

Building iOS 17 Apps with
Xcode Storyboards

Title

Building iOS 17 Apps with Xcode Storyboards

ISBN-13: 978-1-951442-84-2

© 2024 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Find more books at https://www.payloadbooks.com.

Copyright

Payload
publishing

i

Contents
Table of Contents
1. Start Here .. 1

1.1 Source Code Download .. 1
1.2 Feedback ... 1
1.3 Errata... 1
1.4 Find more books.. 1

2. Joining the Apple Developer Program ... 3
2.1 Downloading Xcode 15 and the iOS 17 SDK .. 3
2.2 Apple Developer Program .. 3
2.3 When to Enroll in the Apple Developer Program? ... 3
2.4 Enrolling in the Apple Developer Program ... 4
2.5 Summary .. 5

3. Installing Xcode 15 and the iOS 17 SDK ... 7
3.1 Identifying Your macOS Version .. 7
3.2 Installing Xcode 15 and the iOS 17 SDK .. 7
3.3 Starting Xcode ... 8
3.4 Adding Your Apple ID to the Xcode Preferences.. 8
3.5 Developer and Distribution Signing Identities ... 9
3.6 Summary .. 9

4. A Guided Tour of Xcode 15 .. 11
4.1 Starting Xcode 15 .. 11
4.2 Creating the iOS App User Interface .. 15
4.3 Changing Component Properties ... 18
4.4 Adding Objects to the User Interface ... 18
4.5 Building and Running an iOS App in Xcode... 22
4.6 Running the App on a Physical iOS Device ... 22
4.7 Managing Devices and Simulators .. 23
4.8 Enabling Network Testing .. 24
4.9 Dealing with Build Errors .. 24
4.10 Monitoring Application Performance .. 24
4.11 Exploring the User Interface Layout Hierarchy .. 25
4.12 Summary .. 27

5. An Introduction to Xcode 15 Playgrounds .. 29
5.1 What is a Playground? .. 29
5.2 Creating a New Playground ... 29
5.3 A Swift Playground Example ... 30
5.4 Viewing Results ... 32
5.5 Adding Rich Text Comments .. 34
5.6 Working with Playground Pages ... 35
5.7 Working with UIKit in Playgrounds ... 35
5.8 Adding Resources to a Playground ... 36
5.9 Working with Enhanced Live Views ... 38

Contents

ii

Table of Contents

5.10 When to Use Playgrounds .. 40
5.11 Summary .. 40

6. Swift Data Types, Constants and Variables ... 41
6.1 Using a Swift Playground ... 41
6.2 Swift Data Types .. 41

6.2.1 Integer Data Types ... 42
6.2.2 Floating Point Data Types ... 42
6.2.3 Bool Data Type ... 42
6.2.4 Character Data Type .. 42
6.2.5 String Data Type ... 43
6.2.6 Special Characters/Escape Sequences ... 44

6.3 Swift Variables .. 44
6.4 Swift Constants .. 45
6.5 Declaring Constants and Variables ... 45
6.6 Type Annotations and Type Inference ... 45
6.7 The Swift Tuple .. 46
6.8 The Swift Optional Type ... 47
6.9 Type Casting and Type Checking.. 50
6.10 Summary .. 52

7. Swift Operators and Expressions ... 53
7.1 Expression Syntax in Swift ... 53
7.2 The Basic Assignment Operator .. 53
7.3 Swift Arithmetic Operators .. 53
7.4 Compound Assignment Operators ... 54
7.5 Comparison Operators ... 54
7.6 Boolean Logical Operators... 55
7.7 Range Operators .. 55
7.8 The Ternary Operator ... 56
7.9 Nil Coalescing Operator ... 56
7.10 Bitwise Operators .. 57

7.10.1 Bitwise NOT ... 57
7.10.2 Bitwise AND ... 57
7.10.3 Bitwise OR ... 58
7.10.4 Bitwise XOR .. 58
7.10.5 Bitwise Left Shift ... 58
7.10.6 Bitwise Right Shift .. 59

7.11 Compound Bitwise Operators ... 59
7.12 Summary .. 60

8. Swift Control Flow .. 61
8.1 Looping Control Flow .. 61
8.2 The Swift for-in Statement .. 61

8.2.1 The while Loop .. 62
8.3 The repeat ... while loop ... 62
8.4 Breaking from Loops .. 63
8.5 The continue Statement ... 63
8.6 Conditional Control Flow .. 64

iii

Table of Contents

8.7 Using the if Statement .. 64
8.8 Using if ... else … Statements ... 64
8.9 Using if ... else if ... Statements .. 65
8.10 The guard Statement ... 65
8.11 Summary .. 66

9. The Swift Switch Statement .. 67
9.1 Why Use a switch Statement? ... 67
9.2 Using the switch Statement Syntax .. 67
9.3 A Swift switch Statement Example ... 67
9.4 Combining case Statements .. 68
9.5 Range Matching in a switch Statement ... 69
9.6 Using the where statement ... 69
9.7 Fallthrough ... 70
9.8 Summary .. 70

10. Swift Functions, Methods and Closures ... 71
10.1 What is a Function? .. 71
10.2 What is a Method? .. 71
10.3 How to Declare a Swift Function .. 71
10.4 Implicit Returns from Single Expressions .. 72
10.5 Calling a Swift Function ... 72
10.6 Handling Return Values ... 72
10.7 Local and External Parameter Names .. 73
10.8 Declaring Default Function Parameters ... 73
10.9 Returning Multiple Results from a Function .. 74
10.10 Variable Numbers of Function Parameters .. 74
10.11 Parameters as Variables .. 75
10.12 Working with In-Out Parameters ... 75
10.13 Functions as Parameters ... 76
10.14 Closure Expressions .. 78
10.15 Shorthand Argument Names ... 79
10.16 Closures in Swift .. 79
10.17 Summary .. 80

11. The Basics of Swift Object-Oriented Programming .. 81
11.1 What is an Instance? ... 81
11.2 What is a Class? ... 81
11.3 Declaring a Swift Class ... 81
11.4 Adding Instance Properties to a Class .. 82
11.5 Defining Methods ... 82
11.6 Declaring and Initializing a Class Instance .. 83
11.7 Initializing and De-initializing a Class Instance ... 83
11.8 Calling Methods and Accessing Properties ... 84
11.9 Stored and Computed Properties .. 85
11.10 Lazy Stored Properties .. 86
11.11 Using self in Swift .. 87
11.12 Understanding Swift Protocols .. 88
11.13 Opaque Return Types ... 89

iv

Table of Contents

11.14 Summary .. 90
12. An Introduction to Swift Subclassing and Extensions .. 91

12.1 Inheritance, Classes and Subclasses .. 91
12.2 A Swift Inheritance Example ... 91
12.3 Extending the Functionality of a Subclass ... 92
12.4 Overriding Inherited Methods .. 92
12.5 Initializing the Subclass .. 93
12.6 Using the SavingsAccount Class ... 94
12.7 Swift Class Extensions .. 94
12.8 Summary .. 95

13. An Introduction to Swift Structures and Enumerations ... 97
13.1 An Overview of Swift Structures ... 97
13.2 Value Types vs. Reference Types ... 98
13.3 When to Use Structures or Classes ... 100
13.4 An Overview of Enumerations .. 100
13.5 Summary .. 101

14. Working with Array and Dictionary Collections in Swift ... 103
14.1 Mutable and Immutable Collections .. 103
14.2 Swift Array Initialization .. 103
14.3 Working with Arrays in Swift .. 104

14.3.1 Array Item Count ... 104
14.3.2 Accessing Array Items ... 104
14.3.3 Random Items and Shuffling .. 104
14.3.4 Appending Items to an Array ... 105
14.3.5 Inserting and Deleting Array Items ... 105
14.3.6 Array Iteration .. 105

14.4 Creating Mixed Type Arrays.. 106
14.5 Swift Dictionary Collections .. 106
14.6 Swift Dictionary Initialization ... 106
14.7 Sequence-based Dictionary Initialization .. 107
14.8 Dictionary Item Count ... 108
14.9 Accessing and Updating Dictionary Items .. 108
14.10 Adding and Removing Dictionary Entries .. 108
14.11 Dictionary Iteration .. 108
14.12 Summary .. 109

15. Understanding Error Handling in Swift 5 ... 111
15.1 Understanding Error Handling ... 111
15.2 Declaring Error Types .. 111
15.3 Throwing an Error .. 112
15.4 Calling Throwing Methods and Functions .. 112
15.5 Accessing the Error Object .. 114
15.6 Disabling Error Catching ... 114
15.7 Using the defer Statement .. 114
15.8 Summary .. 115

16. The iOS 17 App and Development Architecture ... 117

v

Table of Contents

16.1 An Overview of the iOS 17 Operating System Architecture ... 117
16.2 Model View Controller (MVC) ... 118
16.3 The Target-Action pattern, IBOutlets, and IBActions .. 118
16.4 Subclassing ... 119
16.5 Delegation .. 119
16.6 Summary .. 119

17. Creating an Interactive iOS 17 App ... 121
17.1 Creating the New Project ... 121
17.2 Creating the User Interface .. 121
17.3 Building and Running the Sample App .. 123
17.4 Adding Actions and Outlets .. 124
17.5 Building and Running the Finished App ... 128
17.6 Hiding the Keyboard .. 128
17.7 Summary .. 129

18. Understanding iOS 17 Views, Windows, and the View Hierarchy ... 131
18.1 An Overview of Views and the UIKit Class Hierarchy .. 131
18.2 The UIWindow Class .. 131
18.3 The View Hierarchy .. 131
18.4 Viewing Hierarchy Ancestors in Interface Builder ... 133
18.5 View Types ... 133

