the touch motion. The OnSwipe
handler will also respond to “flinging” motions on the screen. The OnSwipe handler also provides options
to configure how the animation reacts to dragging in different directions and the side of the target view to
which the swipe is to be anchored. This allows, for example, left-ward dragging motions to move a view in the
corresponding direction while preventing an upward motion from causing a view to move sideways (unless, of
course, that is the required behavior).

The OnSwipe and OnClick declarations are contained within the Transition element of a MotionScene file.
In both cases, the view id must be specified. For example, to implement an OnSwipe handler responding to
downward drag motions anchored to the bottom edge of a view named button, the following XML would be
placed in the Transition element:
.

.

<Transition

 motion:constraintSetEnd="@+id/end"

 motion:constraintSetStart="@id/start"

 motion:duration="1000">

 <KeyFrameSet>

 </KeyFrameSet>

 <OnSwipe
 motion:touchAnchorId="@+id/button"
 motion:dragDirection="dragDown"
 motion:touchAnchorSide="bottom" />
</Transition>

.

.

Alternatively, to add an OnClick handler to the same button:
<OnClick motion:targetId="@id/button"

 motion:clickAction="toggle" />

In the above example, the action has been set to toggle mode. This mode and the other available options can be
summarized as follows:

• toggle - Animates to the opposite state. For example, if the view is currently at the transition start point, it will
transition to the end point, and vice versa.

• jumpToStart - Changes immediately to the start state without animation.

• jumpToEnd - Changes immediately to the end state without animation.

• transitionToStart - Transitions with animation to the start state.

• transitionToEnd - Transitions with animation to the end state.

342

An Introduction to MotionLayout

42.7 Arc Motion
By default, a movement of view position will travel in a straight line between the start and end points. To change
the motion to an arc path, use the pathMotionArc attribute as follows within the start constraint, configured with
either a startHorizontal or startVertical setting to define whether the arc is to be concave or convex:
<ConstraintSet android:id="@+id/start">

 <Constraint

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 motion:layout_editor_absoluteX="21dp"

 android:id="@+id/button"

 motion:layout_constraintTop_toTopOf="parent"

 motion:layout_constraintStart_toStartOf="parent"

 motion:pathMotionArc="startVertical" >

Figure 42-1 illustrates startVertical and startHorizontal arcs in comparison to the default straight line motion:

Figure 42-1

42.8 Keyframes
All of the ConstraintSet attributes outlined so far only apply to the start and end points of the animation. In other
words, if the rotation property were set to 180° on the end point, the rotation would begin when the animation
starts and complete when the end point is reached. It is not, therefore, possible to configure the rotation to reach
the full 180° at a point 50% of the way through the animation and then rotate back to the original orientation by
the end. Fortunately, this type of effect is available using Keyframes.

Keyframes are used to define intermediate points during the animation at which state changes are to occur.
Keyframes could, for example, be declared such that the background color of a view is to have transitioned to
blue at a point 50% of the way through the animation, green at the 75% point, and then back to the original color
by the end of the animation. Keyframes are implemented within the Transition element of the MotionScene file
embedded into the KeyFrameSet element.

MotionLayout supports several types of Keyframe which can be summarized as follows:

42.8.1 Attribute Keyframes
Attribute Keyframes (declared using KeyAttribute) allow view attributes to be changed at intermediate points
in the animation timeline. KeyAttribute supports the attributes listed above for ConstraintSets combined with
the ability to specify where the change will take effect in the animation timeline. For example, the following

343

An Introduction to MotionLayout

Keyframe declaration will gradually cause the button view to double in size horizontally (scaleX) and vertically
(scaleY), reaching full size at 50% through the timeline. For the remainder of the timeline, the view will decrease
in size to its original dimensions:
<Transition

 motion:constraintSetEnd="@+id/end"

 motion:constraintSetStart="@id/start"

 motion:duration="1000">

 <KeyFrameSet>

 <KeyAttribute
 motion:motionTarget="@+id/button"
 motion:framePosition="50"
 android:scaleX="2.0" />
 <KeyAttribute
 motion:motionTarget="@+id/button"
 motion:framePosition="50"
 android:scaleY="2.0" />
 </KeyFrameSet>

42.8.2 Position Keyframes
Position keyframes (KeyPosition) modify the path followed by a view as it moves between the start and
end locations. By placing key positions at different points on the timeline, a path of just about any level of
complexity can be applied to an animation. Positions are declared using x and y coordinates combined with
the corresponding points in the transition timeline. These coordinates must be declared relative to one of the
following coordinate systems:

• parentRelative - The x and y coordinates are relative to the parent container where the coordinates are
specified as a percentage (represented as a value between 0.0 and 1.0):

Figure 42-2

344

An Introduction to MotionLayout

• deltaRelative - Instead of relative to the parent, the x and y coordinates are relative to the start and end
positions. For example, the start point is (0, 0) the end point (1, 1). Keep in mind that the x and y coordinates
can be negative values):

Figure 42-3
• pathRelative - The x and y coordinates are relative to the path, where the straight line between the start and

end points serves as the graph’s X-axis. Once again, coordinates are represented as a percentage (0.0 to 1.0).
This is similar to the deltaRelative coordinate space but takes into consideration the angle of the path. Once
again coordinates may be negative:

Figure 42-4

345

An Introduction to MotionLayout

As an example, the following ConstraintSets declare start and end points on either side of a device screen. By
default, a view transition using these points would move in a straight line across the screen, as illustrated in
Figure 42-5:

Figure 42-5
Suppose, however, that the view is required to follow a path similar to that shown in Figure 42-6 below:

Figure 42-6
To achieve this, keyframe position points could be declared within the transition as follows:
<KeyPosition

 motion:motionTarget="@+id/button"

 motion:framePosition="25"

 motion:keyPositionType="pathRelative"

 motion:percentY="0.3"

 motion:percentX="0.25"/>

<KeyPosition

 motion:motionTarget="@+id/button"

 motion:framePosition="75"

 motion:keyPositionType="pathRelative"

 motion:percentY="-0.3"

 motion:percentX="0.75"/>

The above elements create keyframe position points 25% and 75% through the path using the pathRelative
coordinate system. The first position is placed at coordinates (0.25, 0.3) and the second at (0.75, -0.3). These
position keyframes can be visualized as illustrated in Figure 42-7 below:

346

An Introduction to MotionLayout

Figure 42-7

42.9 Time Linearity
Without additional settings, the animations outlined above will be performed at a constant speed. To vary
the animation speed (for example, so that it accelerates and then decelerates), the transition easing attribute
(transitionEasing) can be used within a ConstraintSet or Keyframe.

For complex easing requirements, the linearity can be defined by plotting points on a cubic Bézier curve, for
example:
.

.

 motion:layout_constraintBottom_toBottomOf="parent"

 motion:transitionEasing="cubic(0.2, 0.7, 0.3, 1)"
 android:rotation="360">

.

.

If you are unfamiliar with Bézier curves, consider using the curve generator online at the following URL:

https://cubic-bezier.com/

For most requirements, however, easing can be specified using the built-in standard, accelerate and decelerate
values:
.

.

 motion:layout_constraintBottom_toBottomOf="parent"

 motion:transitionEasing="decelerate"
 android:rotation="360">

.

.

42.10 KeyTrigger
The trigger keyframe (KeyTrigger) allows a method on a view to be called when the animation reaches a
specified frame position within the animation timeline. This also takes into consideration the direction of the

https://cubic-bezier.com/

347

An Introduction to MotionLayout

animations. For example, different methods can be called depending on whether the animation runs forward or
backward. Consider a button that is to be made visible when the animation moves beyond 20% of the timeline.
The KeyTrigger would be implemented within the KeyFrameSet of the Transition element as follows using the
onPositiveCross property:
.

.

 <KeyFrameSet>

 <KeyTrigger
 motion:framePosition="20"
 motion:onPositiveCross="show"
 motion:motionTarget="@id/button"/>
.

.

Similarly, if the same button is to be hidden when the animation is reversed and drops below 10%, a second key
trigger could be added using the onNegativeCross property:
<KeyTrigger

 motion:framePosition="10"

 motion:onNegativeCross="show"
 motion:motionTarget="@id/button2"/>

If the animation is using toggle action, use the onCross property:
<KeyTrigger

 motion:framePosition="10"

 motion:onCross="show"

 motion:motionTarget="@id/button2"/>

42.11 Cycle and Time Cycle Keyframes
While position keyframes can be used to add intermediate state changes into the animation, this would
quickly become cumbersome if large numbers of repetitive positions and changes needed to be implemented.
For situations where state changes need to be performed repetitively with predictable changes, MotionLayout
includes the Cycle and Time Cycle keyframes. The chapter entitled “A MotionLayout KeyCycle Tutorial” will
cover this topic in detail.

42.12 Starting an Animation from Code
So far in this chapter, we have only looked at controlling an animation using the OnSwipe and OnClick handlers.
It is also possible to start an animation from within code by calling methods on the MotionLayout instance. The
following code, for example, runs the transition from start to end with a duration of 2000ms for a layout named
motionLayout:
motionLayout.setTransitionDuration(2000);

motionLayout.transitionToEnd();

In the absence of additional settings, the start and end states used for the animation will be those declared in the
Transition declaration of the MotionScene file. To use specific start and end constraint sets, reference them by id
in a call to the setTransition() method of the MotionLayout instance:
motionLayout.setTransition(R.id.myStart, R.id.myEnd);

motionLayout.transitionToEnd();

To monitor the state of an animation while it is running, add a transition listener to the MotionLayout instance

348

An Introduction to MotionLayout

as follows:
motionLayout.setTransitionListener(transitionListener);

MotionLayout.TransitionListener transitionListener =

 new MotionLayout.TransitionListener() {

 @Override

 public void onTransitionStarted(MotionLayout motionLayout,

 int startId, int endId) {

 // Called when the transition starts

 }

 @Override

 public void onTransitionChange(MotionLayout motionLayout, int startId,

 int endId, float progress) {

 // Called each time a property changes. Track progress value to find

 // current position

 }

 @Override

 public void onTransitionCompleted(MotionLayout motionLayout, int currentId) {

 // Called when the transition is complete

 }

 @Override

 public void onTransitionTrigger(MotionLayout motionLayout, int triggerId,

 boolean positive, float progress) {

 // Called when a trigger keyframe threshold is crossed

 }

};

42.13 Summary
MotionLayout is a subclass of ConstraintLayout designed specifically to add animation effects to the views in
user interface layouts. MotionLayout works by animating the transition of a view between two states defined
by start and end constraint sets. Additional animation effects may be added between these start and end points
using keyframes.

Animations may be triggered via OnClick or OnSwipe handlers or programmatically via method calls on the
MotionLayout instance.

407

Chapter 49

49. A Layout Editor Sample Data
Tutorial
The CardDemo project created in the previous chapter has provided a good example of how it can be difficult
to assess from within the layout editor exactly how a user interface is going to appear until the completed app
is tested. This is a problem that frequently occurs when the content to be displayed in a user interface is only
generated or acquired once the user has the app installed and running.

For some time now, the Android Studio layout editor has provided the ability to specify simple attributes that
are active only when the layout is being designed. A design-time only string resource could, for example, be
assigned to a TextView within the layout editor that would not appear when the app runs. This capability has
been extended significantly with the introduction of sample data support within the Android Studio layout
editor and will be used in this chapter to improve the layout editor experience in the CardDemo project.

49.1 Adding Sample Data to a Project
During the design phase of the user interface layout, the RecyclerView instance (Figure 49-1) bears little
resemblance to the running app tested at the end of the previous chapter:

Figure 49-1
In the “Modern Android App Architecture with Jetpack” chapter earlier in the book the concept of sample data
was introduced. To demonstrate sample data in use, the project will now be modified so that the fully populated
cards appear within the RecyclerView from within the layout editor. Before doing that, however, it is worth
noting that the layout editor has a collection of preconfigured sample data templates that can be used when
designing user interfaces. To see some of these in action, load the content_main.xml layout file into the layout
editor and select the RecyclerView instance. Right-click on the RecyclerView and select the Set Sample Data
menu option to display the Design-time View Attributes panel:

408

A Layout Editor Sample Data Tutorial

Figure 49-2
Change the template to the Email Client option and the item count to 12 and note that the RecyclerView changes
to display data from the template:

Figure 49-3
These templates can be useful for displaying sample data without any additional work and will often provide
enough to complete the layout design. For this example, however, sample data is going to be used to display the
cards within the RecyclerView as they are intended to appear in the running app. With the content_main.xml
file still loaded in the layout editor, switch to Code mode and locate the RecyclerView element which should
read as follows:
<androidx.recyclerview.widget.RecyclerView

 android:id="@+id/recyclerView"

 android:layout_width="0dp"

 android:layout_height="0dp"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 tools:itemCount="12"

 tools:listitem="@layout/recycler_view_item" />

.

409

A Layout Editor Sample Data Tutorial

.

Note the two special tools properties currently configured to display 12 items in the list, each using a layout
contained within a file named recycler_view_item.xml. The layout editor provides a range of tools options that
may be configured within a layout file. Though coverage of all of these settings is beyond the scope of this book,
a full description of each can be found at the following URL:

https://developer.android.com/studio/write/tool-attributes#toolssample_resources

The recycler_view_item.xml file referenced above was generated automatically by the layout editor when the
sample data template was selected and can be found in the project tool window.

Switch back to Design mode and, with the RecyclerView selected, use the Design-time View Attributes panel to
switch the template back to the default settings. The recycler_view_item.xml file will be removed from the project
along with the two tools property lines within the content_main.xml XML file (if Android Studio fails to remove
the lines they may be deleted manually from within the Code view).