18.5.1 The Window .. 134
18.5.2 Container Views ... 134
18.5.3 Controls ... 134
18.5.4 Display Views ... 134
18.5.5 Text and WebKit Views ... 134
18.5.6 Navigation Views and Tab Bars .. 134
18.5.7 Alert Views .. 134

18.6 Summary .. 134
19. An Introduction to Auto Layout in iOS 17 .. 135

19.1 An Overview of Auto Layout ... 135
19.2 Alignment Rects .. 136
19.3 Intrinsic Content Size ... 136
19.4 Content Hugging and Compression Resistance Priorities .. 136
19.5 Safe Area Layout Guide .. 136
19.6 Three Ways to Create Constraints ... 137
19.7 Constraints in More Detail .. 137
19.8 Summary .. 138

20. Working with iOS 17 Auto Layout Constraints in Interface Builder.. 139
20.1 An Example of Auto Layout in Action ... 139
20.2 Working with Constraints .. 139
20.3 The Auto Layout Features of Interface Builder ... 142

20.3.1 Suggested Constraints ... 142
20.3.2 Visual Cues .. 143
20.3.3 Highlighting Constraint Problems .. 144
20.3.4 Viewing, Editing, and Deleting Constraints ... 147

20.4 Creating New Constraints in Interface Builder ... 149

vi

Table of Contents

20.5 Adding Aspect Ratio Constraints ... 149
20.6 Resolving Auto Layout Problems .. 149
20.7 Summary .. 151

21. Implementing iOS 17 Auto Layout Constraints in Code .. 153
21.1 Creating Constraints Using NSLayoutConstraint .. 153
21.2 Adding a Constraint to a View .. 154
21.3 Turning off Auto Resizing Translation ... 155
21.4 Creating Constraints Using NSLayoutAnchor .. 155
21.5 An Example App ... 156
21.6 Creating the Views .. 156
21.7 Creating and Adding the Constraints .. 157
21.8 Using Layout Anchors .. 159
21.9 Removing Constraints .. 159
21.10 Summary .. 159

22. Implementing Cross-Hierarchy Auto Layout Constraints in iOS 17 .. 161
22.1 The Example App .. 161
22.2 Establishing Outlets .. 162
22.3 Writing the Code to Remove the Old Constraint ... 163
22.4 Adding the Cross Hierarchy Constraint .. 163
22.5 Testing the App .. 164
22.6 Summary .. 164

23. Understanding the iOS 17 Auto Layout Visual Format Language .. 165
23.1 Introducing the Visual Format Language .. 165
23.2 Visual Format Language Examples ... 165
23.3 Using the constraints(withVisualFormat:) Method .. 166
23.4 Summary .. 167

24. Using Trait Variations to Design Adaptive iOS 17 User Interfaces ... 169
24.1 Understanding Traits and Size Classes ... 169
24.2 Size Classes in Interface Builder .. 169
24.3 Enabling Trait Variations ... 170
24.4 Setting “Any” Defaults .. 170
24.5 Working with Trait Variations in Interface Builder .. 170
24.6 Attributes Inspector Trait Variations .. 171
24.7 Using Constraint Variations .. 173
24.8 An Adaptive User Interface Tutorial ... 174
24.9 Designing the Initial Layout .. 174
24.10 Adding Universal Image Assets ... 176
24.11 Increasing Font Size for iPad Devices .. 177
24.12 Adding Width Constraint Variations ... 177
24.13 Testing the Adaptivity ... 180
24.14 Summary .. 180

25. Using Storyboards in Xcode 15 .. 181
25.1 Creating the Storyboard Example Project ... 181
25.2 Accessing the Storyboard ... 181
25.3 Adding Scenes to the Storyboard .. 183

vii

Table of Contents

25.4 Configuring Storyboard Segues .. 184
25.5 Configuring Storyboard Transitions... 184
25.6 Associating a View Controller with a Scene .. 185
25.7 Passing Data Between Scenes .. 185
25.8 Unwinding Storyboard Segues .. 186
25.9 Triggering a Storyboard Segue Programmatically .. 187
25.10 Summary .. 187

26. Organizing Scenes over Multiple Storyboard Files ... 189
26.1 Organizing Scenes into Multiple Storyboards ... 189
26.2 Establishing a Connection between Different Storyboards ... 191
26.3 Summary .. 191

27. Using Xcode 15 Storyboards to Create an iOS 17 Tab Bar App .. 193
27.1 An Overview of the Tab Bar .. 193
27.2 Understanding View Controllers in a Multiview App ... 193
27.3 Setting up the Tab Bar Example App .. 193
27.4 Reviewing the Project Files .. 194
27.5 Adding the View Controllers for the Content Views ... 194
27.6 Adding the Tab Bar Controller to the Storyboard .. 194
27.7 Designing the View Controller User interfaces... 196
27.8 Configuring the Tab Bar Items .. 197
27.9 Building and Running the App ... 198
27.10 Summary .. 198

28. An Overview of iOS 17 Table Views and Xcode 15 Storyboards ... 199
28.1 An Overview of the Table View... 199
28.2 Static vs. Dynamic Table Views ... 199
28.3 The Table View Delegate and dataSource .. 199
28.4 Table View Styles ... 200
28.5 Self-Sizing Table Cells ... 201
28.6 Dynamic Type.. 201
28.7 Table View Cell Styles ... 202
28.8 Table View Cell Reuse... 203
28.9 Table View Swipe Actions .. 204
28.10 Summary .. 205

29. Using Xcode 15 Storyboards to Build Dynamic TableViews... 207
29.1 Creating the Example Project .. 207
29.2 Adding the TableView Controller to the Storyboard ... 207
29.3 Creating the UITableViewController and UITableViewCell Subclasses 208
29.4 Declaring the Cell Reuse Identifier ... 209
29.5 Designing a Storyboard UITableView Prototype Cell ... 210
29.6 Modifying the AttractionTableViewCell Class .. 210
29.7 Creating the Table View Datasource .. 211
29.8 Downloading and Adding the Image Files .. 213
29.9 Compiling and Running the App .. 214
29.10 Handling TableView Swipe Gestures .. 214
29.11 Summary .. 215

viii

Table of Contents

30. Implementing iOS 17 TableView Navigation using Storyboards .. 217
30.1 Understanding the Navigation Controller ... 217
30.2 Adding the New Scene to the Storyboard .. 217
30.3 Adding a Navigation Controller .. 218
30.4 Establishing the Storyboard Segue .. 218
30.5 Modifying the AttractionDetailViewController Class ... 219
30.6 Using prepare(for segue:) to Pass Data between Storyboard Scenes 221
30.7 Testing the App ... 221
30.8 Customizing the Navigation Title Size ... 222
30.9 Summary .. 223

31. Integrating Search using the iOS UISearchController .. 225
31.1 Introducing the UISearchController Class .. 225
31.2 Adding a Search Controller to the TableViewStory Project .. 226
31.3 Implementing the updateSearchResults Method .. 226
31.4 Reporting the Number of Table Rows .. 227
31.5 Modifying the cellForRowAt Method .. 227
31.6 Modifying the Trailing Swipe Delegate Method ... 228
31.7 Modifying the Detail Segue ... 229
31.8 Handling the Search Cancel Button.. 229
31.9 Testing the Search Controller .. 229
31.10 Summary .. 230

32. Working with the iOS 17 Stack View Class .. 231
32.1 Introducing the UIStackView Class .. 231
32.2 Understanding Subviews and Arranged Subviews ... 232
32.3 StackView Configuration Options .. 233

32.3.1 axis.. 233
32.3.2 distribution ... 233
32.3.3 spacing ... 234
32.3.4 alignment .. 235
32.3.5 baseLineRelativeArrangement ... 237
32.3.6 layoutMarginsRelativeArrangement .. 237

32.4 Creating a Stack View in Code .. 237
32.5 Adding Subviews to an Existing Stack View .. 238
32.6 Hiding and Removing Subviews ... 238
32.7 Summary .. 238

33. An iOS 17 Stack View Tutorial ... 239
33.1 About the Stack View Example App ... 239
33.2 Creating the First Stack View .. 239
33.3 Creating the Banner Stack View .. 241
33.4 Adding the Switch Stack Views ... 242
33.5 Creating the Top-Level Stack View ... 242
33.6 Adding the Button Stack View .. 243
33.7 Adding the Final Subviews to the Top Level Stack View ... 244
33.8 Dynamically Adding and Removing Subviews ... 246
33.9 Summary .. 247

34. A Guide to iPad Multitasking .. 249

ix

Table of Contents

34.1 Using iPad Multitasking ... 249
34.2 Picture-In-Picture Multitasking .. 251
34.3 Multitasking and Size Classes .. 251
34.4 Handling Multitasking in Code .. 252

34.4.1 willTransition(to newcollection: with coordinator:) ... 253
34.4.2 viewWillTransition(to size: with coordinator:) .. 253
34.4.3 traitCollectionDidChange(_:) .. 253

34.5 Lifecycle Method Calls ... 254
34.6 Opting Out of Multitasking ... 254
34.7 Summary .. 255

35. An iPadOS Multitasking Example ... 257
35.1 Creating the Multitasking Example Project ... 257
35.2 Adding the Image Files ... 257
35.3 Designing the Regular Width Size Class Layout ... 258
35.4 Designing the Compact Width Size Class ... 260
35.5 Testing the Project in a Multitasking Environment .. 261
35.6 Summary .. 262

36. An Overview of Swift Structured Concurrency ... 263
36.1 An Overview of Threads .. 263
36.2 The Application Main Thread .. 263
36.3 Completion Handlers ... 263
36.4 Structured Concurrency... 264
36.5 Preparing the Project .. 264
36.6 Non-Concurrent Code ... 265
36.7 Introducing async/await Concurrency ... 266
36.8 Asynchronous Calls from Synchronous Functions .. 266
36.9 The await Keyword .. 267
36.10 Using async-let Bindings .. 268
36.11 Handling Errors ... 269
36.12 Understanding Tasks .. 270
36.13 Unstructured Concurrency ... 270
36.14 Detached Tasks .. 271
36.15 Task Management ... 271
36.16 Working with Task Groups .. 272
36.17 Avoiding Data Races ... 273
36.18 The for-await Loop .. 274
36.19 Asynchronous Properties ... 275
36.20 Summary .. 275

37. Working with Directories in Swift on iOS 17 .. 277
37.1 The Application Documents Directory .. 277
37.2 The FileManager, FileHandle, and Data Classes ... 277
37.3 Understanding Pathnames in Swift .. 278
37.4 Obtaining a Reference to the Default FileManager Object ... 278
37.5 Identifying the Current Working Directory .. 278
37.6 Identifying the Documents Directory .. 278
37.7 Identifying the Temporary Directory ... 279

x

Table of Contents

37.8 Changing Directory .. 279
37.9 Creating a New Directory .. 279
37.10 Deleting a Directory ... 280
37.11 Listing the Contents of a Directory .. 280
37.12 Getting the Attributes of a File or Directory ... 281
37.13 Summary .. 282

38. Working with Files in Swift on iOS 17 ... 283
38.1 Obtaining a FileManager Instance Reference .. 283
38.2 Checking for the Existence of a File ... 283
38.3 Comparing the Contents of Two Files .. 283
38.4 Checking if a File is Readable/Writable/Executable/Deletable ... 284
38.5 Moving/Renaming a File .. 284
38.6 Copying a File .. 284
38.7 Removing a File ... 284
38.8 Creating a Symbolic Link ... 285
38.9 Reading and Writing Files with FileManager .. 285
38.10 Working with Files using the FileHandle Class .. 285
38.11 Creating a FileHandle Object .. 285
38.12 FileHandle File Offsets and Seeking ... 286
38.13 Reading Data from a File ... 286
38.14 Writing Data to a File ... 287
38.15 Truncating a File ... 287
38.16 Summary .. 287

39. iOS 17 Directory Handling and File I/O in Swift – A Worked Example ... 289
39.1 The Example App .. 289
39.2 Setting up the App Project ... 289
39.3 Designing the User Interface ... 289
39.4 Checking the Data File on App Startup ... 290
39.5 Implementing the Action Method .. 291
39.6 Building and Running the Example .. 291
39.7 Summary .. 292

40. Preparing an iOS 17 App to use iCloud Storage .. 293
40.1 iCloud Data Storage Services ... 293
40.2 Preparing an App to Use iCloud Storage ... 293
40.3 Enabling iCloud Support for an iOS 17 App ... 294
40.4 Reviewing the iCloud Entitlements File ... 295
40.5 Accessing Multiple Ubiquity Containers ... 295
40.6 Ubiquity Container URLs .. 296
40.7 Summary .. 296

41. Managing Files using the iOS 17 UIDocument Class .. 297
41.1 An Overview of the UIDocument Class .. 297
41.2 Subclassing the UIDocument Class .. 297
41.3 Conflict Resolution and Document States ... 297
41.4 The UIDocument Example App .. 298
41.5 Creating a UIDocument Subclass ... 298
41.6 Designing the User Interface ... 298

xi

Table of Contents

41.7 Implementing the App Data Structure ... 299
41.8 Implementing the contents(forType:) Method .. 300
41.9 Implementing the load(fromContents:) Method .. 300
41.10 Loading the Document at App Launch .. 300
41.11 Saving Content to the Document ... 303
41.12 Testing the App .. 304
41.13 Summary .. 304

42. Using iCloud Storage in an iOS 17 App ... 305
42.1 iCloud Usage Guidelines .. 305
42.2 Preparing the iCloudStore App for iCloud Access ... 305
42.3 Enabling iCloud Capabilities and Services .. 306
42.4 Configuring the View Controller .. 308
42.5 Implementing the loadFile Method .. 308
42.6 Implementing the metadataQueryDidFinishGathering Method ... 310
42.7 Implementing the saveDocument Method .. 312
42.8 Enabling iCloud Document and Data Storage .. 313
42.9 Running the iCloud App .. 313
42.10 Making a Local File Ubiquitous .. 314
42.11 Summary .. 314

43. Using iCloud Drive Storage in an iOS 17 App ... 315
43.1 Preparing an App to use iCloud Drive Storage ... 315
43.2 Making Changes to the NSUbiquitousContainers Key .. 316
43.3 Creating the iCloud Drive Example Project .. 316
43.4 Modifying the Info.plist File .. 316
43.5 Designing the User Interface ... 317
43.6 Accessing the Ubiquitous Container .. 318
43.7 Saving the File to iCloud Drive ... 319
43.8 Testing the App .. 319
43.9 Summary .. 320

44. An Overview of the iOS 17 Document Browser View Controller ... 321
44.1 An Overview of the Document Browser View Controller .. 321
44.2 The Anatomy of a Document-Based App .. 322
44.3 Document Browser Project Settings ... 322
44.4 The Document Browser Delegate Methods ... 323

44.4.1 didRequestDocumentCreationWithHandler ... 323
44.4.2 didImportDocumentAt ... 324
44.4.3 didPickDocumentURLs .. 324
44.4.4 failedToImportDocumentAt ... 324

44.5 Customizing the Document Browser ... 324
44.6 Adding Browser Actions .. 325
44.7 Summary .. 326

45. An iOS 17 Document Browser Tutorial ... 327
45.1 Creating the DocumentBrowser Project .. 327
45.2 Declaring the Supported File Types .. 327
45.3 Completing the didRequestDocumentCreationWithHandler Method 329
45.4 Finishing the UIDocument Subclass .. 331

xii

Table of Contents

45.5 Modifying the Document View Controller ... 331
45.6 Testing the Document Browser App .. 333
45.7 Summary .. 333

46. Synchronizing iOS 17 Key-Value Data using iCloud .. 335
46.1 An Overview of iCloud Key-Value Data Storage .. 335
46.2 Sharing Data Between Apps .. 335
46.3 Data Storage Restrictions ... 336
46.4 Conflict Resolution ... 336
46.5 Receiving Notification of Key-Value Changes... 336
46.6 An iCloud Key-Value Data Storage Example .. 336
46.7 Enabling the App for iCloud Key-Value Data Storage ... 336
46.8 Designing the User Interface ... 337
46.9 Implementing the View Controller ... 337
46.10 Modifying the viewDidLoad Method .. 338
46.11 Implementing the Notification Method ... 338
46.12 Implementing the saveData Method .. 339
46.13 Testing the App .. 339
46.14 Summary .. 339

47. iOS 17 Database Implementation using SQLite .. 341
47.1 What is SQLite? ... 341
47.2 Structured Query Language (SQL) ... 341
47.3 Trying SQLite on macOS ... 341
47.4 Preparing an iOS App Project for SQLite Integration .. 343
47.5 SQLite, Swift, and Wrappers .. 343
47.6 Key FMDB Classes .. 343
47.7 Creating and Opening a Database .. 343
47.8 Creating a Database Table .. 344
47.9 Extracting Data from a Database Table .. 344
47.10 Closing an SQLite Database .. 344
47.11 Summary .. 345

48. An Example SQLite-based iOS 17 App using Swift and FMDB .. 347
48.1 About the Example SQLite App .. 347
48.2 Creating and Preparing the SQLite App Project ... 347
48.3 Checking Out the FMDB Source Code .. 347
48.4 Designing the User Interface ... 349
48.5 Creating the Database and Table ... 350
48.6 Implementing the Code to Save Data to the SQLite Database .. 351
48.7 Implementing Code to Extract Data from the SQLite Database .. 352
48.8 Building and Running the App ... 353
48.9 Summary .. 354

49. Working with iOS 17 Databases using Core Data ... 355
49.1 The Core Data Stack.. 355
49.2 Persistent Container .. 356
49.3 Managed Objects ... 356
49.4 Managed Object Context ... 356
49.5 Managed Object Model .. 356

xiii

Table of Contents

49.6 Persistent Store Coordinator .. 356
49.7 Persistent Object Store .. 357
49.8 Defining an Entity Description ... 357
49.9 Initializing the Persistent Container ... 357
49.10 Obtaining the Managed Object Context .. 358
49.11 Getting an Entity Description ... 358
49.12 Setting the Attributes of a Managed Object... 358
49.13 Saving a Managed Object ... 358
49.14 Fetching Managed Objects... 358
49.15 Retrieving Managed Objects based on Criteria .. 359
49.16 Accessing the Data in a Retrieved Managed Object ... 359
49.17 Summary .. 359

50. An iOS 17 Core Data Tutorial .. 361
50.1 The Core Data Example App ... 361
50.2 Creating a Core Data-based App .. 361
50.3 Creating the Entity Description .. 361
50.4 Designing the User Interface ... 362
50.5 Initializing the Persistent Container ... 363
50.6 Saving Data to the Persistent Store using Core Data .. 363
50.7 Retrieving Data from the Persistent Store using Core Data .. 364
50.8 Building and Running the Example App ... 365
50.9 Summary .. 365

51. An Introduction to CloudKit Data Storage on iOS 17 .. 367
51.1 An Overview of CloudKit .. 367
51.2 CloudKit Containers ... 367
51.3 CloudKit Public Database .. 367
51.4 CloudKit Private Databases ... 367
51.5 Data Storage and Transfer Quotas .. 368
51.6 CloudKit Records .. 368
51.7 CloudKit Record IDs .. 370
51.8 CloudKit References ... 370
51.9 CloudKit Assets ... 370
51.10 Record Zones ... 371
51.11 CloudKit Sharing .. 371
51.12 CloudKit Subscriptions .. 371
51.13 Obtaining iCloud User Information ... 372
51.14 CloudKit Console .. 372
51.15 Summary .. 373