To switch to using the card layout for the sample data display, add a listitem property to reference the card_
layout.xml file. With the RecyclerView selected in the layout, search for the listitem property in the Attributes
tool window and enter @layout/card_layout into the property field as illustrated in Figure 49-4:

Figure 49-4
Note the card layout is now appearing for each list item, though without any images and using sample text data:

Figure 49-5
The next step is to display some images and different text on the views within the card layout. This can either

410

A Layout Editor Sample Data Tutorial

take the form of template sample data provided by the layout editor, or custom sample data added specifically for
this project. Load the card_layout.xml file into the layout editor, select the ImageView and display the Design-
time View Attributes panel as outlined earlier in the chapter. From the srcCompat menu, select the built-in
backgrounds/scenic image set as illustrated in Figure 49-6 below:

Figure 49-6
Next, right-click on the itemTitle TextView object, select the Set Sample Data menu option and, in the Design-
time attributes panel, select the cities text option. Repeat this step for the itemDetail view, this time selecting the
full_names option as shown in Figure 49-7:

Figure 49-7
Open the content_main.xml file in Design mode and note that the RecyclerView is now using the built-in images
and sample text data:

411

A Layout Editor Sample Data Tutorial

Figure 49-8

49.2 Using Custom Sample Data
The final step in this chapter is to demonstrate the use of custom sample data and images within the layout
editor. This requires the creation of a sample data directory and the addition of some text and image files. Within
the Project tool window, right-click on the app entry and select the New -> Sample Data Directory menu option,
at which point a new directory named sampledata will appear within the Project tool window. If the new folder is
not visible, switch the Project tool window from Android to Project mode and find the folder under CardDemo
-> app as shown in Figure 49-9:

Figure 49-9
Right-click on the sampledata directory, create a directory named images and copy and paste the Android
images into the new folder using the same steps outlined in the previous chapter. In the card_layout.xml file,
display the Design-time View Attributes panel for the ImageView once again, this time clicking the Browse link
and selecting the newly added Android images in the Resources dialog (if the images folder does not appear try
rebuilding the project):

412

A Layout Editor Sample Data Tutorial

Figure 49-10
Right-click once again on the sampledata directory, select the New -> File option, name the file chapters, and
enter the following content:
Chapter One

Chapter Two

Chapter Three

Chapter Four

Chapter Five

Chapter Six

Chapter Seven

Chapter Eight

Next, create a second text file named items with the following content:
Item one details

Item two details

Item three details

Item four details

Item five details

Item six details

Item seven details

Item eight details

With the sample data text files created, all that remains is to reference them in the view elements of the card_
layout.xml file as follows:
<TextView

 android:id="@+id/itemTitle"

 android:layout_width="236dp"

 android:layout_height="39dp"

 android:layout_marginStart="16dp"

 android:textSize="30sp"

 app:layout_constraintLeft_toRightOf="@+id/itemImage"

413

A Layout Editor Sample Data Tutorial

 app:layout_constraintStart_toEndOf="@+id/itemImage"

 app:layout_constraintTop_toTopOf="parent"

 tools:text="@sample/chapters" />

<TextView

 android:id="@+id/itemDetail"

 android:layout_width="236dp"

 android:layout_height="16dp"

 android:layout_marginStart="16dp"

 android:layout_marginTop="8dp"

 app:layout_constraintLeft_toRightOf="@+id/itemImage"

 app:layout_constraintStart_toEndOf="@+id/itemImage"

 app:layout_constraintTop_toBottomOf="@+id/itemTitle"

 tools:text="@sample/items" />

Rebuild the app and return to the layout design in the content_main.xml file where the custom sample data and
images should now be displayed within the RecyclerView list:

Figure 49-11
Instead of having two separate text files and a reference to the image set, another option is to declare the sample
data within a JSON file. For example:
{

 "mydata": [

 {

 "chapter" : "Chapter One",

 "details": "Item one details",

 "image": "@sample/images"

 },

 {

414

A Layout Editor Sample Data Tutorial

 "chapter" : "Chapter Two",

 "details": "Item two details",

 "image": "@sample/images"

 },

.

.

}

Assuming the above was contained within a file named chapterdata.json, the sample data would then be
referenced within the view XML elements as follows:
.

.

<ImageView

.

.

 tools:src="@sample/chapterdata.json/mydata/image" />
<TextView

.

.

 tools:text="@sample/chapterdata.json/mydata/chapter" />

<TextView

.

.

 tools:text="@sample/chapterdata.json/mydata/details" />
.

.

49.3 Summary
This chapter has demonstrated the use of sample data within the layout editor to provide a more realistic
representation of how the user interface will appear at runtime. The steps covered in this tutorial included the
use of both pre-existing sample data templates and the integration of custom sample data.

543

Chapter 64

64. An Overview of Android SQLite
Databases
Mobile applications that do not need to store at least some persistent data are few and far between. The use of
databases is an essential aspect of most applications, ranging from almost entirely data-driven applications to
those that need to store small amounts of data, such as the prevailing game score.

The importance of persistent data storage becomes even more evident when considering the transient lifecycle
of the typical Android application. With the ever-present risk that the Android runtime system will terminate
an application component to free up resources, a comprehensive data storage strategy to avoid data loss is a key
factor in designing and implementing any application development strategy.

This chapter will cover the SQLite database management system bundled with the Android operating system
and outline the Android SDK classes that facilitate persistent SQLite-based database storage within an Android
application. Before delving into the specifics of SQLite in the context of Android development, however, a brief
overview of databases and SQL will be covered.

64.1 Understanding Database Tables
Database Tables provide the most basic level of data structure in a database. Each database can contain multiple
tables, each designed to hold information of a specific type. For example, a database may contain a customer
table that contains the name, address, and telephone number of each of the customers of a particular business.
The same database may also include a products table used to store the product descriptions with associated
product codes for the items sold by the business.

Each table in a database is assigned a name that must be unique within that particular database. A table name,
once assigned to a table in one database, may not be used for another table except within the context of another
database.

64.2 Introducing Database Schema
Database Schemas define the characteristics of the data stored in a database table. For example, the table schema
for a customer database table might define the customer name as a string of no more than 20 characters long and
the customer phone number is a numerical data field of a certain format.

Schemas are also used to define the structure of entire databases and the relationship between the various tables
in each database.

64.3 Columns and Data Types
It is helpful at this stage to begin viewing a database table as similar to a spreadsheet where data is stored in rows
and columns.

Each column represents a data field in the corresponding table. For example, a table’s name, address, and
telephone data fields are all columns.

Each column, in turn, is defined to contain a certain type of data. Therefore, a column designed to store numbers
would be defined as containing numerical data.

544

An Overview of Android SQLite Databases

64.4 Database Rows
Each new record saved to a table is stored in a row. Each row, in turn, consists of the columns of data associated
with the saved record.

Once again, consider the spreadsheet analogy described earlier in this chapter. Each entry in a customer table
is equivalent to a row in a spreadsheet, and each column contains the data for each customer (name, address,
telephone, etc.). When a new customer is added to the table, a new row is created, and the data for that customer
is stored in the corresponding columns of the new row.

Rows are also sometimes referred to as records or entries, and these terms can generally be used interchangeably.

64.5 Introducing Primary Keys
Each database table should contain one or more columns that can be used to identify each row in the table
uniquely. This is known in database terminology as the Primary Key. For example, a table may use a bank
account number column as the primary key. Alternatively, a customer table may use the customer’s social
security number as the primary key.

Primary keys allow the database management system to uniquely identify a specific row in a table. Without
a primary key, retrieving or deleting a specific row in a table would not be possible because there can be no
certainty that the correct row has been selected. For example, suppose a table existed where the customer’s last
name had been defined as the primary key. Imagine the problem if more than one customer named “Smith” were
recorded in the database. Without some guaranteed way to identify a specific row uniquely, ensuring the correct
data was being accessed at any given time would be impossible.

Primary keys can comprise a single column or multiple columns in a table. To qualify as a single column primary
key, no two rows can contain matching primary key values. When using multiple columns to construct a primary
key, individual column values do not need to be unique, but all the columns’ values combined must be unique.

64.6 What is SQLite?
SQLite is an embedded, relational database management system (RDBMS). Most relational databases (Oracle,
SQL Server, and MySQL being prime examples) are standalone server processes that run independently and
cooperate with applications requiring database access. SQLite is referred to as embedded because it is provided in
the form of a library that is linked into applications. As such, there is no standalone database server running in
the background. All database operations are handled internally within the application through calls to functions
in the SQLite library.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

SQLite is written in the C programming language, so the Android SDK provides a Java-based “wrapper” around
the underlying database interface. This consists of classes that may be utilized within an application’s Java or
Kotlin code to create and manage SQLite-based databases.

For additional information about SQLite, refer to https://www.sqlite.org.

64.7 Structured Query Language (SQL)
Data is accessed in SQLite databases using a high-level language known as Structured Query Language. This is
usually abbreviated to SQL and pronounced sequel. SQL is a standard language used by most relational database
management systems. SQLite conforms mostly to the SQL-92 standard.

SQL is a straightforward and easy-to-use language designed specifically to enable the reading and writing of
database data. Because SQL contains a small set of keywords, it can be learned quickly. In addition, SQL syntax is

http://www.sqlite.org

545

An Overview of Android SQLite Databases

more or less identical between most DBMS implementations, so having learned SQL for one system, your skills
will likely transfer to other database management systems.

While some basic SQL statements will be used within this chapter, a detailed overview of SQL is beyond the
scope of this book. However, many other resources provide a far better overview of SQL than we could ever hope
to provide in a single chapter here.

64.8 Trying SQLite on an Android Virtual Device (AVD)
For readers unfamiliar with databases and SQLite, diving right into creating an Android application that
uses SQLite may seem intimidating. Fortunately, Android is shipped with SQLite pre-installed, including an
interactive environment for issuing SQL commands from within an adb shell session connected to a running
Android AVD emulator instance. This is a useful way to learn about SQLite and SQL and an invaluable tool for
identifying problems with databases created by applications running in an emulator.

To launch an interactive SQLite session, begin by running an AVD session. This can be achieved within Android
Studio by launching the Android Virtual Device Manager (Tools -> Device Manager), selecting a previously
configured AVD, and clicking on the start button.

Once the AVD is up and running, open a Terminal or Command-Prompt window and connect to the emulator
using the adb command-line tool as follows:
adb shell

Once connected, the shell environment will provide a command prompt at which commands may be entered.
Begin by obtaining superuser privileges using the su command:
Generic_x86:/ su

root@android:/ #

If a message indicates that superuser privileges are not allowed, the AVD instance likely includes Google Play
support. To resolve this, create a new AVD and, on the “Choose a device definition” screen, select a device that
does not have a marker in the “Play Store” column.

The data in SQLite databases are stored in database files on the file system of the Android device on which the
application is running. By default, the file system path for these database files is as follows:
/data/data/<package name>/databases/<database filename>.db

For example, if an application with the package name com.example.MyDBApp creates a database named
mydatabase.db, the path to the file on the device would read as follows:
/data/data/com.example.MyDBApp/databases/mydatabase.db

For this exercise, therefore, change directory to /data/data within the adb shell and create a sub-directory
hierarchy suitable for some SQLite experimentation:
cd /data/data

mkdir com.example.dbexample

cd com.example.dbexample

mkdir databases

cd databases

With a suitable location created for the database file, launch the interactive SQLite tool as follows:
root@android:/data/data/databases # sqlite3 ./mydatabase.db

sqlite3 ./mydatabase.db

SQLite version 3.8.10.2 2015-05-20 18:17:19

546

An Overview of Android SQLite Databases

Enter ".help" for usage hints.

sqlite>

At the sqlite> prompt, commands may be entered to perform tasks such as creating tables and inserting and
retrieving data. For example, to create a new table in our database with fields to hold ID, name, address, and
phone number fields, the following statement is required:
create table contacts (_id integer primary key autoincrement, name text, address
text, phone text);

Note that each row in a table should have a primary key that is unique to that row. In the above example, we have
designated the ID field as the primary key, declared it as being of type integer, and asked SQLite to increment
the number automatically each time a row is added. This is a common way to ensure that each row has a unique
primary key. On most other platforms, the primary key’s name choice is arbitrary. In the case of Android,
however, the key must be named _id for the database to be fully accessible using all Android database-related
classes. The remaining fields are each declared as being of type text.

To list the tables in the currently selected database, use the .tables statement:
sqlite> .tables

contacts

To insert records into the table:
sqlite> insert into contacts (name, address, phone) values ("Bill Smith", "123
Main Street, California", "123-555-2323");

sqlite> insert into contacts (name, address, phone) values ("Mike Parks", "10
Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:
sqlite> select * from contacts;

1|Bill Smith|123 Main Street, California|123-555-2323

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:
sqlite> select * from contacts where name="Mike Parks";

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:
sqlite> .exit

When running an Android application in the emulator environment, any database files will be created on the
emulator’s file system using the previously discussed path convention. This has the advantage that you can
connect with adb, navigate to the location of the database file, load it into the sqlite3 interactive tool, and perform
tasks on the data to identify possible problems occurring in the application code.

It is also important to note that while connecting with an adb shell to a physical Android device is possible, the
shell is not granted sufficient privileges by default to create and manage SQLite databases. Therefore, database
problem debugging is best performed using an AVD session.

64.9 Android SQLite Classes
As previously mentioned, SQLite is written in the C programming language, while Android applications are
primarily developed using Java or Kotlin. To bridge this “language gap”, the Android SDK includes a set of
classes that provide a programming layer on top of the SQLite database management system. The remainder of
this chapter will provide a basic overview of each of the major classes within this category.

547

An Overview of Android SQLite Databases

64.9.1 Cursor
A class provided specifically to access the results of a database query. For example, a SQL SELECT operation
performed on a database will potentially return multiple matching rows from the database. A Cursor instance
can be used to step through these results, which may then be accessed from within the application code using a
variety of methods. Some key methods of this class are as follows:

• close() – Releases all resources used by the cursor and closes it.

• getCount() – Returns the number of rows contained within the result set.

• moveToFirst() – Moves to the first row within the result set.

• moveToLast() – Moves to the last row in the result set.

• moveToNext() – Moves to the next row in the result set.

• move() – Moves by a specified offset from the current position in the result set.

• get<type>() – Returns the value of the specified <type> contained at the specified column index of the row at
the current cursor position (variations consist of getString(), getInt(), getShort(), getFloat(), and getDouble()).

64.9.2 SQLiteDatabase
This class provides the primary interface between the application code and underlying SQLite databases
including the ability to create, delete, and perform SQL-based operations on databases. Some key methods of
this class are as follows:

• insert() – Inserts a new row into a database table.

• delete() – Deletes rows from a database table.

• query() – Performs a specified database query and returns matching results via a Cursor object.

• execSQL() – Executes a single SQL statement that does not return result data.

• rawQuery() – Executes a SQL query statement and returns matching results in the form of a Cursor object.

64.9.3 SQLiteOpenHelper
A helper class designed to make it easier to create and update databases. This class must be subclassed within
the code of the application seeking database access and the following callback methods implemented within
that subclass:

• onCreate() – Called when the database is created for the first time. This method is passed the SQLiteDatabase
object as an argument for the newly created database. This is the ideal location to initialize the database in
terms of creating a table and inserting any initial data rows.

• onUpgrade() – Called in the event that the application code contains a more recent database version number
reference. This is typically used when an application is updated on the device and requires that the database
schema also be updated to handle storage of additional data.

In addition to the above mandatory callback methods, the onOpen() method, called when the database is
opened, may also be implemented within the subclass.

The constructor for the subclass must also be implemented to call the super class, passing through the application
context, the name of the database and the database version.

548

An Overview of Android SQLite Databases

Notable methods of the SQLiteOpenHelper class include:

• getWritableDatabase() – Opens or creates a database for reading and writing. Returns a reference to the
database in the form of a SQLiteDatabase object.

• getReadableDatabase() – Creates or opens a database for reading only. Returns a reference to the database in
the form of a SQLiteDatabase object.

• close() – Closes the database.

64.9.4 ContentValues
ContentValues is a convenience class that allows key/value pairs to be declared consisting of table column
identifiers and the values to be stored in each column. This class is of particular use when inserting or updating
entries in a database table.

64.10 The Android Room Persistence Library
A limitation of the Android SDK SQLite classes is that they require moderate coding effort and don’t take
advantage of the new architecture guidelines and features such as LiveData and lifecycle management. The
Android Jetpack Architecture Components include the Room persistent library to address these shortcomings.
This library provides a high-level interface on top of the SQLite database system, making it easy to store data
locally on Android devices with minimal coding while also conforming to the recommendations for modern
application architecture.

The following chapters will provide an overview and tutorial on SQLite database management using SQLite and
the Room persistence library.

64.11 Summary
SQLite is a lightweight, embedded relational database management system included in the Android framework
and provides a mechanism for implementing organized persistent data storage for Android applications. When
combined with the Room persistence library, Android provides a modern way to implement data storage from
within an Android app.

This chapter provided an overview of databases in general and SQLite in particular within the context of Android
application development.

557

Chapter 66

66. Understanding Android Content
Providers
The previous chapter worked on creating an example application designed to store data using a SQLite database.
When implemented this way, the data is private to the application and, as such, inaccessible to other applications
running on the same device. While this may be the desired behavior for many application types, situations
will inevitably arise whereby the data stored on behalf of an application could benefit other applications. A
prime example is the data stored by the built-in Contacts application on an Android device. While the Contacts
application is primarily responsible for managing the user’s address book details, this data is also made accessible
to any other applications needing access. This data sharing between Android applications is achieved through
implementing content providers.

66.1 What is a Content Provider?
A content provider provides access to structured data between different Android applications. This data is
exposed to applications either as tables of data (in much the same way as a SQLite database) or as a handle to a
file. This essentially involves the implementation of a client/server arrangement whereby the application seeking
access to the data is the client and the content provider is the server, performing actions and returning results
on behalf of the client.

A successful content provider implementation involves several elements, each of which will be covered in detail
in the remainder of this chapter.

66.2 The Content Provider
A content provider is created as a subclass of the android.content.ContentProvider class. Typically, the application
responsible for managing the data to be shared will implement a content provider to facilitate sharing of that
data with other applications.

Creating a content provider involves implementing methods to manage the data on behalf of other client
applications. These methods are as follows:

66.2.1 onCreate()
This method is called when the content provider is first created and should be used to perform any initialization
tasks required by the content provider.

66.2.2 query()
This method will be called when a client requests that data be retrieved from the content provider. This method
identifies the data to be retrieved (single or multiple rows), performs the data extraction, and returns the results
wrapped in a Cursor object.

66.2.3 insert()
This method is called when a new row needs to be inserted into the provider database. This method must
identify the destination for the data, perform the insertion and return the full URI of the newly added row.

558

Understanding Android Content Providers

66.2.4 update()
The method called when existing rows need to be updated on behalf of the client. The method uses the arguments
passed through to update the appropriate table rows and return the number of rows updated as a result of the
operation.

66.2.5 delete()
Called when rows are to be deleted from a table. This method deletes the designated rows and returns a count
of the number of rows deleted.

66.2.6 getType()
Returns the MIME type of the data stored by the content provider.

It is important when implementing these methods in a content provider to keep in mind that, with the exception
of the onCreate() method, they can be called from many processes simultaneously and must, therefore, be thread
safe.

Once a content provider has been implemented, the issue that then arises is how the provider is identified within
the Android system. This is where the content URI comes into play.

66.3 The Content URI
An Android device will potentially contain several content providers. The system must, therefore, provide some
way of identifying one provider from another. Similarly, a single content provider may provide access to multiple
forms of content (typically in the form of database tables). Client applications, therefore, need a way to specify
the underlying data for which access is required. This is achieved using content URIs.

The content URI is used to identify specific data within a specific content provider. The Authority section of the
URI identifies the content provider and usually takes the form of the package name of the content provider. For
example:
com.example.mydbapp.myprovider

A specific database table within the provider data structure may be referenced by appending the table name to
the authority. For example, the following URI references a table named products within the content provider:
com.example.mydbapp.myprovider/products

Similarly, a specific row within the specified table may be referenced by appending the row ID to the URI. The
following URI, for example, references the row in the products table in which the value stored in the ID column
equals 3:
com.example.mydbapp.myprovider/products/3

When implementing the insert, query, update and delete methods in the content provider, it will be the
responsibility of these methods to identify whether the incoming URI is targeting a specific row in a table,
or references multiple rows, and act accordingly. This can potentially be a complex task given that a URI can
extend to multiple levels. This process can, however, be eased significantly using the UriMatcher class, as will be
outlined in the next chapter.

66.4 The Content Resolver
Access to a content provider is achieved via a ContentResolver object. An application can obtain a reference to
its content resolver by calling the getContentResolver() method of the application context.

The content resolver object contains a set of methods that mirror those of the content provider (insert, query,
delete etc.). The application simply makes calls to the methods, specifying the URI of the content on which the

559

Understanding Android Content Providers

operation is to be performed. The content resolver and content provider objects then communicate to perform
the requested task on behalf of the application.

66.5 The <provider> Manifest Element
For a content provider to be visible within an Android system, it must be declared within the Android manifest
file for the application in which it resides. This is achieved using the <provider> element, which must contain
the following items:

• android:authority – The full authority URI of the content provider. For example com.example.mydbapp.
mydbapp.myprovider.

• android:name – The name of the class that implements the content provider. In most cases, this will use the
same value as the authority.

Similarly, the <provider> element may be used to define the permissions that must be held by client applications
in order to qualify for access to the underlying data. If no permissions are declared, the default behavior is for
permission to be allowed for all applications.

Permissions can be set to cover the entire content provider, or limited to specific tables and records.

66.6 Summary
The data belonging to an application is typically private to the application and inaccessible to other applications.
Setting up a content provider is necessary when the data needs to be shared. This chapter has covered the basic
elements that combine to enable data sharing between applications and outlined the concepts of the content
provider, content URI, and content resolver.

In the next chapter, the SQLdemo project created previously will be extended to make the underlying customer
data available via a content provider.

579

Chapter 69

69. The Android Room Persistence
Library
Included with the Android Architecture Components, the Room persistence library is designed to make it easier
to add database storage support to Android apps in a way consistent with the Android architecture guidelines.
With the basics of SQLite databases covered in the previous chapters, this chapter will explore Room-based
database management, the key elements that work together to implement Room support within an Android app,
and how these are implemented in terms of architecture and coding. Having covered these topics, the next two
chapters will put this theory into practice with an example Room database project.

69.1 Revisiting Modern App Architecture
The chapter entitled “Modern Android App Architecture with Jetpack” introduced the concept of modern app
architecture and stressed the importance of separating different areas of responsibility within an app. The
diagram illustrated in Figure 69-1 outlines the recommended architecture for a typical Android app:

Figure 69-1
With the top three levels of this architecture covered in some detail in earlier chapters of this book, it is time to
explore the repository and database architecture levels in the context of the Room persistence library.

69.2 Key Elements of Room Database Persistence
Before going into greater detail later in the chapter, it is first worth summarizing the key elements involved in
working with SQLite databases using the Room persistence library:

580

The Android Room Persistence Library

69.2.1 Repository
As previously discussed, the repository module contains all of the code necessary for directly handling all data
sources used by the app. This avoids the need for the UI controller and ViewModel to contain code directly
accessing sources such as databases or web services.

69.2.2 Room Database
The room database object provides the interface to the underlying SQLite database. It also provides the repository
with access to the Data Access Object (DAO). An app should only have one room database instance, which may
be used to access multiple database tables.

69.2.3 Data Access Object (DAO)
The DAO contains the SQL statements required by the repository to insert, retrieve and delete data within
the SQLite database. These SQL statements are mapped to methods which are then called from within the
repository to execute the corresponding query.

69.2.4 Entities
An entity is a class that defines the schema for a table within the database, defines the table name, column names,
and data types, and identifies which column is to be the primary key. In addition to declaring the table schema,
entity classes contain getter and setter methods that provide access to these data fields. The data returned to
the repository by the DAO in response to the SQL query method calls will take the form of instances of these
entity classes. The getter methods will then be called to extract the data from the entity object. Similarly, when
the repository needs to write new records to the database, it will create an entity instance, configure values on
the object via setter calls, then call insert methods declared in the DAO, passing through entity instances to be
saved.

69.2.5 SQLite Database
The SQLite database is responsible for storing and providing access to the data. The app code, including the
repository, should never directly access this underlying database. All database operations are performed using a
combination of the room database, DAOs, and entities.

The architecture diagram in Figure 69-2 illustrates how these different elements interact to provide Room-based
database storage within an Android app:

Figure 69-2

581

The Android Room Persistence Library

The numbered connections in the above architecture diagram can be summarized as follows:

1. The repository interacts with the Room Database to get a database instance which, in turn, is used to obtain
references to DAO instances.

2. The repository creates entity instances and configures them with data before passing them to the DAO for
use in search and insertion operations.

3. The repository calls methods on the DAO passing through entities to be inserted into the database and
receives entity instances back in response to search queries.

4. When a DAO has results to return to the repository, it packages them into entity objects.

5. The DAO interacts with the Room Database to initiate database operations and handle results.

6. The Room Database handles all low-level interactions with the underlying SQLite database, submitting
queries and receiving results.

With a basic outline of the key elements of database access using the Room persistent library covered, it is time
to explore entities, DAOs, room databases, and repositories in more detail.

69.3 Understanding Entities
Each database table will have associated with it an entity class. This class defines the schema for the table and
takes the form of a standard Java class interspersed with some special Room annotations. An example Java class
declaring the data to be stored within a database table might read as follows:
public class Customer {

 private int id;

 private String name;

 private string address;

 public Customer(String name, String address) {

 this.id = id;

 this.name = name;

 this.address = address;

 }

 public int getId() {

 return this.id;

 }

 public String getName() {

 return this.name;

 }

 public int getAddress() {

 return this.address;

 }

 public void setId(int id) {

582

The Android Room Persistence Library

 this.id = id;

 }

 public void setName(String name) {

 this.name = name;

 }

 public void setAddress(int quantity) {

 this.address = address;

 }

}

As currently implemented, the above code declares a basic Java class containing several variables representing
database table fields and a collection of getter and setter methods. This class, however, is not yet an entity. To
make this class into an entity and to make it accessible within SQL statements, some Room annotations need to
be added as follows:
@Entity(tableName = "customers")
public class Customer {

 @PrimaryKey(autoGenerate = true)
 @NonNull
 @ColumnInfo(name = "customerId")
 private int id;

 @ColumnInfo(name = "customerName")
 private String name;

 private String address;

 public Customer(String name, String address) {

 this.id = id;

 this.name = name;

 this.address = address;

 }

 public int getId() {

 return this.id;

 }

 public String getName() {

 return this.name;

 }

 public String getAddress() {

 return this.address;

 }

583

The Android Room Persistence Library

 public void setId(@NonNull int id) {
 this.id = id;

 }

 public void setName(String name) {

 this.name = name;

 }

 public void setAddress(int quantity) {

 this.address = address;

 }

}

The above annotations begin by declaring that the class represents an entity and assigns a table name of
“customers”. This is the name by which the table will be referenced in the DAO SQL statements:
@Entity(tableName = "customers")

Every database table needs a column to act as the primary key. In this case, the customer id is declared as the
primary key. Annotations have also been added to assign a column name to be referenced in SQL queries and to
indicate that the field cannot be used to store null values. Finally, the id value is configured to be auto-generated.
This means the system automatically generates the id assigned to new records to avoid duplicate keys:
@PrimaryKey(autoGenerate = true)

@NonNull

@ColumnInfo(name = "customerId")

private int id;

A column name is also assigned to the customer name field. Note, however, that no column name was assigned
to the address field. This means that the address data will still be stored within the database but is not required
to be referenced in SQL statements. If a field within an entity is not required to be stored within a database, use
the @Ignore annotation:
@Ignore

private String myString;

Finally, the setter method for the id variable is modified to prevent attempts to assign a null value:
public void setId(@NonNull int id) {
 this.id = id;

}

Annotations may also be included within an entity class to establish relationships with other entities using a
relational database concept referred to as foreign keys. Foreign keys allow a table to reference the primary key
in another table. For example, a relationship could be established between an entity named Purchase and our
existing Customer entity as follows:
@Entity(foreignKeys = {@ForeignKey(entity = Customer.class,

 parentColumns = "customerId",

 childColumns = "buyerId",

 onDelete = ForeignKey.CASCADE,

 onUpdate = ForeignKey.RESTRICT})

public class Purchase {

584

The Android Room Persistence Library

 @PrimaryKey(autoGenerate = true)

 @ColumnInfo(name = "purchaseId")

 private int purchaseId;

 @ColumnInfo(name = "buyerId")

 private int buyerId;

}

Note that the foreign key declaration also specifies the action to be taken when a parent record is deleted or
updated. Available options are CASCADE, NO_ACTION, RESTRICT, SET_DEFAULT, and SET_NULL.

69.4 Data Access Objects
A Data Access Object allows access to the data stored within a SQLite database. A DAO is declared as a standard
Java interface with additional annotations that map specific SQL statements to methods that the repository may
then call.

The first step is to create the interface and declare it as a DAO using the @Dao annotation:
@Dao

public interface CustomerDao {

}

Next, entries are added consisting of SQL statements and corresponding method names. The following
declaration, for example, allows all of the rows in the customers table to be retrieved via a call to a method
named getAllCustomers():
@Dao

public interface CustomerDao {

 @Query("SELECT * FROM customers")
 LiveData<List<Customer>> getAllCustomers();
}

The getAllCustomers() method returns a List object containing a Customer entity object for each record retrieved
from the database table. The DAO is also using LiveData so that the repository can observe changes to the
database.

Arguments may also be passed into the methods and referenced within the corresponding SQL statements.
Consider the following DAO declaration, which searches for database records matching a customer’s name
(note that the column name referenced in the WHERE condition is the name assigned to the column in the
entity class):
@Query("SELECT * FROM customers WHERE name = :customerName")

List<Customer> findCustomer(String customerName);

In this example, the method is passed a string value which is, in turn, included within an SQL statement by
prefixing the variable name with a colon (:).

A basic insertion operation can be declared as follows using the @Insert convenience annotation:
@Insert

void addCustomer(Customer customer);

This is referred to as a convenience annotation because the Room persistence library can infer that the Customer

585

The Android Room Persistence Library

entity passed to the addCustomer() method is to be inserted into the database without the need for the SQL
insert statement to be provided. Multiple database records may also be inserted in a single transaction as follows:
@Insert

public void insertCustomers(Customer... customers);

The following DAO declaration deletes all records matching the provided customer name:
@Query("DELETE FROM customers WHERE name = :name")

void deleteCustomer(String name);

As an alternative to using the @Query annotation to perform deletions, the @Delete convenience annotation
may also be used. In the following example, all of the Customer records that match the set of entities passed to
the deleteCustomers() method will be deleted from the database:
@Delete

public void deleteCustomers(Customer... customers);

The @Update convenience annotation provides similar behavior when updating records:
@Update

public void updateCustomers(Customer... customers);

The DAO methods for these types of database operations may also be declared to return an int value indicating
the number of rows affected by the transaction, for example:
@Delete

public int deleteCustomers(Customer... customers);

69.5 The Room Database
The Room database class is created by extending the RoomDatabase class and acts as a layer on top of the
actual SQLite database embedded into the Android operating system. The class is responsible for creating and
returning a new room database instance and providing access to the database’s associated DAO instances.

The Room persistence library provides a database builder for creating database instances. Each Android app
should only have one room database instance, so it is best to implement defensive code within the class to
prevent more than one instance from being created.