52. An Introduction to CloudKit Sharing ... 375
52.1 Understanding CloudKit Sharing ... 375
52.2 Preparing for CloudKit Sharing .. 375
52.3 The CKShare Class .. 375
52.4 The UICloudSharingController Class .. 376
52.5 Accepting a CloudKit Share ... 379
52.6 Fetching a Shared Record ... 380
52.7 Summary .. 381

xiv

Table of Contents

53. An iOS 17 CloudKit Example .. 383
53.1 About the Example CloudKit Project ... 383
53.2 Creating the CloudKit Example Project ... 383
53.3 Designing the User Interface ... 384
53.4 Establishing Outlets and Actions .. 386
53.5 Implementing the notifyUser Method ... 387
53.6 Accessing the Private Database ... 387
53.7 Hiding the Keyboard .. 389
53.8 Implementing the selectPhoto method .. 389
53.9 Saving a Record to the Cloud Database ... 390
53.10 Testing the Record Saving Method ... 392
53.11 Reviewing the Saved Data in the CloudKit Console .. 392
53.12 Searching for Cloud Database Records .. 394
53.13 Updating Cloud Database Records ... 395
53.14 Deleting a Cloud Record .. 396
53.15 Testing the App .. 396
53.16 Summary .. 396

54. An iOS 17 CloudKit Sharing Example ... 397
54.1 Preparing the Project for CloudKit Sharing .. 397
54.2 Adding the Share Button .. 397
54.3 Creating the CloudKit Share .. 398
54.4 Accepting a CloudKit Share ... 399
54.5 Fetching the Shared Record ... 400
54.6 Testing the CloudKit Share Example .. 401
54.7 Summary .. 402

55. An Overview of iOS 17 Multitouch, Taps, and Gestures ... 403
55.1 The Responder Chain ... 403
55.2 Forwarding an Event to the Next Responder .. 403
55.3 Gestures .. 404
55.4 Taps ... 404
55.5 Touches ... 404
55.6 Touch Notification Methods .. 404

55.6.1 touchesBegan method ... 404
55.6.2 touchesMoved method .. 404
55.6.3 touchesEnded method ... 404
55.6.4 touchesCancelled method ... 405

55.7 Touch Prediction ... 405
55.8 Touch Coalescing .. 405
55.9 Summary .. 405

56. An Example iOS 17 Touch, Multitouch, and Tap App ... 407
56.1 The Example iOS Tap and Touch App .. 407
56.2 Creating the Example iOS Touch Project .. 407
56.3 Designing the User Interface ... 407
56.4 Enabling Multitouch on the View ... 408
56.5 Implementing the touchesBegan Method .. 408
56.6 Implementing the touchesMoved Method ... 409

xv

Table of Contents

56.7 Implementing the touchesEnded Method ... 409
56.8 Getting the Coordinates of a Touch .. 409
56.9 Building and Running the Touch Example App ... 410
56.10 Checking for Touch Predictions ... 410
56.11 Accessing Coalesced Touches .. 411
56.12 Summary .. 411

57. Detecting iOS 17 Touch Screen Gesture Motions .. 413
57.1 The Example iOS 17 Gesture App ... 413
57.2 Creating the Example Project .. 413
57.3 Designing the App User Interface ... 413
57.4 Implementing the touchesBegan Method .. 414
57.5 Implementing the touchesMoved Method .. 414
57.6 Implementing the touchesEnded Method ... 415
57.7 Building and Running the Gesture Example ... 415
57.8 Summary .. 415

58. Identifying Gestures using iOS 17 Gesture Recognizers ... 417
58.1 The UIGestureRecognizer Class .. 417
58.2 Recognizer Action Messages ... 418
58.3 Discrete and Continuous Gestures ... 418
58.4 Obtaining Data from a Gesture ... 418
58.5 Recognizing Tap Gestures .. 418
58.6 Recognizing Pinch Gestures .. 418
58.7 Detecting Rotation Gestures .. 418
58.8 Recognizing Pan and Dragging Gestures... 419
58.9 Recognizing Swipe Gestures .. 419
58.10 Recognizing Long Touch (Touch and Hold) Gestures ... 419
58.11 Summary .. 419

59. An iOS 17 Gesture Recognition Tutorial ... 421
59.1 Creating the Gesture Recognition Project ... 421
59.2 Designing the User Interface ... 421
59.3 Implementing the Action Methods .. 422
59.4 Testing the Gesture Recognition Application.. 423
59.5 Summary .. 423

60. Implementing Touch ID and Face ID Authentication in iOS 17 Apps ... 425
60.1 The Local Authentication Framework .. 425
60.2 Checking for Biometric Authentication Availability .. 425
60.3 Identifying Authentication Options ... 426
60.4 Evaluating Biometric Policy ... 426
60.5 A Biometric Authentication Example Project ... 427
60.6 Checking for Biometric Availability ... 428
60.7 Seeking Biometric Authentication .. 429
60.8 Adding the Face ID Privacy Statement .. 431
60.9 Testing the App .. 431
60.10 Summary .. 433

61. Drawing iOS 17 2D Graphics with Core Graphics .. 435

xvi

Table of Contents

61.1 Introducing Core Graphics and Quartz 2D ... 435
61.2 The draw Method .. 435
61.3 Points, Coordinates, and Pixels ... 435
61.4 The Graphics Context ... 436
61.5 Working with Colors in Quartz 2D .. 436
61.6 Summary .. 437

62. Interface Builder Live Views and iOS 17 Embedded Frameworks ... 439
62.1 Embedded Frameworks.. 439
62.2 Interface Builder Live Views .. 439
62.3 Creating the Example Project .. 440
62.4 Adding an Embedded Framework .. 441
62.5 Implementing the Drawing Code in the Framework ... 442
62.6 Making the View Designable ... 443
62.7 Making Variables Inspectable .. 444
62.8 Summary .. 444

63. An iOS 17 Graphics Tutorial using Core Graphics and Core Image .. 445
63.1 The iOS Drawing Example App .. 445
63.2 Creating the New Project ... 445
63.3 Creating the UIView Subclass ... 445
63.4 Locating the draw Method in the UIView Subclass ... 446
63.5 Drawing a Line .. 446
63.6 Drawing Paths.. 447
63.7 Drawing a Rectangle ... 448
63.8 Drawing an Ellipse or Circle .. 449
63.9 Filling a Path with a Color ... 449
63.10 Drawing an Arc ... 451
63.11 Drawing a Cubic Bézier Curve .. 451
63.12 Drawing a Quadratic Bézier Curve .. 452
63.13 Dashed Line Drawing ... 453
63.14 Drawing Shadows.. 454
63.15 Drawing Gradients .. 454
63.16 Drawing an Image into a Graphics Context .. 458
63.17 Image Filtering with the Core Image Framework... 460
63.18 Summary .. 461

64. iOS 17 Animation using UIViewPropertyAnimator ... 463
64.1 The Basics of UIKit Animation ... 463
64.2 Understanding Animation Curves ... 464
64.3 Performing Affine Transformations ... 464
64.4 Combining Transformations ... 465
64.5 Creating the Animation Example App ... 465
64.6 Implementing the Variables ... 465
64.7 Drawing in the UIView .. 466
64.8 Detecting Screen Touches and Performing the Animation ... 466
64.9 Building and Running the Animation App ... 468
64.10 Implementing Spring Timing .. 468
64.11 Summary .. 469

xvii

Table of Contents

65. iOS 17 UIKit Dynamics – An Overview .. 471
65.1 Understanding UIKit Dynamics ... 471
65.2 The UIKit Dynamics Architecture .. 471

65.2.1 Dynamic Items ... 471
65.2.2 Dynamic Behaviors .. 472
65.2.3 The Reference View... 472
65.2.4 The Dynamic Animator .. 472

65.3 Implementing UIKit Dynamics in an iOS App ... 473
65.4 Dynamic Animator Initialization ... 473
65.5 Configuring Gravity Behavior ... 473
65.6 Configuring Collision Behavior .. 474
65.7 Configuring Attachment Behavior ... 475
65.8 Configuring Snap Behavior.. 476
65.9 Configuring Push Behavior ... 476
65.10 The UIDynamicItemBehavior Class ... 477
65.11 Combining Behaviors to Create a Custom Behavior ... 478
65.12 Summary .. 478

66. An iOS 17 UIKit Dynamics Tutorial .. 479
66.1 Creating the UIKit Dynamics Example Project .. 479
66.2 Adding the Dynamic Items .. 479
66.3 Creating the Dynamic Animator Instance ... 480
66.4 Adding Gravity to the Views ... 481
66.5 Implementing Collision Behavior ... 482
66.6 Attaching a View to an Anchor Point ... 483
66.7 Implementing a Spring Attachment Between two Views .. 485
66.8 Summary .. 486

67. Integrating Maps into iOS 17 Apps using MKMapItem .. 487
67.1 MKMapItem and MKPlacemark Classes ... 487
67.2 An Introduction to Forward and Reverse Geocoding ... 487
67.3 Creating MKPlacemark Instances... 489
67.4 Working with MKMapItem ... 489
67.5 MKMapItem Options and Configuring Directions .. 490
67.6 Adding Item Details to an MKMapItem .. 491
67.7 Summary .. 492

68. An Example iOS 17 MKMapItem App ... 493
68.1 Creating the MapItem Project ... 493
68.2 Designing the User Interface ... 493
68.3 Converting the Destination using Forward Geocoding .. 494
68.4 Launching the Map ... 495
68.5 Building and Running the App ... 496
68.6 Summary .. 497