An example Room Database implementation for use with the example customer table is outlined in the following
code listing:
import android.content.Context;

import android.arch.persistence.room.Database;

import android.arch.persistence.room.Room;

import android.arch.persistence.room.RoomDatabase;

@Database(entities = {Customer.class}, version = 1)

public class CustomerRoomDatabase extends RoomDatabase {

 public abstract CustomerDao customerDao();

 private static CustomerRoomDatabase INSTANCE;

 static CustomerRoomDatabase getDatabase(final Context context) {

 if (INSTANCE == null) {

586

The Android Room Persistence Library

 synchronized (CustomerRoomDatabase.class) {

 if (INSTANCE == null) {

 INSTANCE = Room.databaseBuilder(

 context.getApplicationContext(),

 CustomerRoomDatabase.class, "customer_database")

 .build();

 }

 }

 }

 return INSTANCE;

 }

}

Important areas to note in the above example are the annotation above the class declaration declaring the entities
with which the database is to work, the code to check that an instance of the class has not already been created
and the assignment of the name “customer_database” to the instance.

69.6 The Repository
The repository is responsible for getting a Room Database instance, using that instance to access associated
DAOs, and then making calls to DAO methods to perform database operations. A typical constructor for a
repository designed to work with a Room Database might read as follows:
public class CustomerRepository {

 private CustomerDao customerDao;

 private CustomerRoomDatabase db;

 public CustomerRepository(Application application) {

 db = CustomerRoomDatabase.getDatabase(application);

 customerDao = db.customerDao();

 }

.

.

}

Once the repository can access the DAO, it can call the data access methods. The following code, for example,
calls the getAllCustomers() DAO method:
private LiveData<List<Customer>> allCustomers;

allCustomers = customerDao.getAllCustomers();

When calling DAO methods, it is important to note that unless the method returns a LiveData instance (which
automatically runs queries on a separate thread), the operation cannot be performed on the app’s main thread.
Attempting to do so will cause the app to crash with the following diagnostic output:
Cannot access database on the main thread since it may potentially lock the UI
for a long period of time

Since some database transactions may take a longer time to complete, running the operations on a separate
thread avoids the app appearing to lock up. As will be demonstrated in the chapter entitled “An Android Room
Database and Repository Tutorial”, this problem can be easily resolved by making use of Java threads (for more
information or a reminder of how to use threads, refer back to the chapter entitled “An Overview of Java Threads,

587

The Android Room Persistence Library

Handlers and Executors”).

69.7 In-Memory Databases
The examples outlined in this chapter use a SQLite database that exists as a database file on the persistent storage
of an Android device. This ensures that the data persists even after the app process is terminated.

The Room database persistence library also supports in-memory databases. These databases reside entirely
in memory and are lost when the app terminates. The only change necessary to work with an in-memory
database is to call the Room.inMemoryDatabaseBuilder() method of the Room Database class instead of Room.
databaseBuilder(). The following code shows the difference between the method calls (note that the in-memory
database does not require a database name):
// Create a file storage based database

INSTANCE = Room.databaseBuilder(context.getApplicationContext(),

 CustomerRoomDatabase.class, "customer_database")

 .build();

// Create an in-memory database

INSTANCE = Room.inMemoryDatabaseBuilder(context.getApplicationContext(),

 CustomerRoomDatabase.class)

 .build();

69.8 Database Inspector
Android Studio includes a Database Inspector tool window which allows the Room databases associated with
running apps to be viewed, searched, and modified, as shown in Figure 69-3:

Figure 69-3
The Database Inspector will be covered in the chapter “An Android Room Database and Repository Tutorial”.

69.9 Summary
The Android Room persistence library is bundled with the Android Architecture Components and acts as an
abstract layer above the lower-level SQLite database. The library is designed to make it easier to work with
databases while conforming to the Android architecture guidelines. This chapter has introduced the elements
that interact to build Room-based database storage into Android app projects, including entities, repositories,
data access objects, annotations, and Room Database instances.

With the basics of SQLite and the Room architecture component covered, the next step is to create an example
app that puts this theory into practice. Since the user interface for the example application will require a forms-
based layout, the next chapter, entitled “An Android TableLayout and TableRow Tutorial”, will detour slightly
from the core topic by introducing the basics of the TableLayout and TableRow views.

705

Chapter 82

82. An Introduction to Android App
Links
As technology evolves, the traditional distinction between web and mobile content is beginning to blur. One
area where this is particularly true is the growing popularity of progressive web apps, where web apps look and
behave much like traditional mobile apps.

Another trend involves making the content within mobile apps discoverable through web searches and via URL
links. In the context of Android app development, the App Links feature is designed to make it easier for users
to discover and access content stored within an Android app, even if the user does not have the app installed.

82.1 An Overview of Android App Links
An app link is a standard HTTP URL that is an easy way to link directly to a particular place in your app from
an external source such as a website or app. App links (also called deep links) are used primarily to encourage
users to engage with an app and to allow users to share app content.

App link implementation is a multi-step process that involves the addition of intent filters to the project manifest,
implementing link handling code within the associated app activities, and the use of digital asset links files to
associate app and web-based content.

These steps can be performed manually by making project changes or automatically using the Android Studio
App Links Assistant.

The remainder of this chapter will outline app links implementation in terms of the changes that must be made
to a project. The next chapter (“An Android Studio App Links Tutorial”) will demonstrate the use of the App Links
Assistant to achieve the same results.

82.2 App Link Intent Filters
An app link URL needs to be mapped to a specific activity within an app project. This is achieved by adding intent
filters to the project’s AndroidManifest.xml file designed to launch an activity in response to an android.intent.
action.VIEW action. The intent filters are declared within the element for the activity to be launched and must
contain the data outlining the scheme, host, and path of the app link URL. The following manifest fragment,
for example, declares an intent filter to launch an activity named MyActivity when an app link matching http://
www.example.com/welcome is detected:
<activity android:name="com.ebookfrenzy.myapp.MyActivity">

 <intent-filter android:autoVerify="true">

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.BROWSABLE" />

 <data

 android:scheme="http"

706

An Introduction to Android App Links

 android:host="www.example.com"

 android:pathPrefix="/welcome" />

 </intent-filter>

</activity>

The order in which ambiguous intent filters are handled can be specified using the order property of the intent
filter tag as follows:
<application>

 <activity android:name=" com.ebookfrenzy.myapp.MyActivity">

 <intent-filter android:autoVerify="true" android:order="1">
.
.

The intent filter will cause the app link to launch the correct activity, but code must still be added to the target
activity to handle the intent appropriately.

82.3 Handling App Link Intents
In most cases, the launched activity will need to gain access to the app link URL and take specific action based
on how the URL is structured. Continuing from the above example, the activity will likely display different
content when launched via a URL containing a path of /welcome/newuser than one with the path set to /welcome/
existinguser.

When the link launches the activity, it is passed an intent object containing data about the action which launched
the activity, including a Uri object containing the app link URL. Within the initialization stages of the activity,
code can be added to extract this data as follows:
Intent appLinkIntent = getIntent();

String appLinkAction = appLinkIntent.getAction();

Uri appLinkData = appLinkIntent.getData();

Having obtained the Uri for the app link, the various components that make up the URL path can be used to
decide the actions to perform within the activity. In the following code example, the last component of the URL
is used to identify whether content should be displayed for a new or existing user:
String userType = appLinkData.getLastPathSegment();

if (userType.equals("newuser")) {

 // display new user content

} else {

 // display existing user content

}

82.4 Associating the App with a Website
Before an app link will work, an app link URL must be associated with the website on which the app link is
based. This is achieved by creating a Digital Asset Links file named assetlinks.json and installing it within the
website’s .well-known folder. Note that digital asset linking is only possible for websites that are HTTPS based.

A digital asset links file comprises a relation statement granting permission for a target app to be launched
using the website’s link URLs and a target statement declaring the companion app package name and SHA-256
certificate fingerprint for that project. A typical asset link file might, for example, read as follows:
[{

707

An Introduction to Android App Links

 "relation": ["delegate_permission/common.handle_all_urls"],

 "target" : { "namespace": "android_app",

 "package_name": "<app package name here>",

 "sha256_cert_fingerprints": ["<app certificate here>"] }

}]

The assetlinks.json file can contain multiple digital asset links, allowing a single website to be associated with
more than one companion app.

82.5 Summary
Android App Links allow app activities to be launched via URL links from external websites and other apps. App
links are implemented using intent filters within the project manifest file and intent handling code within the
launched activity. Using a Digital Asset Links file, it is also possible to associate the domain name used in an app
link with the corresponding website. Once the association has been established, Android no longer needs to ask
the user to select the target app when an app link is used.

791

Index

Index

Symbols
<application> 432

<fragment> 247

<fragment> element 247

<menu> 761

<provider> 559

<receiver> 466

<service> 432, 476, 483

.well-known folder 439, 462, 706

A
AbsoluteLayout 126

ACCESS_COARSE_LOCATION permission 500

ACCESS_FINE_LOCATION permission 500

acknowledgePurchase() method 745

ACTION_CREATE_DOCUMENT 622

ACTION_CREATE_INTENT 622

ACTION_DOWN 222

ACTION_MOVE 222

ACTION_OPEN_DOCUMENT intent 614

ACTION_POINTER_DOWN 222

ACTION_POINTER_UP 222

ACTION_UP 222

ACTION_VIEW 457

Active / Running state 100

Activity 87, 103

adding views in Java code 203

class 103

creation 16

Entire Lifetime 107

Foreground Lifetime 107

lifecycle methods 106

lifecycles 97

returning data from 436

state change example 111

state changes 103

states 100

Visible Lifetime 107

Activity Lifecycle 99

Activity Manager 86

ActivityResultLauncher 437

Activity Stack 99

Actual screen pixels 194

adb

command-line tool 63

connection testing 69

device pairing 67

enabling on Android devices 63

Linux configuration 66

list devices 63

macOS configuration 64

overview 63

restart server 64

testing connection 69

WiFi debugging 67

Windows configuration 65

Wireless debugging 67

Wireless pairing 67

addCategory() method 465

addMarker() method 670

addView() method 197

ADD_VOICEMAIL permission 500

android

checkableBehavior 763

exported 433

gestureColor 240

layout_behavior property 417

onClick 249

orderInCategory 762

process 433, 483

uncertainGestureColor 240

Android

Activity 87

architecture 83

792

Index

events 215

intents 88

onClick Resource 215

runtime 84

SDK Packages 6

android.app 84

Android Architecture Components 265

android.content 84

android.content.Intent 435

android.database 84

Android Debug Bridge. See ADB

Android Development

System Requirements 3

Android Devices

designing for different 125

android.graphics 85

android.hardware 85

android.intent.action 471

android.intent.action.BOOT_COMPLETED 433

android.intent.action.MAIN 457

android.intent.category.LAUNCHER 457

Android Libraries 84

android.media 85

Android Monitor tool window 36

Android Native Development Kit 85

android.net 85

android.opengl 85

android.os 85

android.permission.RECORD_AUDIO 649

android.print 85

Android Project

create new 15

android.provider 85

Android SDK Location

identifying 10

Android SDK Manager 8, 10

Android SDK Packages

version requirements 8

Android SDK Tools

command-line access 9

Linux 11

macOS 11

Windows 7 10

Windows 8 10

Android Software Stack 83

Android Storage Access Framework 614

Android Studio

changing theme 61

downloading 3

Editor Window 56

installation 4

Linux installation 5

macOS installation 4

Navigation Bar 55

Project tool window 56

setup wizard 5

Status Bar 56

Toolbar 55

Tool window bars 56

tool windows 56

updating 12

Welcome Screen 53

Windows installation 4

android.text 85

android.util 85

android.view 85

android.view.View 128

android.view.ViewGroup 125, 128

Android Virtual Device. See AVD

overview 31

Android Virtual Device Manager 31

android.webkit 85

android.widget 85

AndroidX libraries 784

API Key 661

APK analyzer 738

APK file 731

APK File

analyzing 738

APK Signing 784

APK Wizard dialog 730

app

showAsAction 762

App Architecture

793

Index
modern 265

AppBar

anatomy of 415

appbar_scrolling_view_behavior 417

App Bundles 727

creating 731

overview 727

revisions 737

uploading 734

AppCompatActivity class 104

App Inspector 57

Application

stopping 36

Application Context 89

Application Framework 86

Application Manifest 89

Application Resources 89

App Link

Adding Intent Filter 714

Digital Asset Links file 706, 439

Intent Filter Handling 714

Intent Filters 705

Intent Handling 706

Testing 718

URL Mapping 711

App Links 705

auto verification 438

autoVerify 439

overview 705

Apply Changes 211

Apply Changes and Restart Activity 211

Apply Code Changes 211

fallback settings 213

options 211

Run App 211

tutorial 213

applyToActivitiesIfAvailable() method 779

Architecture Components 265

ART 84

assetlinks.json , 706, 439

Attribute Keyframes 342

Audio

supported formats 647

Audio Playback 647

Audio Recording 647

Auto Blocker 64

Autoconnect Mode 159

Automatic Link Verification 438, 461

autoVerify 439, 714

AVD

Change posture 51

cold boot 48

command-line creation 31

creation 31

device frame 40

Display mode 50

launch in tool window 40

overview 31

quickboot 48

Resizable 50

running an application 34

Snapshots 47

standalone 37

starting 33

Startup size and orientation 34

B
Background Process 98

Barriers 152

adding 171

constrained views 152

Baseline Alignment 151

beginTransaction() method 248

BillingClient 746

acknowledgePurchase() method 745

consumeAsync() method 745

getPurchaseState() method 745

initialization 742, 753

launchBillingFlow() method 744

queryProductDetailsAsync() method 744

queryPurchasesAsync() method 746

BillingResult 760

getDebugMessage() 760

Binding Expressions 289

794

Index

one-way 289

two-way 290

BIND_JOB_SERVICE permission 433

bindService() method 431, 473, 478

Biometric Authentication 719

callbacks 723

overview 719

tutorial 719

Biometric Prompt 724

BitmapFactory 615

black activity 16

Blank template 129

Blueprint view 157

BODY_SENSORS permission 500

Bound Service 431, 473

adding to a project 474

Implementing the Binder 474

Interaction options 473

BoundService class 475

Broadcast Intent 465

example 468

overview 88, 465

sending 468

Sticky 467

Broadcast Receiver 465

adding to manifest file 470

creation 469

overview 88, 466

BroadcastReceiver class 466

BroadcastReceiver superclass 469

BufferedReader object 625

Build tool window 58

Build Variants , 58

tool window 58

Bundle class 120

Bundled Notifications 519

C
Calendar permissions 500

CALL_PHONE permission 500

CAMERA permission 500

Camera permissions 500

CameraUpdateFactory class

methods 671

CancellationSignal 724

Canvas class 700

CardView

layout file 395

responding to selection of 403

CardView class 395

CATEGORY_OPENABLE 614

C/C++ Libraries 85

Chain bias 180

chain head 150

chains 150

Chains

creation of 177

Chain style

changing 179

chain styles 150

CheckBox 125

checkSelfPermission() method 504

Circle class 657

Code completion 74

Code Editor

basics 71

Code completion 74

Code Generation 77

Code Reformatting 79

Document Tabs 72

Editing area 72

Gutter Area 72

Live Templates 80

Splitting 74

Statement Completion 76

Status Bar 73

Code Generation 77

Code Reformatting 79

code samples

download 1

cold boot 48

CollapsingToolbarLayout

example 418

introduction 418

795

Index
parallax mode 418

pin mode 418

setting scrim color 421

setting title 421

with image 418

Color class 701

COLOR_MODE_COLOR 676, 696

COLOR_MODE_MONOCHROME 676, 696

Common Gestures 229

detection 229

Component tree 20

Constraint Bias 149

adjusting 163

ConstraintLayout

advantages of 155

Availability 156

Barriers 152

Baseline Alignment 151

chain bias 180

chain head 150

chains 150

chain styles 150

Constraint Bias 149

Constraints 147

conversion to 175

convert to MotionLayout 349

deleting constraints 162

guidelines 169

Guidelines 152

manual constraint manipulation 159

Margins 148, 163

Opposing Constraints 148, 165

overview of 147

Packed chain 151, 180

ratios 155, 181

Spread chain 150

Spread inside 180

Spread inside chain 150

tutorial 185

using in Android Studio 157

Weighted chain 150, 180

Widget Dimensions 151, 167

Widget Group Alignment 173

ConstraintLayout chains

creation of 177

in layout editor 177

ConstraintLayout Chain style

changing 179

Constraints

deleting 162

ConstraintSet

addToHorizontalChain() method 200

addToVerticalChain() method 200

alignment constraints 199

apply to layout 198

applyTo() method 198

centerHorizontally() method 199

centerVertically() method 199

chains 199

clear() method 200

clone() method 199

connect() method 198

connect to parent 198

constraint bias 199

copying constraints 199

create 198

create connection 198

createHorizontalChain() method 199

createVerticalChain() method 199

guidelines 200

removeFromHorizontalChain() method 200

removeFromVerticalChain() method 200

removing constraints 200

rotation 201

scaling 200

setGuidelineBegin() method 200

setGuidelineEnd() method 200

setGuidelinePercent() method 200

setHorizonalBias() method 199

setRotationX() method 201

setRotationY() method 201

setScaleX() method 200

setScaleY() method 200

setTransformPivot() method 201

796

Index

setTransformPivotX() method 201

setTransformPivotY() method 201

setVerticalBias() method 199

sizing constraints 199

tutorial 203

view IDs 205

ConstraintSet class 197, 198

Constraint Sets 198

ConstraintSets

configuring 338

consumeAsync() method 745

ConsumeParams 757

ConsumeResponseListener 745

Contacts permissions 500

container view 125

Content Provider 86, 557, 575

<provider> 559

accessing 575

Authority 563

client tutorial 575

ContentProvider class 557

Content Resolver 558

ContentResolver 571

content URI 558

Content URI 563, 575

ContentValues 565

delete() 558, 569

getType() 558

insert() 557, 565

onCreate() 557, 565

overview 89

query() 557, 566

tutorial 561

update() 558, 567

UriMatcher 564

UriMatcher class 558

ContentProvider class 557

Content Resolver 558

getContentResolver() 558

ContentResolver 571

getContentResolver() 558

content URI 558

Content URI 558, 563

ContentValues 565

Context class 89

CoordinatorLayout 126, 417

createPrintDocumentAdapter() method 691

Custom Attribute 339

Custom Document Printing 679, 691

Custom Gesture

recognition 235

Custom Print Adapter

implementation 693

Custom Print Adapters 691

Custom Theme

building 773

Cycle Editor 367

Cycle Keyframe 347

Cycle Keyframes

overview 363

D
dangerous permissions

list of 500

Dark Theme 36

enable on device 36

Data Access Object (DAO) 580

Data Access Objects (DAO) 584

Database Inspector 587, 610

live updates 611

SQL query 611

Database Rows 544

Database Schema 543

Database Tables 543

Data binding

binding expressions 289

Data Binding 267

binding classes 288

enabling 294

event and listener binding 290

key components 285

overview 285

tutorial 293

with LiveData 267

797

Index
DDMS 36

Debugging

enabling on device 63

debug.keystore file 439, 461

DefaultLifecycleObserver 306, 309

deltaRelative 344

Density-independent pixels 193

Density Independent Pixels

converting to pixels 208

Device Definition

custom 143

Device File Explorer 58

device frame 40

Device Mirroring 69

enabling 69

device pairing 67

Digital Asset Links file 706, 439, 439

Direct Reply Input 530

document provider 613

dp 193

Dynamic Colors

applyToActivitiesIfAvailable() method 779

enabling in Android 779

Dynamic State 105

saving 119

E
Empty Process 99

Empty template 129

Emulator

battery 46

cellular configuration 46

configuring fingerprints 48

directional pad 46

extended control options 45

Extended controls 45

fingerprint 46

location configuration 46

phone settings 46

Resizable 50

resize 45

rotate 44

Screen Record 47

Snapshots 47

starting 33

take screenshot 44

toolbar 43

toolbar options 43

tool window mode 49

Virtual Sensors 47

zoom 44

enablePendingPurchases() method 745

enabling ADB support 63

ettings.gradle file 784

Event Handling 215

example 216

Event Listener 217

Event Listeners 216

Events

consuming 219

execSQL() 552

explicit

intent 88

explicit intent 435

Explicit Intent 435

Extended Control

options 45

F
Files

switching between 72

findPointerIndex() method 222

findViewById() 91

Fingerprint

emulation 48

Fingerprint authentication

device configuration 720

permission 720

steps to implement 719

Fingerprint Authentication

overview 719

tutorial 719

FLAG_INCLUDE_STOPPED_PACKAGES 465

flexible space area 415

798

Index

floating action button 16, 130

changing appearance of 378

margins 376

removing 131

sizes 376

Foldable Devices 108

multi-resume 108

Foldable Emulator 536

Foldables 535

Foreground Process 98

Forward-geocoding 663

Fragment

creation 245

event handling 249

XML file 246

FragmentActivity class 105

Fragment Communication 250

Fragments 245

adding in code 248

duplicating 384

example 253

overview 245

FragmentStateAdapter class 387

FrameLayout 126

G
Geocoder object 664

Geocoding 662

Gesture Builder Application 235

building and running 235

Gesture Detector class 229

GestureDetectorCompat 232

instance creation 232

GestureDetectorCompat class 229

GestureDetector.OnDoubleTapListener 229, 230

GestureDetector.OnGestureListener 230

GestureLibrary 235

GestureOverlayView 235

configuring color 240

configuring multiple strokes 240

GestureOverlayView class 235

GesturePerformedListener 235

Gestures

interception of 241

Gestures File

creation 236

extract from SD card 236

loading into application 238

GET_ACCOUNTS permission 500

getAction() method 471

getContentResolver() 558

getDebugMessage() 760

getFromLocation() method 664

getId() method 198

getIntent() method 436

getItemId() method 763

getPointerCount() method 222

getPointerId() method 222

getPurchaseState() method 745

getService() method 477

getWritableDatabase() 553

GNU/Linux 84

Google Cloud

billing account 658

new project 659

Google Cloud Print 674

Google Drive 614

printing to 674

GoogleMap 657

map types 667

GoogleMap.MAP_TYPE_HYBRID 667

GoogleMap.MAP_TYPE_NONE 667

GoogleMap.MAP_TYPE_NORMAL 667

GoogleMap.MAP_TYPE_SATELLITE 667

GoogleMap.MAP_TYPE_TERRAIN 667

Google Maps Android API 657

Controlling the Map Camera 671

displaying controls 668

Map Markers 670

overview 657

Google Maps SDK 657

API Key 661

Credentials 661

enabling 660

799

Index
Maps SDK for Android 661

Google Play App Signing 730

Google Play Console 751

Creating an in-app product 751

License Testers 752

Google Play Developer Console 728

Gradle

APK signing settings 788

Build Variants 784

command line tasks 789

dependencies 783

Manifest Entries 784

overview 783

sensible defaults 783

Gradle Build File

top level 785

Gradle Build Files

module level 786

gradle.properties file 784

GridLayout 126

GridLayoutManager 393

H
HAL 84

Handler class 482

Hardware Abstraction Layer 84

HP Print Services Plugin 673

HTML printing 677

HTML Printing

example 681

I
IBinder 431, 475

IBinder object 473, 483

Image Printing 676

implicit

intent 88

implicit intent 435

Implicit Intent 437

Implicit Intents

example 453

importance hierarchy 97

in 193

INAPP 746

In-App Products 741

In-App Purchasing 749

acknowledgePurchase() method 745

BillingClient 742

BillingResult 760

consumeAsync() method 745

ConsumeParams 757

ConsumeResponseListener 745

Consuming purchases 757

enablePendingPurchases() method 745

getPurchaseState() method 745

launchBillingFlow() method 744

Libraries 749

newBuilder() method 742

onBillingServiceDisconnected() callback 754

onBillingServiceDisconnected() method 743

onBillingSetupFinished() listener 754

onProductDetailsResponse() callback 754

Overview 741

ProductDetail 744

ProductDetails 755

products 741

ProductType 746

ProductType.INAPP 746

ProductType.SUBS 746

Purchase Flow 756

PurchaseResponseListener 746

PurchasesUpdatedListener 745

PurchaseUpdatedListener 756

purchase updates 756

queryProductDetailsAsync() 754

queryProductDetailsAsync() method 744

queryPurchasesAsync() 758

queryPurchasesAsync() method 746

runOnUiThread() 755

subscriptions 741

tutorial 749

In-Memory Database 587

Intent 88

explicit 88

800

Index

implicit 88

Intent Availability

checking for 442

Intent.CATEGORY_OPENABLE 622

Intent Filters 438

App Link 705

Intents 435

ActivityResultLauncher 437

overview 435

registerForActivityResult() 450

Intent Service 431

Intent URL 455

J
Java Native Interface 85

Jetpack 265

overview 265

JobIntentService 431

BIND_JOB_SERVICE permission 433

onHandleWork() method 431

K
KeyAttribute 342

Keyboard Shortcuts 59

KeyCycle 363

Cycle Editor 367

tutorial 363

Keyframe 356

Keyframes 342

KeyFrameSet 372

KeyPosition 343

deltaRelative 344

parentRelative 343

pathRelative 344

Keystore File

creation 730

KeyTimeCycle 363

keytool 439

KeyTrigger 346

Killed state 100

L

launchBillingFlow() method 744

layout_collapseMode

parallax 420

pin 420

layout_constraintDimentionRatio 182

layout_constraintHorizontal_bias 180

layout_constraintVertical_bias 180

layout editor

ConstraintLayout chains 177

Layout Editor 19, 185

Autoconnect Mode 159

code mode 136

Component Tree 134

design mode 133

device screen 134

example project 185

Inference Mode 159

palette 134

properties panel 134

Sample Data 142

Setting Properties 137

toolbar 134

user interface design 185

view conversion 141

Layout Editor Tool

changing orientation 20

overview 133

Layout Inspector 58

Layout Managers 125

LayoutResultCallback object 696

Layouts 125

layout_scrollFlags

enterAlwaysCollapsed mode 417

enterAlways mode 417

exitUntilCollapsed mode 417

scroll mode 417

Layout Validation 144

libc 85

License Testers 752

Lifecycle

awareness 305

components 268

801

Index
owners 305

states and events 307

tutorial 309

Lifecycle-Aware Components 305

Lifecycle Methods 106

Lifecycle Observer 309

creating a 309

Lifecycle Owner

creating a 311

Lifecycles

modern 268

LinearLayout 126

LinearLayoutManager 393

LinearLayoutManager layout 402

Linux Kernel 84

list devices 63

LiveData 266, 279

adding to ViewModel 279

observer 281

tutorial 279

Live Templates 80

Local Bound Service 473

example 473

Location Manager 86