69. Getting Location Information using the iOS 17 Core Location Framework 499
69.1 The Core Location Manager .. 499
69.2 Requesting Location Access Authorization ... 499
69.3 Configuring the Desired Location Accuracy ... 500

xviii

Table of Contents

69.4 Configuring the Distance Filter ... 500
69.5 Continuous Background Location Updates .. 501
69.6 The Location Manager Delegate .. 501
69.7 Starting and Stopping Location Updates ... 502
69.8 Obtaining Location Information from CLLocation Objects ... 502

69.8.1 Longitude and Latitude ... 503
69.8.2 Accuracy .. 503
69.8.3 Altitude .. 503

69.9 Getting the Current Location .. 503
69.10 Calculating Distances ... 503
69.11 Summary .. 503

70. An Example iOS 17 Location App.. 505
70.1 Creating the Example iOS 17 Location Project ... 505
70.2 Designing the User Interface ... 505
70.3 Configuring the CLLocationManager Object ... 506
70.4 Setting up the Usage Description Keys .. 507
70.5 Implementing the startWhenInUse Method ... 507
70.6 Implementing the startAlways Method.. 507
70.7 Implementing the resetDistance Method .. 508
70.8 Implementing the App Delegate Methods ... 508
70.9 Building and Running the Location App ... 509
70.10 Adding Continuous Background Location Updates .. 510
70.11 Summary .. 512

71. Working with Maps on iOS 17 with MapKit and the MKMapView Class .. 513
71.1 About the MapKit Framework .. 513
71.2 Understanding Map Regions ... 513
71.3 Getting Transit ETA Information ... 514
71.4 About the MKMapView Tutorial .. 514
71.5 Creating the Map Project ... 514
71.6 Adding the Navigation Controller .. 515
71.7 Creating the MKMapView Instance and Toolbar ... 515
71.8 Obtaining Location Information Permission .. 518
71.9 Setting up the Usage Description Keys .. 518
71.10 Configuring the Map View .. 518
71.11 Changing the MapView Region .. 519
71.12 Changing the Map Type ... 519
71.13 Testing the MapView App .. 519
71.14 Updating the Map View based on User Movement .. 520
71.15 Summary .. 521

72. Working with MapKit Local Search in iOS 17 ... 523
72.1 An Overview of iOS Local Search ... 523
72.2 Adding Local Search to the MapSample App .. 524
72.3 Adding the Local Search Text Field .. 524
72.4 Performing the Local Search ... 526
72.5 Testing the App .. 527
72.6 Customized Annotation Markers ... 528

xix

Table of Contents

72.7 Annotation Marker Clustering .. 532
72.8 Summary .. 533

73. Using MKDirections to get iOS 17 Map Directions and Routes ... 535
73.1 An Overview of MKDirections ... 535
73.2 Adding Directions and Routes to the MapSample App ... 536
73.3 Adding the New Classes to the Project .. 537
73.4 Configuring the Results Table View .. 537
73.5 Implementing the Result Table View Segue .. 539
73.6 Adding the Route Scene ... 540
73.7 Identifying the User’s Current Location ... 541
73.8 Getting the Route and Directions ... 542
73.9 Establishing the Route Segue ... 544
73.10 Testing the App .. 544
73.11 Summary .. 545

74. Accessing the iOS 17 Camera and Photo Library .. 547
74.1 The UIImagePickerController Class ... 547
74.2 Creating and Configuring a UIImagePickerController Instance ... 547
74.3 Configuring the UIImagePickerController Delegate ... 548
74.4 Detecting Device Capabilities ... 549
74.5 Saving Movies and Images ... 549
74.6 Summary .. 550

75. An Example iOS 17 Camera App ... 551
75.1 An Overview of the App .. 551
75.2 Creating the Camera Project ... 551
75.3 Designing the User Interface ... 551
75.4 Implementing the Action Methods .. 552
75.5 Writing the Delegate Methods... 553
75.6 Seeking Camera and Photo Library Access ... 555
75.7 Building and Running the App ... 555
75.8 Summary .. 556

76. iOS 17 Video Playback using AVPlayer and AVPlayerViewController .. 557
76.1 The AVPlayer and AVPlayerViewController Classes ... 557
76.2 The iOS Movie Player Example App ... 557
76.3 Designing the User Interface ... 557
76.4 Initializing Video Playback .. 557
76.5 Build and Run the App ... 558
76.6 Creating an AVPlayerViewController Instance from Code .. 559
76.7 Summary .. 559

77. An iOS 17 Multitasking Picture-in-Picture Tutorial ... 561
77.1 An Overview of Picture-in-Picture Multitasking ... 561
77.2 Adding Picture-in-Picture Support to the AVPlayerDemo App .. 562
77.3 Adding the Navigation Controller .. 563
77.4 Setting the Audio Session Category .. 563
77.5 Implementing the Delegate .. 564
77.6 Opting Out of Picture-in-Picture Support ... 566

xx

Table of Contents

77.7 Additional Delegate Methods .. 566
77.8 Summary .. 566

78. An Introduction to Extensions in iOS 17... 567
78.1 iOS Extensions – An Overview ... 567
78.2 Extension Types ... 567

78.2.1 Share Extension .. 567
78.2.2 Action Extension .. 568
78.2.3 Photo Editing Extension ... 568
78.2.4 Document Provider Extension ... 569
78.2.5 Custom Keyboard Extension .. 569
78.2.6 Audio Unit Extension .. 569
78.2.7 Shared Links Extension ... 569
78.2.8 Content Blocking Extension ... 569
78.2.9 Sticker Pack Extension .. 569
78.2.10 iMessage Extension .. 569
78.2.11 Intents Extension.. 569

78.3 Creating Extensions .. 570
78.4 Summary .. 570

79. Creating an iOS 17 Photo Editing Extension ... 571
79.1 Creating a Photo Editing Extension ... 571
79.2 Accessing the Photo Editing Extension .. 572
79.3 Configuring the Info.plist File ... 573
79.4 Designing the User Interface ... 574
79.5 The PHContentEditingController Protocol... 575
79.6 Photo Extensions and Adjustment Data .. 575
79.7 Receiving the Content .. 576
79.8 Implementing the Filter Actions ... 577
79.9 Returning the Image to the Photos App... 579
79.10 Testing the App .. 581
79.11 Summary .. 582

80. Creating an iOS 17 Action Extension .. 583
80.1 An Overview of Action Extensions .. 583
80.2 About the Action Extension Example .. 584
80.3 Creating the Action Extension Project ... 584
80.4 Adding the Action Extension Target .. 584
80.5 Changing the Extension Display Name ... 585
80.6 Designing the Action Extension User Interface .. 585
80.7 Receiving the Content .. 586
80.8 Returning the Modified Data to the Host App .. 588
80.9 Testing the Extension .. 589
80.10 Summary .. 591

81. Receiving Data from an iOS 17 Action Extension ... 593
81.1 Creating the Example Project .. 593
81.2 Designing the User Interface ... 593
81.3 Importing the Mobile Core Services Framework ... 594
81.4 Adding an Action Button to the App.. 594

xxi

Table of Contents

81.5 Receiving Data from an Extension ... 595
81.6 Testing the App .. 596
81.7 Summary .. 596

82. An Introduction to Building iOS 17 Message Apps .. 597
82.1 Introducing Message Apps ... 597
82.2 Types of Message Apps ... 598
82.3 The Key Messages Framework Classes ... 599

82.3.1 MSMessagesAppViewController ... 599
82.3.2 MSConversation ... 599
82.3.3 MSMessage .. 600
82.3.4 MSMessageTemplateLayout .. 600

82.4 Sending Simple Messages ... 601
82.5 Creating an MSMessage Message .. 602
82.6 Receiving a Message .. 602
82.7 Supported Message App Platforms ... 603
82.8 Summary .. 603

83. An iOS 17 Interactive Message App Tutorial ... 605
83.1 About the Example Message App Project .. 605
83.2 Creating the MessageApp Project ... 605
83.3 Designing the MessageApp User Interface .. 607
83.4 Creating the Outlet Collection .. 611
83.5 Creating the Game Model .. 612
83.6 Responding to Button Selections .. 612
83.7 Preparing the Message URL... 613
83.8 Preparing and Inserting the Message ... 614
83.9 Message Receipt Handling ... 615
83.10 Setting the Message Image ... 616
83.11 Summary .. 617

84. An Introduction to Machine Learning on iOS .. 619
84.1 Datasets and Machine Learning Models .. 619
84.2 Machine Learning in Xcode and iOS ... 619
84.3 iOS Machine Learning Frameworks ... 620
84.4 Summary .. 620

85. Using Create ML to Build an Image Classification Model .. 621
85.1 About the Dataset .. 621
85.2 Creating the Machine Learning Model .. 621
85.3 Importing the Training and Testing Data .. 623
85.4 Training and Testing the Model .. 623
85.5 Summary .. 625

86. An iOS Vision and Core ML Image Classification Tutorial .. 627
86.1 Preparing the Project .. 627
86.2 Adding the Model ... 627
86.3 Modifying the User Interface ... 627
86.4 Initializing the Core ML Request .. 628
86.5 Handling the Results of the Core ML Request .. 629

xxii

Table of Contents

86.6 Making the Classification Request .. 630
86.7 Testing the App .. 631
86.8 Summary .. 632

87. An iOS 17 Local Notification Tutorial ... 633
87.1 Creating the Local Notification App Project ... 633
87.2 Requesting Notification Authorization .. 633
87.3 Designing the User Interface ... 634
87.4 Creating the Message Content ... 635
87.5 Specifying a Notification Trigger .. 635
87.6 Creating the Notification Request ... 635
87.7 Adding the Request ... 636
87.8 Testing the Notification .. 636
87.9 Receiving Notifications in the Foreground .. 637
87.10 Adding Notification Actions .. 638
87.11 Handling Notification Actions .. 639
87.12 Hidden Notification Content... 640
87.13 Managing Notifications .. 642
87.14 Summary .. 643

88. Playing Audio on iOS 17 using AVAudioPlayer .. 645
88.1 Supported Audio Formats .. 645
88.2 Receiving Playback Notifications .. 645
88.3 Controlling and Monitoring Playback .. 646
88.4 Creating the Audio Example App ... 646
88.5 Adding an Audio File to the Project Resources .. 646
88.6 Designing the User Interface ... 646
88.7 Implementing the Action Methods .. 648
88.8 Creating and Initializing the AVAudioPlayer Object ... 648
88.9 Implementing the AVAudioPlayerDelegate Protocol Methods .. 649
88.10 Building and Running the App ... 649
88.11 Summary .. 649

89. Recording Audio on iOS 17 with AVAudioRecorder... 651
89.1 An Overview of the AVAudioRecorder Tutorial ... 651
89.2 Creating the Recorder Project ... 651
89.3 Configuring the Microphone Usage Description ... 651
89.4 Designing the User Interface ... 652
89.5 Creating the AVAudioRecorder Instance ... 653
89.6 Implementing the Action Methods .. 654
89.7 Implementing the Delegate Methods ... 655
89.8 Testing the App .. 655
89.9 Summary .. 655

90. An iOS 17 Speech Recognition Tutorial .. 657
90.1 An Overview of Speech Recognition in iOS .. 657
90.2 Speech Recognition Authorization ... 657
90.3 Transcribing Recorded Audio ... 658
90.4 Transcribing Live Audio ... 658
90.5 An Audio File Speech Recognition Tutorial .. 658

xxiii

Table of Contents

90.6 Modifying the User Interface ... 658
90.7 Adding the Speech Recognition Permission ... 659
90.8 Seeking Speech Recognition Authorization .. 660
90.9 Performing the Transcription .. 661
90.10 Testing the App .. 661
90.11 Summary .. 661

91. An iOS 17 Real-Time Speech Recognition Tutorial .. 663
91.1 Creating the Project .. 663
91.2 Designing the User Interface ... 663
91.3 Adding the Speech Recognition Permission ... 664
91.4 Requesting Speech Recognition Authorization .. 664
91.5 Declaring and Initializing the Speech and Audio Objects ... 665
91.6 Starting the Transcription .. 665
91.7 Implementing the stopTranscribing Method .. 669
91.8 Testing the App .. 669
91.9 Summary .. 669

92. An Introduction to iOS 17 Sprite Kit Programming ... 671
92.1 What is Sprite Kit? ... 671
92.2 The Key Components of a Sprite Kit Game ... 671

92.2.1 Sprite Kit View .. 671
92.2.2 Scenes ... 671
92.2.3 Nodes ... 672
92.2.4 Physics Bodies .. 672
92.2.5 Physics World ... 673
92.2.6 Actions ... 673
92.2.7 Transitions ... 673
92.2.8 Texture Atlas ... 673
92.2.9 Constraints .. 673

92.3 An Example Sprite Kit Game Hierarchy .. 673
92.4 The Sprite Kit Game Rendering Loop .. 674
92.5 The Sprite Kit Level Editor ... 675
92.6 Summary .. 675

93. An iOS 17 Sprite Kit Level Editor Game Tutorial ... 677
93.1 About the Sprite Kit Demo Game ... 677
93.2 Creating the SpriteKitDemo Project ... 678
93.3 Reviewing the SpriteKit Game Template Project .. 678
93.4 Restricting Interface Orientation .. 679
93.5 Modifying the GameScene SpriteKit Scene File ... 679
93.6 Creating the Archery Scene ... 682
93.7 Transitioning to the Archery Scene .. 682
93.8 Adding the Texture Atlas.. 683
93.9 Designing the Archery Scene .. 684
93.10 Preparing the Archery Scene ... 686
93.11 Preparing the Animation Texture Atlas ... 686
93.12 Creating the Named Action Reference... 688
93.13 Triggering the Named Action from the Code ... 688

xxiv

Table of Contents

93.14 Creating the Arrow Sprite Node ... 688
93.15 Shooting the Arrow .. 689
93.16 Adding the Ball Sprite Node .. 690
93.17 Summary .. 691

94. An iOS 17 Sprite Kit Collision Handling Tutorial ... 693
94.1 Defining the Category Bit Masks .. 693
94.2 Assigning the Category Masks to the Sprite Nodes .. 693
94.3 Configuring the Collision and Contact Masks .. 694
94.4 Implementing the Contact Delegate ... 695
94.5 Game Over ... 696
94.6 Summary .. 697

95. An iOS 17 Sprite Kit Particle Emitter Tutorial .. 699
95.1 What is the Particle Emitter? ... 699
95.2 The Particle Emitter Editor .. 699
95.3 The SKEmitterNode Class .. 699
95.4 Using the Particle Emitter Editor .. 700
95.5 Particle Emitter Node Properties .. 701

95.5.1 Background ... 701
95.5.2 Particle Texture ... 701
95.5.3 Particle Birthrate .. 702
95.5.4 Particle Life Cycle ... 702
95.5.5 Particle Position Range .. 702
95.5.6 Angle .. 702
95.5.7 Particle Speed .. 702
95.5.8 Particle Acceleration .. 702
95.5.9 Particle Scale ... 702
95.5.10 Particle Rotation .. 702
95.5.11 Particle Color .. 702
95.5.12 Particle Blend Mode .. 703

95.6 Experimenting with the Particle Emitter Editor ... 703
95.7 Bursting a Ball using Particle Emitter Effects .. 704
95.8 Adding the Burst Particle Emitter Effect ... 705
95.9 Adding an Audio Action .. 706
95.10 Summary .. 707

96. Preparing and Submitting an iOS 17 Application to the App Store ... 709
96.1 Verifying the iOS Distribution Certificate ... 709
96.2 Adding App Icons ... 711
96.3 Assign the Project to a Team ... 712
96.4 Archiving the Application for Distribution ... 712
96.5 Configuring the Application in App Store Connect ... 713
96.6 Validating and Submitting the Application ... 714
96.7 Configuring and Submitting the App for Review ... 715

Index ... 717

1

Chapter 1

1. Start Here
This book aims to teach the skills necessary to create iOS apps using the iOS 17 SDK, UIKit, Xcode 15 Storyboards,
and the Swift programming language.

Beginning with the basics, this book outlines the steps necessary to set up an iOS development environment.
Next, an introduction to the architecture of iOS 17 and programming in Swift is provided, followed by an
in-depth look at the design of iOS apps and user interfaces. More advanced topics such as file handling,
database management, graphics drawing, and animation are also covered, as are touch screen handling, gesture
recognition, multitasking, location management, local notifications, camera access, and video playback support.
Other features include Auto Layout, local map search, user interface animation using UIKit dynamics, iMessage
app development, and biometric authentication.

Additional features of iOS development using Xcode are also covered, including Swift playgrounds, universal
user interface design using size classes, app extensions, Interface Builder Live Views, embedded frameworks,
collection and stack layouts, CloudKit data storage, and the document browser.

Other features of iOS 17 and Xcode 15 are also covered in detail, including iOS machine learning features.

The aim of this book, therefore, is to teach you the skills necessary to build your own apps for iOS 17. Assuming
you are ready to download the iOS 17 SDK and Xcode 15, have a Mac, and some ideas for some apps to develop,
you are ready to get started.

1.1 Source Code Download
The source code and Xcode project files for the examples contained in this book are available for download at:

https://www.payloadbooks.com/product/ios17xcode/

1.2 Feedback
We want you to be satisfied with your purchase of this book. Therefore, if you find any errors in the book or have
any comments, questions, or concerns, please contact us at info@payloadbooks.com.

1.3 Errata
While we make every effort to ensure the accuracy of the content of this book, inevitably, a book covering a
subject area of this size and complexity may include some errors and oversights. Any known issues with the
book will be outlined, together with solutions, at the following URL:

https://www.payloadbooks.com/ios-17-xcode-errata/

If you find an error not listed in the errata, please email our technical support team at info@payloadbooks.com.

1.4 Find more books
Visit our website to view our complete book catalog at https://www.payloadbooks.com.

https://www.payloadbooks.com/product/ios17xcode/
https://www.payloadbooks.com

3

Chapter 2

2. Joining the Apple Developer
Program
The first step in the process of learning to develop iOS 17 based applications involves gaining an understanding
of the advantages of enrolling in the Apple Developer Program and deciding the point at which it makes sense
to pay to join. With these goals in mind, this chapter will outline the costs and benefits of joining the developer
program and, finally, walk through the steps involved in enrolling.

2.1 Downloading Xcode 15 and the iOS 17 SDK
The latest versions of both the iOS SDK and Xcode can be downloaded free of charge from the macOS App
Store. Since the tools are free, this raises the question of whether to enroll in the Apple Developer Program, or
to wait until it becomes necessary later in your app development learning curve.

2.2 Apple Developer Program
Membership in the Apple Developer Program currently costs $99 per year to enroll as an individual developer.
Organization level membership is also available.

Much can be achieved without the need to pay to join the Apple Developer program. There are, however, areas
of app development which cannot be fully tested without program membership. Of particular significance is the
fact that Siri integration, iCloud access, Apple Pay, Game Center and In-App Purchasing can only be enabled
and tested with Apple Developer Program membership.

Of further significance is the fact that Apple Developer Program members have access to technical support
from Apple’s iOS support engineers (though the annual fee initially covers the submission of only two support
incident reports, more can be purchased). Membership also includes access to the Apple Developer forums;
an invaluable resource both for obtaining assistance and guidance from other iOS developers, and for finding
solutions to problems that others have encountered and subsequently resolved.

Program membership also provides early access to the pre-release Beta versions of Xcode, macOS and iOS.

By far the most important aspect of the Apple Developer Program is that membership is a mandatory requirement
in order to publish an application for sale or download in the App Store.