Location permission 500

Logcat

tool window 57

LogCat

enabling 115

M
MANAGE_EXTERNAL_STORAGE 501

adb enabling 501

testing 501

Manifest File

permissions 457

Maps 657

MapView 657

adding to a layout 664

Marker class 657

Master/Detail Flow

creation 424

two pane mode 423

match_parent properties 193

Material design 375

Material Design 2 771

Material Design 2 Theming 771

Material Design 3 771

Material Theme Builder 773

Material You 771

MediaController

adding to VideoView instance 631

MediaController class 628

methods 628

MediaPlayer class 647

methods 647

MediaRecorder class 647

methods 648

recording audio 648

Memory Indicator 73

Menu Editor 764

Menu Item Selections 762

Menus 761

menu editor 764

Messenger object 483

Microphone

checking for availability 650

Microphone permissions 500

mm 193

MotionEvent 221, 222, 243

getActionMasked() 222

MotionLayout 337

arc motion 342

Attribute Keyframes 342

ConstraintSets 338

Custom Attribute 358

Custom Attributes 339

Cycle Editor 367

Editor 349

KeyAttribute 342

KeyCycle 363

Keyframes 342

KeyFrameSet 372

KeyPosition 343

802

Index

KeyTimeCycle 363

KeyTrigger 346

OnClick 341, 354

OnSwipe 341

overview 337

Position Keyframes 343

previewing animation 354

Trigger Keyframe 346

Tutorial 349

MotionScene

ConstraintSets 338

Custom Attributes 339

file 338

overview 337

transition 338

moveCamera() method 671

multiple devices

testing app on 35

Multiple Touches

handling 222

multi-resume 108

Multi-Touch

example 222

Multi-touch Event Handling 221

Multi-Window

attributes 539

Multi-Window Mode

detecting 540

entering 537

launching activity into 541

Multi-Window Notifications 540

multi-window support 108

Multi-Window Support

enabling 538

My Location Layer 657

N
Navigation 315

adding destinations 324

overview 315

pass data with safeargs 332

passing arguments 320

stack 315

tutorial 321

Navigation Action

triggering 319

Navigation Architecture Component 315

Navigation Component

tutorial 321

Navigation Controller

accessing 319

Navigation Graph 318, 322

adding actions 328

creating a 322

Navigation Host 316

declaring 323

newBuilder() method 742

normal permissions 499

Notification

adding actions 518

Direct Reply Input 530

issuing a basic 514

launch activity from a 516

PendingIntent 526

Reply Action 528

updating direct reply 531

Notifications

bundled 519

overview 507

Notifications Manager 86

O
Observer

implementing a LiveData 281

onAttach() method 250

onBillingServiceDisconnected() callback 754

onBillingServiceDisconnected() method 743

onBillingSetupFinished() listener 754

onBind() method 432, 473, 481

onBindViewHolder() method 401

OnClick 341

onClickListener 216, 217, 220

onClick() method 215

onCreateContextMenuListener 216

803

Index
onCreate() method 98, 106, 432

onCreateOptionsMenu() method 762

onCreateView() method 107

onDestroy() method 106, 432

onDoubleTap() method 229

onDown() method 229

onFling() method 229

onFocusChangeListener 216

OnFragmentInteractionListener

implementation 329

onGesturePerformed() method 235

onHandleWork() method 432

onKeyListener 216

onLayoutFailed() method 696

onLayoutFinished() method 697

onLongClickListener 216

onLongClick() method 219

onLongPress() method 229

onMapReady() method 666

onOptionsItemSelected() method 762

onOptionsItemsSelected() method 767

onPageFinished() callback 682

onPause() method 106

onProductDetailsResponse() callback 754

onReceive() method 98, 466, 467, 469

onRequestPermissionsResult() method 503, 654, 512, 524

onRestart() method 106

onRestoreInstanceState() method 107

onResume() method 98, 106

onSaveInstanceState() method 107

onScaleBegin() method 241

onScaleEnd() method 241

onScale() method 241

onScroll() method 229

OnSeekBarChangeListener 260

onServiceConnected() method 473, 477, 484

onServiceDisconnected() method 473, 477, 484

onShowPress() method 229

onSingleTapUp() method 229

onStartCommand() method 432

onStart() method 106

onStop() method 106

onTouchEvent() method 229, 241

onTouchListener 216

onTouch() method 221

onUpgrade() 552

onViewCreated() method 107

onViewStatusRestored() method 107

openFileDescriptor() method 614

OpenJDK 3

Overflow Menu 761

creation 761

displaying 762

overview 761

XML file 761

Overflow Menus

Checkable Item Groups 763

P
Package Explorer 18

Package Manager 86

PackageManager class 650

PackageManager.FEATURE_MICROPHONE 650

PackageManager.PERMISSION_DENIED 501

PackageManager.PERMISSION_GRANTED 501

Package Name 16

Packed chain 151, 180

PageRange 698, 699

Paint class 701

parentRelative 343

parent view 127

pathRelative 344

Paused state 100

PdfDocument 679

PdfDocument.Page 691, 698

PendingIntent class 526

Permission

checking for 501

permissions

normal 499

Persistent State 105

Phone permissions 500

picker 613

Pinch Gesture

804

Index

detection 241

example 241

Pinch Gesture Recognition 235

Position Keyframes 343

POST_NOTIFICATIONS permission 500, 524

PrintAttributes 696

PrintDocumentAdapter 679, 691

Printing

color 676

monochrome 676

Printing framework

architecture 673

Printing Framework 673

Print Job

starting 702

PrintManager service 683

Problems

tool window 58

process

priority 97

state 97

PROCESS_OUTGOING_CALLS permission 500

Process States 97

ProductDetail 744

ProductDetails 755

ProductType 746

Profiler

tool window 58

ProgressBar 125

proguard-rules.pro file 788

ProGuard Support 784

Project Name 16

Project tool window 18, 57

pt 193

PurchaseResponseListener 746

PurchasesUpdatedListener 745

PurchaseUpdatedListener 756

putExtra() method 435, 465

px 194

Q
queryProductDetailsAsync() 754

queryProductDetailsAsync() method 744

queryPurchaseHistoryAsync() method 746

queryPurchasesAsync() 758

queryPurchasesAsync() method 746

quickboot snapshot 48

Quick Documentation 79

R
RadioButton 125

ratios 181

READ_CALENDAR permission 500

READ_CALL_LOG permission 500

READ_CONTACTS permission 500

READ_EXTERNAL_STORAGE permission 501

READ_PHONE_STATE permission 500

READ_SMS permission 500

RECEIVE_MMS permission 500

RECEIVE_SMS permission 500

RECEIVE_WAP_PUSH permission 500

Recent Files Navigation 60

RECORD_AUDIO permission 500

Recording Audio

permission 649

RecyclerView 393

adding to layout file 394

GridLayoutManager 393

initializing 402

LinearLayoutManager 393

StaggeredGridLayoutManager 393

RecyclerView Adapter

creation of 400

RecyclerView.Adapter 394, 400

getItemCount() method 394

onBindViewHolder() method 394

onCreateViewHolder() method 394

RecyclerView.ViewHolder

getAdapterPosition() method 404

registerForActivityResult() method 436, 450

registerReceiver() method 467

RelativeLayout 126

releasePersistableUriPermission() method 617

Release Preparation 727

805

Index
Remote Bound Service 481

client communication 481

implementation 481

manifest file declaration 483

RemoteInput.Builder() method 526

RemoteInput Object 526

Remote Service

launching and binding 484

sending a message 485

Repository

tutorial 597

Repository Modules 268

Resizable Emulator 50

Resource

string creation 23

Resource File 25

Resource Management 97

Resource Manager 57, 86

result receiver 467

Reverse-geocoding 663

Reverse Geocoding 662

Room

Data Access Object (DAO) 580

entities 580, 581

In-Memory Database 587

Repository 580

Room Database 580

tutorial 597

Room Database Persistence 579

Room Persistence Library 548, 579

root element 125

root view 127

Run

tool window 57

Running Devices

tool window 69

runOnUiThread() 755

S
safeargs 332

Sample Data 142, 407

tutorial 407

Saved State 267, 301

SavedStateHandle 302, 303

contains() method 303

keys() method 303

remove() method 303

Saved State module 301

SavedStateViewModelFactory 302

ScaleGestureDetector class 241

Scale-independent 193

SDK Packages 6

Secure Sockets Layer (SSL) 85

SeekBar 253

sendBroadcast() method 465, 467

sendOrderedBroadcast() method 465, 467

SEND_SMS permission 500

sendStickyBroadcast() method 465

Sensor permissions 500

Service

anatomy 432

launch at system start 433

manifest file entry 432

overview 88

run in separate process 433

ServiceConnection class 484

Service Process 98

Service Restart Options 432

setAudioEncoder() method 648

setAudioSource() method 648

setBackgroundColor() 198

setCompassEnabled() method 668

setContentView() method 197, 203

setId() method 198

setMyLocationButtonEnabled() method 669

setOnClickListener() method 215, 217

setOnDoubleTapListener() method 229, 232

setOutputFile() method 648

setOutputFormat() method 648

setResult() method 437

setRotateGesturesEnabled() method 669

setScrollGesturesEnabled() method 669

setText() method 122

setTiltGesturesEnabled() method 669

806

Index

settings.gradle.kts file 784

setTransition() 347

setVideoSource() method 648

setZoomControlsEnabled() method 668, 669

SHA-256 certificate fingerprint 439

shouldOverrideUrlLoading() method 682

SimpleOnScaleGestureListener 241

SimpleOnScaleGestureListener class 243

SMS permissions 500

Snackbar 375, 376, 377

Snapshots

emulator 47

sp 193

Spread chain 150

Spread inside 180

Spread inside chain 150

SQL 544

SQL CREATE 552

SQLite 543

AVD command-line use 545

Columns and Data Types 543

overview 544

Primary keys 544

tutorial 549

SQLiteDatabase 552

SQLiteOpenHelper 550, 551

SQL SELECT 553, 554

StaggeredGridLayoutManager 393

startActivity() method 435

startForeground() method 98

START_NOT_STICKY 432

START_REDELIVER_INTENT 432

START_STICKY 432

State

restoring 122

State Change

handling 101

Statement Completion 76

Status Bar Widgets 73

Memory Indicator 73

Sticky Broadcast Intents 467

Stopped state 100

Storage Access Framework 613

ACTION_CREATE_DOCUMENT 614

ACTION_OPEN_DOCUMENT 614

deleting a file 617

example 619

file creation 622

file filtering 614

file reading 615

file writing 616

intents 614

MIME Types 615

Persistent Access 617

picker 613

Storage permissions 501

StringBuilder object 625

strings.xml file 27

Structure

tool window 58

Structured Query Language 544

Structure tool window 58

SUBS 746

subscriptions 741

SupportMapFragment class 657

Switcher 60

System Broadcasts 471

system requirements 3

T
TabLayout

adding to layout 385

app

tabGravity property 390

tabMode property 390

example 382

fixed mode 389

getItemCount() method 381

overview 381

TableLayout 126, 589

TableRow 589

Telephony Manager 86

Templates

blank vs. empty 129

807

Index
Terminal

tool window 58

Theme

building a custom 773

Theming 771

tutorial 775

Time Cycle Keyframes 347

TODO

tool window 59

ToolbarListener 250

tools

layout 247

Tool window bars 56

Tool windows 56

Touch Actions 222

Touch Event Listener

implementation 223

Touch Events

intercepting 221

Touch handling 221

U
UiSettings class 657

unbindService() method 431

unregisterReceiver() method 467

upload key 730

UriMatcher 558, 564

UriMatcher class 558

URL Mapping 711

USB connection issues

resolving 66

USE_BIOMETRIC 720

user interface state 105

USE_SIP permission 500

V
Video Playback 627

VideoView class 627

methods 627

supported formats 627

view bindings

enabling 92

using 92

View class

setting properties 205

view conversion 141

ViewGroup 125

View Groups 125

View Hierarchy 127

ViewHolder class 394

sample implementation 401

ViewModel

adding LiveData 279

data access 276

overview 266

saved state 301

Saved State 267, 301

tutorial 271

ViewModelProvider 274

ViewModel Saved State 301

ViewPager

adding to layout 385

example 382

Views 125

Java creation 197

View System 86

Virtual Device Configuration dialog 32

Virtual Sensors 47

Visible Process 98

W
WebViewClient 677, 682

WebView view 455

Weighted chain 150, 180

Welcome screen 53

Widget Dimensions 151

Widget Group Alignment 173

Widgets palette 186

WiFi debugging 67

Wireless debugging 67

Wireless pairing 67

wrap_content properties 195

WRITE_CALENDAR permission 500

WRITE_CALL_LOG permission 500

808

Index

WRITE_CONTACTS permission 500

WRITE_EXTERNAL_STORAGE permission 501

X
XML Layout File

manual creation 193

vs. Java Code 197

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata
	1.4 Authors Wanted

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Installing the Android SDK Command-line Tools
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Enabling the New Android Studio UI
	3.6 Modifying the Example Application
	3.7 Modifying the User Interface
	3.8 Reviewing the Layout and Resource Files
	3.9 Adding Interaction
	3.10 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Removing the Device Frame
	4.9 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Creating a Resizable Emulator
	5.10 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Menu Bar
	6.3 The Main Window
	6.4 The Tool Windows
	6.5 The Tool Window Menus
	6.6 Android Studio Keyboard Shortcuts
	6.7 Switcher and Recent Files Navigation
	6.8 Changing the Android Studio Theme
	6.9 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Device Mirroring
	7.7 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Hardware Abstraction Layer
	9.4 Android Runtime – ART
	9.5 Android Libraries
	9.5.1 C/C++ Libraries

	9.6 Application Framework
	9.7 Applications
	9.8 Summary

	10. The Anatomy of an Android App
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Overview of Android View Binding
	11.1 Find View by Id
	11.2 View Binding
	11.3 Converting the AndroidSample project
	11.4 Enabling View Binding
	11.5 Using View Binding
	11.6 Choosing an Option
	11.7 View Binding in the Book Examples
	11.8 Migrating a Project to View Binding
	11.9 Summary

	12. Understanding Android Application and Activity Lifecycles
	12.1 Android Applications and Resource Management
	12.2 Android Process States
	12.2.1 Foreground Process
	12.2.2 Visible Process
	12.2.3 Service Process
	12.2.4 Background Process
	12.2.5 Empty Process

	12.3 Inter-Process Dependencies
	12.4 The Activity Lifecycle
	12.5 The Activity Stack
	12.6 Activity States
	12.7 Configuration Changes
	12.8 Handling State Change
	12.9 Summary

	13. Handling Android Activity State Changes
	13.1 New vs. Old Lifecycle Techniques
	13.2 The Activity and Fragment Classes
	13.3 Dynamic State vs. Persistent State
	13.4 The Android Lifecycle Methods
	13.5 Lifetimes
	13.6 Foldable Devices and Multi-Resume
	13.7 Disabling Configuration Change Restarts
	13.8 Lifecycle Method Limitations
	13.9 Summary

	14. Android Activity State Changes by Example
	14.1 Creating the State Change Example Project
	14.2 Designing the User Interface
	14.3 Overriding the Activity Lifecycle Methods
	14.4 Filtering the Logcat Panel
	14.5 Running the Application
	14.6 Experimenting with the Activity
	14.7 Summary

	15. Saving and Restoring the State of an Android Activity
	15.1 Saving Dynamic State
	15.2 Default Saving of User Interface State
	15.3 The Bundle Class
	15.4 Saving the State
	15.5 Restoring the State
	15.6 Testing the Application
	15.7 Summary

	16. Understanding Android Views, View Groups and Layouts
	16.1 Designing for Different Android Devices
	16.2 Views and View Groups
	16.3 Android Layout Managers
	16.4 The View Hierarchy
	16.5 Creating User Interfaces
	16.6 Summary

	17. A Guide to the Android Studio Layout Editor Tool
	17.1 Basic vs. Empty Views Activity Templates
	17.2 The Android Studio Layout Editor
	17.3 Design Mode
	17.4 The Palette
	17.5 Design Mode and Layout Views
	17.6 Night Mode
	17.7 Code Mode
	17.8 Split Mode
	17.9 Setting Attributes
	17.10 Transforms
	17.11 Tools Visibility Toggles
	17.12 Converting Views
	17.13 Displaying Sample Data
	17.14 Creating a Custom Device Definition
	17.15 Changing the Current Device
	17.16 Layout Validation
	17.17 Summary

	18. A Guide to the Android ConstraintLayout
	18.1 How ConstraintLayout Works
	18.1.1 Constraints
	18.1.2 Margins
	18.1.3 Opposing Constraints
	18.1.4 Constraint Bias
	18.1.5 Chains
	18.1.6 Chain Styles

	18.2 Baseline Alignment
	18.3 Configuring Widget Dimensions
	18.4 Guideline Helper
	18.5 Group Helper
	18.6 Barrier Helper
	18.7 Flow Helper
	18.8 Ratios
	18.9 ConstraintLayout Advantages
	18.10 ConstraintLayout Availability
	18.11 Summary

	19. A Guide to Using ConstraintLayout in Android Studio
	19.1 Design and Layout Views
	19.2 Autoconnect Mode
	19.3 Inference Mode
	19.4 Manipulating Constraints Manually
	19.5 Adding Constraints in the Inspector
	19.6 Viewing Constraints in the Attributes Window
	19.7 Deleting Constraints
	19.8 Adjusting Constraint Bias
	19.9 Understanding ConstraintLayout Margins
	19.10 The Importance of Opposing Constraints and Bias
	19.11 Configuring Widget Dimensions
	19.12 Design Time Tools Positioning
	19.13 Adding Guidelines
	19.14 Adding Barriers
	19.15 Adding a Group
	19.16 Working with the Flow Helper
	19.17 Widget Group Alignment and Distribution
	19.18 Converting other Layouts to ConstraintLayout
	19.19 Summary

	20. Working with ConstraintLayout Chains and Ratios in Android Studio
	20.1 Creating a Chain
	20.2 Changing the Chain Style
	20.3 Spread Inside Chain Style
	20.4 Packed Chain Style
	20.5 Packed Chain Style with Bias
	20.6 Weighted Chain
	20.7 Working with Ratios
	20.8 Summary

	21. An Android Studio Layout Editor ConstraintLayout Tutorial
	21.1 An Android Studio Layout Editor Tool Example
	21.2 Preparing the Layout Editor Environment
	21.3 Adding the Widgets to the User Interface
	21.4 Adding the Constraints
	21.5 Testing the Layout
	21.6 Using the Layout Inspector
	21.7 Summary

	22. Manual XML Layout Design in Android Studio
	22.1 Manually Creating an XML Layout
	22.2 Manual XML vs. Visual Layout Design
	22.3 Summary