Clearly, program membership is going to be required at some point before your application reaches the App
Store. The only question remaining is when exactly to sign up.

2.3 When to Enroll in the Apple Developer Program?
Clearly, there are many benefits to Apple Developer Program membership and, eventually, membership will
be necessary to begin selling your apps. As to whether to pay the enrollment fee now or later will depend on
individual circumstances. If you are still in the early stages of learning to develop iOS apps or have yet to come
up with a compelling idea for an app to develop then much of what you need is provided without program
membership. As your skill level increases and your ideas for apps to develop take shape you can, after all, always
enroll in the developer program later.

If, on the other hand, you are confident that you will reach the stage of having an application ready to publish,

4

Joining the Apple Developer Program

or know that you will need access to more advanced features such as Siri support, iCloud storage, In-App
Purchasing and Apple Pay then it is worth joining the developer program sooner rather than later.

2.4 Enrolling in the Apple Developer Program
If your goal is to develop iOS apps for your employer, then it is first worth checking whether the company
already has membership. That being the case, contact the program administrator in your company and ask them
to send you an invitation from within the Apple Developer Program Member Center to join the team. Once they
have done so, Apple will send you an email entitled You Have Been Invited to Join an Apple Developer Program
containing a link to activate your membership. If you or your company is not already a program member, you
can enroll online at:

https://developer.apple.com/programs/enroll/

Apple provides enrollment options for businesses and individuals. To enroll as an individual, you will need to
provide credit card information in order to verify your identity. To enroll as a company, you must have legal
signature authority (or access to someone who does) and be able to provide documentation such as a Dun &
Bradstreet D-U-N-S number and documentation confirming legal entity status.

Acceptance into the developer program as an individual member typically takes less than 24 hours with notification
arriving in the form of an activation email from Apple. Enrollment as a company can take considerably longer
(sometimes weeks or even months) due to the burden of the additional verification requirements.

While awaiting activation you may log in to the Member Center with restricted access using your Apple ID and
password at the following URL:

https://developer.apple.com/membercenter

Once logged in, clicking on the Your Account tab at the top of the page will display the prevailing status of your
application to join the developer program as Enrollment Pending. Once the activation email has arrived, log in
to the Member Center again and note that access is now available to a wide range of options and resources, as
illustrated in Figure 2-1:

Figure 2-1

https://developer.apple.com/programs/enroll/
https://developer.apple.com/membercenter

5

Joining the Apple Developer Program

2.5 Summary
An important early step in the iOS 17 application development process involves identifying the best time to
enroll in the Apple Developer Program. This chapter has outlined the benefits of joining the program, provided
some guidance to keep in mind when considering developer program membership and walked briefly through
the enrollment process. The next step is to download and install the iOS 17 SDK and Xcode 15 development
environment.

7

Chapter 3

3. Installing Xcode 15 and the iOS 17
SDK
iOS apps are developed using the iOS SDK and Apple’s Xcode development environment. Xcode is an integrated
development environment (IDE) within which you will code, compile, test and debug your iOS applications.

All of the examples in this book are based on Xcode version 15 and use features unavailable in earlier Xcode
versions. This chapter will cover the steps involved in installing Xcode 15 and the iOS 17 SDK on macOS.

3.1 Identifying Your macOS Version
When developing with iOS apps, the Xcode 15 environment requires a system running macOS Ventura 13.5 or
later. If you are unsure of the version of macOS on your Mac, you can find this information by clicking on the
Apple menu in the top left-hand corner of the screen and selecting the About This Mac option from the menu.
In the resulting dialog, check the macOS line:

Figure 3-1
If the “About This Mac” dialog does not indicate that macOS 13.5 or later is running, click on the Software
Update… button to download and install the appropriate operating system upgrades.

3.2 Installing Xcode 15 and the iOS 17 SDK
The best way to obtain the latest Xcode and iOS SDK versions is to download them from the Apple Mac App
Store. Launch the App Store on your macOS system, enter Xcode into the search box and click on the Get button
to initiate the installation. This will install both Xcode and the iOS SDK.

8

Installing Xcode 15 and the iOS 17 SDK

3.3 Starting Xcode
Having successfully installed the SDK and Xcode, the next step is to launch it so we are ready to start development
work. To start up Xcode, open the macOS Finder and search for Xcode. Since you will be frequently using this
tool, take this opportunity to drag and drop it onto your dock for easier access in the future. Click on the
Xcode icon in the dock to launch the tool. The first time Xcode runs you may be prompted to install additional
components. Follow these steps, entering your username and password when prompted.

Once Xcode has loaded, and assuming this is the first time you have used Xcode on this system, you will be
presented with the Welcome screen from which you are ready to proceed:

Figure 3-2

3.4 Adding Your Apple ID to the Xcode Preferences
Whether or not you enroll in the Apple Developer Program, it is worth adding your Apple ID to Xcode now
that it is installed and running. Select the Xcode -> Settings… menu option followed by the Accounts tab. On the
Accounts screen, click on the + button highlighted in Figure 3-3, select Apple ID from the resulting panel and
click on the Continue button. When prompted, enter your Apple ID and password before clicking on the Sign In
button to add the account to the preferences.

Figure 3-3

9

Installing Xcode 15 and the iOS 17 SDK

3.5 Developer and Distribution Signing Identities
Once the Apple ID has been entered the next step is to generate signing identities. To view the current signing
identities, select the newly added Apple ID in the Accounts panel and click on the Manage Certificates… button
to display a list of available signing identity types. To create a signing identity, simply click on the + button
highlighted in Figure 3-4 and make the appropriate selection from the menu:

Figure 3-4
If the Apple ID has been used to enroll in the Apple Developer program, the option to create an Apple Distribution
certificate will appear in the menu which will, when clicked, generate the signing identity required to submit
the app to the Apple App Store. You will also need to create a Developer ID Application certificate if you plan
to integrate features such as iCloud and Siri into your app projects. If you have not yet signed up for the Apple
Developer program, select the Apple Development option to allow apps to be tested during development.

3.6 Summary
This book was written using Xcode 15 and the iOS 17 SDK running on macOS 14.0 (Sonoma). Before beginning
iOS development, the first step is to install Xcode and configure it with your Apple ID via the accounts section
of the Preferences screen. Once these steps have been performed, a development certificate must be generated
which will be used to sign apps developed within Xcode. This will allow you to build and test your apps on
physical iOS-based devices.

When you are ready to upload your finished app to the App Store, you will also need to generate a distribution
certificate, a process requiring membership in the Apple Developer Program as outlined in the previous chapter.

Having installed the iOS SDK and successfully launched Xcode 15, we can now look at Xcode in more detail,
starting with a guided tour.

11

Chapter 4

4. A Guided Tour of Xcode 15
Just about every activity related to developing and testing iOS apps involves the use of the Xcode environment.
This chapter is intended to serve two purposes. Primarily it is intended to provide an overview of many key areas
that comprise the Xcode development environment. In the course of providing this overview, the chapter will
also work through creating a straightforward iOS app project to display a label that reads “Hello World” on a
colored background.

By the end of this chapter, you will have a basic familiarity with Xcode and your first running iOS app.

4.1 Starting Xcode 15
As with all iOS examples in this book, the development of our example will take place within the Xcode 15
development environment. Therefore, if you have not already installed this tool with the latest iOS SDK, refer
first to the chapter of this book. Then, assuming that the installation is complete, launch Xcode either by
clicking on the icon on the dock (assuming you created one) or using the macOS Finder to locate Xcode in the
Applications folder of your system.

When launched for the first time the screen illustrated in Figure 4-1 will appear by default:

Figure 4-1
If you do not see this window, select the Window -> Welcome to Xcode menu option to display it. Within this
window, click on the option to Create a New Project. This selection will display the main Xcode project window
together with the project template panel, where we can select a template matching the type of project we want to
develop. Within this window, select the iOS tab so that the template panel appears as follows:

12

A Guided Tour of Xcode 15

Figure 4-2
The toolbar on the window’s top edge allows for selecting the target platform, providing options to develop an
app for iOS, watchOS, visionOS, tvOS, or macOS. An option is also available for creating multiplatform apps
using SwiftUI.

Begin by making sure that the App option located beneath iOS is selected. The main panel contains a list of
templates available to use as the basis for an app. The options available are as follows:

• App – This creates a basic template for an app containing a single view and corresponding view controller.

• Document App – Creates a project intended to use the iOS document browser. The document browser
provides a visual environment where the user can navigate and manage local and cloud-based files from
within an iOS app.

• Game – Creates a project configured to take advantage of Sprite Kit, Scene Kit, OpenGL ES, and Metal for
developing 2D and 3D games.

• Augmented Reality App – Creates a template project pre-configured to use ARKit to integrate augmented
reality support into an iOS app.

• Sticker Pack App – Allows a sticker pack app to be created and sold within the Message App Store. Sticker
pack apps allow additional images to be made available for inclusion in messages sent via the iOS Messages
app.

• iMessage App – iMessage apps are extensions to the built-in iOS Messages app that allow users to send
interactive messages, such as games, to other users. Once created, iMessage apps are available through the
Message App Store.

• Safari Extension App - This option creates a project to be used as the basis for developing an extension for
the Safari web browser.

For our simple example, we are going to use the App template, so select this option from the new project window
and click Next to configure some more project options:

13

A Guided Tour of Xcode 15

Figure 4-3
On this screen, enter a Product name for the app that will be created, in this case, “HelloWorld”. Next, choose
your account from the Team menu if you have already signed up for the Apple developer program. Otherwise,
leave the option set to None.

The text entered into the Organization Name field will be placed within the copyright comments of all the source
files that make up the project.