	23. Managing Constraints using Constraint Sets
	23.1 Java Code vs. XML Layout Files
	23.2 Creating Views
	23.3 View Attributes
	23.4 Constraint Sets
	23.4.1 Establishing Connections
	23.4.2 Applying Constraints to a Layout
	23.4.3 Parent Constraint Connections
	23.4.4 Sizing Constraints
	23.4.5 Constraint Bias
	23.4.6 Alignment Constraints
	23.4.7 Copying and Applying Constraint Sets
	23.4.8 ConstraintLayout Chains
	23.4.9 Guidelines
	23.4.10 Removing Constraints
	23.4.11 Scaling
	23.4.12 Rotation

	23.5 Summary

	24. An Android ConstraintSet Tutorial
	24.1 Creating the Example Project in Android Studio
	24.2 Adding Views to an Activity
	24.3 Setting View Attributes
	24.4 Creating View IDs
	24.5 Configuring the Constraint Set
	24.6 Adding the EditText View
	24.7 Converting Density Independent Pixels (dp) to Pixels (px)
	24.8 Summary

	25. A Guide to Using Apply Changes in Android Studio
	25.1 Introducing Apply Changes
	25.2 Understanding Apply Changes Options
	25.3 Using Apply Changes
	25.4 Configuring Apply Changes Fallback Settings
	25.5 An Apply Changes Tutorial
	25.6 Using Apply Code Changes
	25.7 Using Apply Changes and Restart Activity
	25.8 Using Run App
	25.9 Summary

	26. An Overview and Example of Android Event Handling
	26.1 Understanding Android Events
	26.2 Using the android:onClick Resource
	26.3 Event Listeners and Callback Methods
	26.4 An Event Handling Example
	26.5 Designing the User Interface
	26.6 The Event Listener and Callback Method
	26.7 Consuming Events
	26.8 Summary

	27. Android Touch and Multi-touch Event Handling
	27.1 Intercepting Touch Events
	27.2 The MotionEvent Object
	27.3 Understanding Touch Actions
	27.4 Handling Multiple Touches
	27.5 An Example Multi-Touch Application
	27.6 Designing the Activity User Interface
	27.7 Implementing the Touch Event Listener
	27.8 Running the Example Application
	27.9 Summary

	28. Detecting Common Gestures Using the Android Gesture Detector Class
	28.1 Implementing Common Gesture Detection
	28.2 Creating an Example Gesture Detection Project
	28.3 Implementing the Listener Class
	28.4 Creating the GestureDetectorCompat Instance
	28.5 Implementing the onTouchEvent() Method
	28.6 Testing the Application
	28.7 Summary

	29. Implementing Custom Gesture and Pinch Recognition on Android
	29.1 The Android Gesture Builder Application
	29.2 The GestureOverlayView Class
	29.3 Detecting Gestures
	29.4 Identifying Specific Gestures
	29.5 Installing and Running the Gesture Builder Application
	29.6 Creating a Gestures File
	29.7 Creating the Example Project
	29.8 Extracting the Gestures File from the SD Card
	29.9 Adding the Gestures File to the Project
	29.10 Designing the User Interface
	29.11 Loading the Gestures File
	29.12 Registering the Event Listener
	29.13 Implementing the onGesturePerformed Method
	29.14 Testing the Application
	29.15 Configuring the GestureOverlayView
	29.16 Intercepting Gestures
	29.17 Detecting Pinch Gestures
	29.18 A Pinch Gesture Example Project
	29.19 Summary

	30. An Introduction to Android Fragments
	30.1 What is a Fragment?
	30.2 Creating a Fragment
	30.3 Adding a Fragment to an Activity using the Layout XML File
	30.4 Adding and Managing Fragments in Code
	30.5 Handling Fragment Events
	30.6 Implementing Fragment Communication
	30.7 Summary

	31. Using Fragments in Android Studio - An Example
	31.1 About the Example Fragment Application
	31.2 Creating the Example Project
	31.3 Creating the First Fragment Layout
	31.4 Migrating a Fragment to View Binding
	31.5 Adding the Second Fragment
	31.6 Adding the Fragments to the Activity
	31.7 Making the Toolbar Fragment Talk to the Activity
	31.8 Making the Activity Talk to the Text Fragment
	31.9 Testing the Application
	31.10 Summary

	32. Modern Android App Architecture with Jetpack
	32.1 What is Android Jetpack?
	32.2 The “Old” Architecture
	32.3 Modern Android Architecture
	32.4 The ViewModel Component
	32.5 The LiveData Component
	32.6 ViewModel Saved State
	32.7 LiveData and Data Binding
	32.8 Android Lifecycles
	32.9 Repository Modules
	32.10 Summary

	33. An Android ViewModel Tutorial
	33.1 About the Project
	33.2 Creating the ViewModel Example Project
	33.3 Removing Unwanted Project Elements
	33.4 Designing the Fragment Layout
	33.5 Implementing the View Model
	33.6 Associating the Fragment with the View Model
	33.7 Modifying the Fragment
	33.8 Accessing the ViewModel Data
	33.9 Testing the Project
	33.10 Summary

	34. An Android Jetpack LiveData Tutorial
	34.1 LiveData - A Recap
	34.2 Adding LiveData to the ViewModel
	34.3 Implementing the Observer
	34.4 Summary

	35. An Overview of Android Jetpack Data Binding
	35.1 An Overview of Data Binding
	35.2 The Key Components of Data Binding
	35.2.1 The Project Build Configuration
	35.2.2 The Data Binding Layout File
	35.2.3 The Layout File Data Element
	35.2.4 The Binding Classes
	35.2.5 Data Binding Variable Configuration
	35.2.6 Binding Expressions (One-Way)
	35.2.7 Binding Expressions (Two-Way)
	35.2.8 Event and Listener Bindings

	35.3 Summary

	36. An Android Jetpack Data Binding Tutorial
	36.1 Removing the Redundant Code
	36.2 Enabling Data Binding
	36.3 Adding the Layout Element
	36.4 Adding the Data Element to Layout File
	36.5 Working with the Binding Class
	36.6 Assigning the ViewModel Instance to the Data Binding Variable
	36.7 Adding Binding Expressions
	36.8 Adding the Conversion Method
	36.9 Adding a Listener Binding
	36.10 Testing the App
	36.11 Summary

	37. An Android ViewModel Saved State Tutorial
	37.1 Understanding ViewModel State Saving
	37.2 Implementing ViewModel State Saving
	37.3 Saving and Restoring State
	37.4 Adding Saved State Support to the ViewModelDemo Project
	37.5 Summary

	38. Working with Android Lifecycle-Aware Components
	38.1 Lifecycle Awareness
	38.2 Lifecycle Owners
	38.3 Lifecycle Observers
	38.4 Lifecycle States and Events
	38.5 Summary

	39. An Android Jetpack Lifecycle Awareness Tutorial
	39.1 Creating the Example Lifecycle Project
	39.2 Creating a Lifecycle Observer
	39.3 Adding the Observer
	39.4 Testing the Observer
	39.5 Creating a Lifecycle Owner
	39.6 Testing the Custom Lifecycle Owner
	39.7 Summary

	40. An Overview of the Navigation Architecture Component
	40.1 Understanding Navigation
	40.2 Declaring a Navigation Host
	40.3 The Navigation Graph
	40.4 Accessing the Navigation Controller
	40.5 Triggering a Navigation Action
	40.6 Passing Arguments
	40.7 Summary

	41. An Android Jetpack Navigation Component Tutorial
	41.1 Creating the NavigationDemo Project
	41.2 Adding Navigation to the Build Configuration
	41.3 Creating the Navigation Graph Resource File
	41.4 Declaring a Navigation Host
	41.5 Adding Navigation Destinations
	41.6 Designing the Destination Fragment Layouts
	41.7 Adding an Action to the Navigation Graph
	41.8 Implement the OnFragmentInteractionListener
	41.9 Adding View Binding Support to the Destination Fragments
	41.10 Triggering the Action
	41.11 Passing Data Using Safeargs
	41.12 Summary

	42. An Introduction to MotionLayout
	42.1 An Overview of MotionLayout
	42.2 MotionLayout
	42.3 MotionScene
	42.4 Configuring ConstraintSets
	42.5 Custom Attributes
	42.6 Triggering an Animation
	42.7 Arc Motion
	42.8 Keyframes
	42.8.1 Attribute Keyframes
	42.8.2 Position Keyframes

	42.9 Time Linearity
	42.10 KeyTrigger
	42.11 Cycle and Time Cycle Keyframes
	42.12 Starting an Animation from Code
	42.13 Summary

	43. An Android MotionLayout Editor Tutorial
	43.1 Creating the MotionLayoutDemo Project
	43.2 ConstraintLayout to MotionLayout Conversion
	43.3 Configuring Start and End Constraints
	43.4 Previewing the MotionLayout Animation
	43.5 Adding an OnClick Gesture
	43.6 Adding an Attribute Keyframe to the Transition
	43.7 Adding a CustomAttribute to a Transition
	43.8 Adding Position Keyframes
	43.9 Summary

	44. A MotionLayout KeyCycle Tutorial
	44.1 An Overview of Cycle Keyframes
	44.2 Using the Cycle Editor
	44.3 Creating the KeyCycleDemo Project
	44.4 Configuring the Start and End Constraints
	44.5 Creating the Cycles
	44.6 Previewing the Animation
	44.7 Adding the KeyFrameSet to the MotionScene
	44.8 Summary

	45. Working with the Floating Action Button and Snackbar
	45.1 The Material Design
	45.2 The Design Library
	45.3 The Floating Action Button (FAB)
	45.4 The Snackbar
	45.5 Creating the Example Project
	45.6 Reviewing the Project
	45.7 Removing Navigation Features
	45.8 Changing the Floating Action Button
	45.9 Adding an Action to the Snackbar
	45.10 Summary

	46. Creating a Tabbed Interface using the TabLayout Component
	46.1 An Introduction to the ViewPager2
	46.2 An Overview of the TabLayout Component
	46.3 Creating the TabLayoutDemo Project
	46.4 Creating the First Fragment
	46.5 Duplicating the Fragments
	46.6 Adding the TabLayout and ViewPager2
	46.7 Performing the Initialization Tasks
	46.8 Testing the Application
	46.9 Customizing the TabLayout
	46.10 Summary

	47. Working with the RecyclerView and CardView Widgets
	47.1 An Overview of the RecyclerView
	47.2 An Overview of the CardView
	47.3 Summary

	48. An Android RecyclerView and CardView Tutorial
	48.1 Creating the CardDemo Project
	48.2 Modifying the Basic Views Activity Project
	48.3 Designing the CardView Layout
	48.4 Adding the RecyclerView
	48.5 Adding the Image Files
	48.6 Creating the RecyclerView Adapter
	48.7 Initializing the RecyclerView Component
	48.8 Testing the Application
	48.9 Responding to Card Selections
	48.10 Summary

	49. A Layout Editor Sample Data Tutorial
	49.1 Adding Sample Data to a Project
	49.2 Using Custom Sample Data
	49.3 Summary

	50. Working with the AppBar and Collapsing Toolbar Layouts
	50.1 The Anatomy of an AppBar
	50.2 The Example Project
	50.3 Coordinating the RecyclerView and Toolbar
	50.4 Introducing the Collapsing Toolbar Layout
	50.5 Changing the Title and Scrim Color
	50.6 Summary

	51. An Android Studio Primary/Detail Flow Tutorial
	51.1 The Primary/Detail Flow
	51.2 Creating a Primary/Detail Flow Activity
	51.3 Adding the Primary/Detail Flow Activity
	51.4 Modifying the Primary/Detail Flow Template
	51.5 Changing the Content Model
	51.6 Changing the Detail Pane
	51.7 Modifying the ItemDetailFragment Class
	51.8 Modifying the ItemListFragment Class
	51.9 Adding Manifest Permissions
	51.10 Running the Application
	51.11 Summary

	52. An Overview of Android Services
	52.1 Intent Service
	52.2 Bound Service
	52.3 The Anatomy of a Service
	52.4 Controlling Destroyed Service Restart Options
	52.5 Declaring a Service in the Manifest File
	52.6 Starting a Service Running on System Startup
	52.7 Summary

	53. An Overview of Android Intents
	53.1 An Overview of Intents
	53.2 Explicit Intents
	53.3 Returning Data from an Activity
	53.4 Implicit Intents
	53.5 Using Intent Filters
	53.6 Automatic Link Verification
	53.7 Manually Enabling Links
	53.8 Checking Intent Availability
	53.9 Summary

	54. Android Explicit Intents – A Worked Example
	54.1 Creating the Explicit Intent Example Application
	54.2 Designing the User Interface Layout for MainActivity
	54.3 Creating the Second Activity Class
	54.4 Designing the User Interface Layout for SecondActivity
	54.5 Reviewing the Application Manifest File
	54.6 Creating the Intent
	54.7 Extracting Intent Data
	54.8 Launching SecondActivity as a Sub-Activity
	54.9 Returning Data from a Sub-Activity
	54.10 Testing the Application
	54.11 Summary

	55. Android Implicit Intents – A Worked Example
	55.1 Creating the Android Studio Implicit Intent Example Project
	55.2 Designing the User Interface
	55.3 Creating the Implicit Intent
	55.4 Adding a Second Matching Activity
	55.5 Adding the Web View to the UI
	55.6 Obtaining the Intent URL
	55.7 Modifying the MyWebView Project Manifest File
	55.8 Installing the MyWebView Package on a Device
	55.9 Testing the Application
	55.10 Manually Enabling the Link
	55.11 Automatic Link Verification
	55.12 Summary

	56. Android Broadcast Intents and Broadcast Receivers
	56.1 An Overview of Broadcast Intents
	56.2 An Overview of Broadcast Receivers
	56.3 Obtaining Results from a Broadcast
	56.4 Sticky Broadcast Intents
	56.5 The Broadcast Intent Example
	56.6 Creating the Example Application
	56.7 Creating and Sending the Broadcast Intent
	56.8 Creating the Broadcast Receiver
	56.9 Registering the Broadcast Receiver
	56.10 Testing the Broadcast Example
	56.11 Listening for System Broadcasts
	56.12 Summary

	57. Android Local Bound Services – A Worked Example
	57.1 Understanding Bound Services
	57.2 Bound Service Interaction Options
	57.3 A Local Bound Service Example
	57.4 Adding a Bound Service to the Project
	57.5 Implementing the Binder
	57.6 Binding the Client to the Service
	57.7 Completing the Example
	57.8 Testing the Application
	57.9 Summary

	58. Android Remote Bound Services – A Worked Example
	58.1 Client to Remote Service Communication
	58.2 Creating the Example Application
	58.3 Designing the User Interface
	58.4 Implementing the Remote Bound Service
	58.5 Configuring a Remote Service in the Manifest File
	58.6 Launching and Binding to the Remote Service
	58.7 Sending a Message to the Remote Service
	58.8 Summary

	59. An Overview of Java Threads, Handlers and Executors
	59.1 The Application Main Thread
	59.2 Thread Handlers
	59.3 A Threading Example
	59.4 Building the App
	59.5 Creating a New Thread
	59.6 Implementing a Thread Handler
	59.7 Passing a Message to the Handler
	59.8 Java Executor Concurrency
	59.9 Working with Runnable Tasks
	59.10 Shutting down an Executor Service
	59.11 Working with Callable Tasks and Futures
	59.12 Handling a Future Result
	59.13 Scheduling Tasks
	59.14 Summary

	60. Making Runtime Permission Requests in Android
	60.1 Understanding Normal and Dangerous Permissions
	60.2 Creating the Permissions Example Project
	60.3 Checking for a Permission
	60.4 Requesting Permission at Runtime
	60.5 Providing a Rationale for the Permission Request
	60.6 Testing the Permissions App
	60.7 Summary

	61. An Android Notifications Tutorial
	61.1 An Overview of Notifications
	61.2 Creating the NotifyDemo Project
	61.3 Designing the User Interface
	61.4 Creating the Second Activity
	61.5 Creating a Notification Channel
	61.6 Requesting Notification Permission
	61.7 Creating and Issuing a Notification
	61.8 Launching an Activity from a Notification
	61.9 Adding Actions to a Notification
	61.10 Bundled Notifications
	61.11 Summary

	62. An Android Direct Reply Notification Tutorial
	62.1 Creating the DirectReply Project
	62.2 Designing the User Interface
	62.3 Requesting Notification Permission
	62.4 Creating the Notification Channel
	62.5 Building the RemoteInput Object
	62.6 Creating the PendingIntent
	62.7 Creating the Reply Action
	62.8 Receiving Direct Reply Input
	62.9 Updating the Notification
	62.10 Summary

	63. Foldable Devices and Multi-Window Support
	63.1 Foldables and Multi-Window Support
	63.2 Using a Foldable Emulator
	63.3 Entering Multi-Window Mode
	63.4 Enabling and using Freeform Support
	63.5 Checking for Freeform Support
	63.6 Enabling Multi-Window Support in an App
	63.7 Specifying Multi-Window Attributes
	63.8 Detecting Multi-Window Mode in an Activity
	63.9 Receiving Multi-Window Notifications
	63.10 Launching an Activity in Multi-Window Mode
	63.11 Configuring Freeform Activity Size and Position
	63.12 Summary

	64. An Overview of Android SQLite Databases
	64.1 Understanding Database Tables
	64.2 Introducing Database Schema
	64.3 Columns and Data Types
	64.4 Database Rows
	64.5 Introducing Primary Keys
	64.6 What is SQLite?
	64.7 Structured Query Language (SQL)
	64.8 Trying SQLite on an Android Virtual Device (AVD)
	64.9 Android SQLite Classes
	64.9.1 Cursor
	64.9.2 SQLiteDatabase
	64.9.3 SQLiteOpenHelper
	64.9.4 ContentValues

	64.10 The Android Room Persistence Library
	64.11 Summary

	65. An Android SQLite Database Tutorial
	65.1 About the Database Example
	65.2 Creating the SQLDemo Project
	65.3 Designing the User interface
	65.4 Creating the Data Model
	65.5 Implementing the Data Handler
	65.6 The Add Handler Method
	65.7 The Query Handler Method
	65.8 The Delete Handler Method
	65.9 Implementing the Activity Event Methods
	65.10 Testing the Application
	65.11 Summary

	66. Understanding Android Content Providers
	66.1 What is a Content Provider?
	66.2 The Content Provider
	66.2.1 onCreate()
	66.2.2 query()
	66.2.3 insert()
	66.2.4 update()
	66.2.5 delete()
	66.2.6 getType()

	66.3 The Content URI
	66.4 The Content Resolver
	66.5 The <provider> Manifest Element
	66.6 Summary

	67. An Android Content Provider Tutorial
	67.1 Copying the SQLDemo Project
	67.2 Adding the Content Provider Package
	67.3 Creating the Content Provider Class
	67.4 Constructing the Authority and Content URI
	67.5 Implementing URI Matching in the Content Provider
	67.6 Implementing the Content Provider onCreate() Method
	67.7 Implementing the Content Provider insert() Method
	67.8 Implementing the Content Provider query() Method
	67.9 Implementing the Content Provider update() Method
	67.10 Implementing the Content Provider delete() Method
	67.11 Declaring the Content Provider in the Manifest File
	67.12 Modifying the Database Handler
	67.13 Summary

	68. An Android Content Provider Client Tutorial
	68.1 Creating the SQLDemoClient Project
	68.2 Designing the User interface
	68.3 Accessing the Content Provider
	68.4 Adding the Query Permission
	68.5 Testing the Project
	68.6 Summary

	69. The Android Room Persistence Library
	69.1 Revisiting Modern App Architecture
	69.2 Key Elements of Room Database Persistence
	69.2.1 Repository
	69.2.2 Room Database
	69.2.3 Data Access Object (DAO)
	69.2.4 Entities
	69.2.5 SQLite Database

	69.3 Understanding Entities
	69.4 Data Access Objects
	69.5 The Room Database
	69.6 The Repository
	69.7 In-Memory Databases
	69.8 Database Inspector
	69.9 Summary

	70. An Android TableLayout and TableRow Tutorial
	70.1 The TableLayout and TableRow Layout Views
	70.2 Creating the Room Database Project
	70.3 Converting to a LinearLayout
	70.4 Adding the TableLayout to the User Interface
	70.5 Configuring the TableRows
	70.6 Adding the Button Bar to the Layout
	70.7 Adding the RecyclerView
	70.8 Adjusting the Layout Margins
	70.9 Summary

	71. An Android Room Database and Repository Tutorial
	71.1 About the RoomDemo Project
	71.2 Modifying the Build Configuration
	71.3 Building the Entity
	71.4 Creating the Data Access Object
	71.5 Adding the Room Database
	71.6 Adding the Repository
	71.7 Adding the ViewModel
	71.8 Creating the Product Item Layout
	71.9 Adding the RecyclerView Adapter
	71.10 Preparing the Main Activity
	71.11 Adding the Button Listeners
	71.12 Adding LiveData Observers
	71.13 Initializing the RecyclerView
	71.14 Testing the RoomDemo App
	71.15 Using the Database Inspector
	71.16 Summary

	72. Accessing Cloud Storage using the Android Storage Access Framework
	72.1 The Storage Access Framework
	72.2 Working with the Storage Access Framework
	72.3 Filtering Picker File Listings
	72.4 Handling Intent Results
	72.5 Reading the Content of a File
	72.6 Writing Content to a File
	72.7 Deleting a File
	72.8 Gaining Persistent Access to a File
	72.9 Summary

	73. An Android Storage Access Framework Example
	73.1 About the Storage Access Framework Example
	73.2 Creating the Storage Access Framework Example
	73.3 Designing the User Interface
	73.4 Adding the Activity Launchers
	73.5 Creating a New Storage File
	73.6 Saving to a Storage File
	73.7 Opening and Reading a Storage File
	73.8 Testing the Storage Access Application
	73.9 Summary

	74. Video Playback on Android using the VideoView and MediaController Classes
	74.1 Introducing the Android VideoView Class
	74.2 Introducing the Android MediaController Class
	74.3 Creating the Video Playback Example
	74.4 Designing the VideoPlayer Layout
	74.5 Downloading the Video File
	74.6 Configuring the VideoView
	74.7 Adding the MediaController to the Video View
	74.8 Setting up the onPreparedListener
	74.9 Summary

	75. Android Picture-in-Picture Mode
	75.1 Picture-in-Picture Features
	75.2 Enabling Picture-in-Picture Mode
	75.3 Configuring Picture-in-Picture Parameters
	75.4 Entering Picture-in-Picture Mode
	75.5 Detecting Picture-in-Picture Mode Changes
	75.6 Adding Picture-in-Picture Actions
	75.7 Summary

	76. An Android Picture-in-Picture Tutorial
	76.1 Adding Picture-in-Picture Support to the Manifest
	76.2 Adding a Picture-in-Picture Button
	76.3 Entering Picture-in-Picture Mode
	76.4 Detecting Picture-in-Picture Mode Changes
	76.5 Adding a Broadcast Receiver
	76.6 Adding the PiP Action
	76.7 Testing the Picture-in-Picture Action
	76.8 Summary

	77. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	77.1 Playing Audio
	77.2 Recording Audio and Video using the MediaRecorder Class
	77.3 About the Example Project
	77.4 Creating the AudioApp Project
	77.5 Designing the User Interface
	77.6 Checking for Microphone Availability
	77.7 Initializing the Activity
	77.8 Implementing the recordAudio() Method
	77.9 Implementing the stopAudio() Method
	77.10 Implementing the playAudio() method
	77.11 Configuring and Requesting Permissions
	77.12 Testing the Application
	77.13 Summary

	78. Working with the Google Maps Android API in Android Studio
	78.1 The Elements of the Google Maps Android API
	78.2 Creating the Google Maps Project
	78.3 Creating a Google Cloud Billing Account
	78.4 Creating a New Google Cloud Project
	78.5 Enabling the Google Maps SDK
	78.6 Generating a Google Maps API Key
	78.7 Adding the API Key to the Android Studio Project
	78.8 Testing the Application
	78.9 Understanding Geocoding and Reverse Geocoding
	78.10 Adding a Map to an Application
	78.11 Requesting Current Location Permission
	78.12 Displaying the User’s Current Location
	78.13 Changing the Map Type
	78.14 Displaying Map Controls to the User
	78.15 Handling Map Gesture Interaction
	78.15.1 Map Zooming Gestures
	78.15.2 Map Scrolling/Panning Gestures
	78.15.3 Map Tilt Gestures
	78.15.4 Map Rotation Gestures

	78.16 Creating Map Markers
	78.17 Controlling the Map Camera
	78.18 Summary

	79. Printing with the Android Printing Framework
	79.1 The Android Printing Architecture
	79.2 The Print Service Plugins
	79.3 Google Cloud Print
	79.4 Printing to Google Drive
	79.5 Save as PDF
	79.6 Printing from Android Devices
	79.7 Options for Building Print Support into Android Apps
	79.7.1 Image Printing
	79.7.2 Creating and Printing HTML Content
	79.7.3 Printing a Web Page
	79.7.4 Printing a Custom Document

	79.8 Summary

	80. An Android HTML and Web Content Printing Example
	80.1 Creating the HTML Printing Example Application
	80.2 Printing Dynamic HTML Content
	80.3 Creating the Web Page Printing Example
	80.4 Removing the Floating Action Button
	80.5 Removing Navigation Features
	80.6 Designing the User Interface Layout
	80.7 Accessing the WebView from the Main Activity
	80.8 Loading the Web Page into the WebView
	80.9 Adding the Print Menu Option
	80.10 Summary

	81. A Guide to Android Custom Document Printing
	81.1 An Overview of Android Custom Document Printing
	81.1.1 Custom Print Adapters

	81.2 Preparing the Custom Document Printing Project
	81.3 Creating the Custom Print Adapter
	81.4 Implementing the onLayout() Callback Method
	81.5 Implementing the onWrite() Callback Method
	81.6 Checking a Page is in Range
	81.7 Drawing the Content on the Page Canvas
	81.8 Starting the Print Job
	81.9 Testing the Application
	81.10 Summary

	82. An Introduction to Android App Links
	82.1 An Overview of Android App Links
	82.2 App Link Intent Filters
	82.3 Handling App Link Intents
	82.4 Associating the App with a Website
	82.5 Summary

	83. An Android Studio App Links Tutorial
	83.1 About the Example App
	83.2 The Database Schema
	83.3 Loading and Running the Project
	83.4 Adding the URL Mapping
	83.5 Adding the Intent Filter
	83.6 Adding Intent Handling Code
	83.7 Testing the App
	83.8 Creating the Digital Asset Links File
	83.9 Testing the App Link
	83.10 Summary

	84. An Android Biometric Authentication Tutorial
	84.1 An Overview of Biometric Authentication
	84.2 Creating the Biometric Authentication Project
	84.3 Configuring Device Fingerprint Authentication
	84.4 Adding the Biometric Permission to the Manifest File
	84.5 Designing the User Interface
	84.6 Adding a Toast Convenience Method
	84.7 Checking the Security Settings
	84.8 Configuring the Authentication Callbacks
	84.9 Adding the CancellationSignal
	84.10 Starting the Biometric Prompt
	84.11 Testing the Project
	84.12 Summary

	85. Creating, Testing, and Uploading an Android App Bundle
	85.1 The Release Preparation Process
	85.2 Android App Bundles
	85.3 Register for a Google Play Developer Console Account
	85.4 Configuring the App in the Console
	85.5 Enabling Google Play App Signing
	85.6 Creating a Keystore File
	85.7 Creating the Android App Bundle
	85.8 Generating Test APK Files
	85.9 Uploading the App Bundle to the Google Play Developer Console
	85.10 Exploring the App Bundle
	85.11 Managing Testers
	85.12 Rolling the App Out for Testing
	85.13 Uploading New App Bundle Revisions
	85.14 Analyzing the App Bundle File
	85.15 Summary

	86. An Overview of Android In-App Billing
	86.1 Preparing a Project for In-App Purchasing
	86.2 Creating In-App Products and Subscriptions
	86.3 Billing Client Initialization
	86.4 Connecting to the Google Play Billing Library
	86.5 Querying Available Products
	86.6 Starting the Purchase Process
	86.7 Completing the Purchase
	86.8 Querying Previous Purchases
	86.9 Summary

	87. An Android In-App Purchasing Tutorial
	87.1 About the In-App Purchasing Example Project
	87.2 Creating the InAppPurchase Project
	87.3 Adding Libraries to the Project
	87.4 Designing the User Interface
	87.5 Adding the App to the Google Play Store
	87.6 Creating an In-App Product
	87.7 Enabling License Testers
	87.8 Initializing the Billing Client
	87.9 Querying the Product
	87.10 Launching the Purchase Flow
	87.11 Handling Purchase Updates
	87.12 Consuming the Product
	87.13 Restoring a Previous Purchase
	87.14 Testing the App
	87.15 Troubleshooting
	87.16 Summary

	88. Creating and Managing Overflow Menus on Android
	88.1 The Overflow Menu
	88.2 Creating an Overflow Menu
	88.3 Displaying an Overflow Menu
	88.4 Responding to Menu Item Selections
	88.5 Creating Checkable Item Groups
	88.6 Menus and the Android Studio Menu Editor
	88.7 Creating the Example Project
	88.8 Designing the Menu
	88.9 Modifying the onOptionsItemSelected() Method
	88.10 Testing the Application
	88.11 Summary

	89. Working with Material Design 3 Theming
	89.1 Material Design 2 vs. Material Design 3
	89.2 Understanding Material Design Theming
	89.3 Material Design 3 Theming
	89.4 Building a Custom Theme
	89.5 Summary

	90. A Material Design 3 Theming and Dynamic Color Tutorial
	90.1 Creating the ThemeDemo Project
	90.2 Designing the User Interface
	90.3 Building a New Theme
	90.4 Adding the Theme to the Project
	90.5 Enabling Dynamic Color Support
	90.6 Previewing Dynamic Colors
	90.7 Summary

	91. An Overview of Gradle in Android Studio
	91.1 An Overview of Gradle
	91.2 Gradle and Android Studio
	91.2.1 Sensible Defaults
	91.2.2 Dependencies
	91.2.3 Build Variants
	91.2.4 Manifest Entries
	91.2.5 APK Signing
	91.2.6 ProGuard Support

	91.3 The Property and Settings Gradle Build File
	91.4 The Top-level Gradle Build File
	91.5 Module Level Gradle Build Files
	91.6 Configuring Signing Settings in the Build File
	91.7 Running Gradle Tasks from the Command Line
	91.8 Summary

	Index