The company identifier is typically the reverse URL of your website, for example, “com.mycompany”. This
identifier will be used when creating provisioning profiles and certificates to enable the testing of advanced
features of iOS on physical devices. It also uniquely identifies the app within the Apple App Store when it is
published.

When developing an app in Xcode, the user interface can be designed using either Storyboards or SwiftUI.
For this book, we will be using Storyboards, so make sure that the Interface menu is set to Storyboard. SwiftUI
development is covered in our iOS 17 App Development Essentials book:

https://www.payloadbooks.com/index.php/product/ios-17-app-development-essentials-ebook/

Apple supports two programming languages for the development of iOS apps in the form of Objective-C and
Swift. While it is still possible to program using the older Objective-C language, Apple considers Swift to be the
future of iOS development. Therefore, all the code examples in this book are written in Swift, so make sure that
the Language menu is set accordingly before clicking on the Next button.

On the final screen, choose a location on the file system for the new project to be created. This panel also
allows placing the project under Git source code control. Source code control systems such as Git allow different
project revisions to be managed and restored, and for changes made over the project’s development lifecycle to
be tracked. Since this is typically used for larger projects, or those involving more than one developer, this option
can be turned off for this and the other projects created in the book.

Once the new project has been created, the main Xcode window will appear as illustrated in Figure 4-4:

https://www.payloadbooks.com/index.php/product/ios-17-app-development-essentials-ebook/

14

A Guided Tour of Xcode 15

Figure 4-4
Before proceeding, we should take some time to look at what Xcode has done for us. First, it has created a group
of files we will need to complete our app. Some of these are Swift source code files, where we will enter the code
to make our app work.

In addition, the Main storyboard file is the save file used by the Interface Builder tool to hold the user interface
design we will create. A second Interface Builder file named LaunchScreen will also have been added to the
project. This file contains the user interface design for the screen that appears on the device while the app is
loading.

Also present will be one or more Property List files that contain key/value pair information. For example, the Info.
plist file contains resource settings relating to items such as the language, executable name, and app identifier
and, as will be shown in later chapters, is the location where several properties are stored to configure the
capabilities of the project (for example to configure access to the user’s current geographical location). The list
of files is displayed in the Project Navigator located in the left-hand panel of the main Xcode project window. In
addition, a toolbar at the top of this panel contains options to display other information, such as build and run
history, breakpoints, and compilation errors.

By default, the center panel of the window shows a general summary of the settings for the app project. This
summary includes the identifier specified during the project creation process and the target devices. In addition,
options are also provided to configure the orientations of the device that are to be supported by the app, together
with opportunities to upload icons (the small images the user selects on the device screen to launch the app) and
launch screen images (displayed to the user while the app loads) for the app.

The Signing section allows selecting an Apple identity when building the app. This identity ensures that the
app is signed with a certificate when it is compiled. If you have registered your Apple ID with Xcode using the
Preferences screen outlined in the previous chapter, select that identity now using the Team menu. Testing apps
on physical devices will not be possible if no team is selected, though the simulator environment may still be

15

A Guided Tour of Xcode 15

used.

The Supported Destinations and Minimum Deployment sections of the screen also include settings to specify
the device types and iOS versions on which the completed app is intended to run, as shown in Figure 4-5:

Figure 4-5
The iOS ecosystem now includes a variety of devices and screen sizes. When developing a project, it is possible
to indicate that it is intended to target either the iPhone or iPad family of devices. With the gap between iPad
and iPhone screen sizes now reduced by the introduction of the Pro range of devices, it no longer makes sense
to create a project that targets just one device family. A much more sensible approach is to create a single project
that addresses all device types and screen sizes. As will be shown in later chapters, Xcode 15 and iOS 17 include
several features designed specifically to make the goal of universal app projects easy to achieve. With this in
mind, ensure that the destination list at least includes the iPhone and iPad.

In addition to the General screen, tabs are provided to view and modify additional settings consisting of Signing
& Capabilities, Resource Tags, Info, Build Settings, Build Phases, and Build Rules.

As we progress through subsequent chapters of this book, we will explore some of these other configuration
options in greater detail. To return to the project settings panel at any future time, ensure the Project Navigator
is selected in the left-hand panel and select the top item (the app name) in the navigator list.

When a source file is selected from the list in the navigator panel, the contents of that file will appear in the
center panel, where it may then be edited.

4.2 Creating the iOS App User Interface
Simply by the very nature of the environment in which they run, iOS apps are typically visually oriented.
Therefore, a vital component of any app involves a user interface through which the user will interact with the
app and, in turn, receive feedback. While it is possible to develop user interfaces by writing code to create and
position items on the screen, this is a complex and error-prone process. In recognition of this, Apple provides a
tool called Interface Builder, which allows a user interface to be visually constructed by dragging and dropping
components onto a canvas and setting properties to configure the appearance and behavior of those components.

As mentioned in the preceding section, Xcode pre-created several files for our project, one of which has a
.storyboard filename extension. This is an Interface Builder storyboard save file, and the file we are interested
in for our HelloWorld project is named Main.storyboard. To load this file into Interface Builder, select the Main
item in the list in the left-hand panel. Interface Builder will subsequently appear in the center panel, as shown
in Figure 4-6:

16

A Guided Tour of Xcode 15

Figure 4-6
In the center panel, a visual representation of the app’s user interface is displayed. Initially, this consists solely of
a View Controller (UIViewController) containing a single View (UIView) object. This layout was added to our
design by Xcode when we selected the App template option during the project creation phase. We will construct
the user interface for our HelloWorld app by dragging and dropping user interface objects onto this UIView
object. Designing a user interface consists primarily of dragging and dropping visual components onto the
canvas and setting a range of properties. The user interface components are accessed from the Library panel,
which is displayed by clicking on the Library button in the Xcode toolbar, as indicated in Figure 4-7:

Figure 4-7
This button will display the UI components used to construct our user interface. The layout of the items in the
library may also be switched from a single column of objects with descriptions to multiple columns without
descriptions by clicking on the button located in the top right-hand corner of the panel and to the right of the
search box.

17

A Guided Tour of Xcode 15

Figure 4-8
By default, the library panel will disappear either after an item has been dragged onto the layout or a click
is performed outside of the panel. Hold the Option key while clicking on the required Library item to keep
the panel visible in this mode. Alternatively, displaying the Library panel by clicking on the toolbar button
highlighted in Figure 4-7 while holding down the Option key will cause the panel to stay visible until it is
manually closed.

To edit property settings, we need to display the Xcode right-hand panel (if it is not already shown). This panel
is referred to as the Utilities panel and can be displayed and hidden by clicking the right-hand button in the
Xcode toolbar:

Figure 4-9
The Utilities panel, once displayed, will appear as illustrated in Figure 4-10:

18

A Guided Tour of Xcode 15

Figure 4-10
Along the top edge of the panel is a row of buttons that change the settings displayed in the upper half of the
panel. By default, the File Inspector is typically shown. Options are also provided to display quick help, the
Identity Inspector, History Inspector, Attributes Inspector, Size Inspector, and Connections Inspector. Take some
time to review each of these selections to familiarize yourself with the configuration options each provides.
Throughout the remainder of this book, extensive use of these inspectors will be made.

4.3 Changing Component Properties
With the property panel for the View selected in the main panel, we will begin our design work by changing the
background color of this view. Start by ensuring the View is selected and that the Attributes Inspector (View ->
Inspectors -> Attributes) is displayed in the Utilities panel. Next, click on the current property setting next to the
Background setting and select the Custom option from the popup menu to display the Colors dialog. Finally,
choose a visually pleasing color using the color selection tool and close the dialog. You will now notice that the
view window has changed from white to the new color selection.

4.4 Adding Objects to the User Interface
The next step is to add a Label object to our view. To achieve this, display the Library panel as shown in Figure
4-7 above and either scroll down the list of objects in the Library panel to locate the Label object or, as illustrated
in Figure 4-11, enter Label into the search box beneath the panel:

19

A Guided Tour of Xcode 15

Figure 4-11
After locating the Label object, click on it and drag it to the center of the view so that the vertical and horizontal
center guidelines appear. Once it is in position, release the mouse button to drop it at that location. We have
now added an instance of the UILabel class to the scene. Cancel the Library search by clicking on the “x” button
on the right-hand edge of the search field. Next, select the newly added label and stretch it horizontally so that
it is approximately three times the current width. With the Label still selected, click on the centered alignment
button in the Attributes Inspector (View -> Inspectors -> Attributes) to center the text in the middle of the label
view:

Figure 4-12
Double-click on the text in the label that currently reads “Label” and type in “Hello World”. Locate the font
setting property in the Attributes Inspector panel and click the “T” button to display the font selection menu

20

A Guided Tour of Xcode 15

next to the font name. Change the Font setting from System – System to Custom and choose a larger font setting,
for example, a Georgia bold typeface with a size of 24, as shown in Figure 4-13:

Figure 4-13
The final step is to add some layout constraints to ensure that the label remains centered within the containing
view regardless of the size of the screen on which the app ultimately runs. This involves using the Auto Layout
capabilities of iOS, a topic that will be covered extensively in later chapters. For this example, select the Label
object, display the Align menu as shown in Figure 4-14, and enable both the Horizontally in Container and
Vertically in Container options with offsets of 0 before clicking on the Add 2 Constraints button.

Figure 4-14
At this point, your View window will hopefully appear as outlined in Figure 4-15 (allowing, of course, for
differences in your color and font choices).

21

A Guided Tour of Xcode 15

Figure 4-15
Before building and running the project, it is worth taking a short detour to look at the Xcode Document Outline
panel. This panel appears by default to the left of the Interface Builder panel. It is controlled by the small button
in the bottom left-hand corner (indicated by the arrow in Figure 4-16) of the Interface Builder panel.

Figure 4-16
When displayed, the document outline shows a hierarchical overview of the elements that make up a user
interface layout, together with any constraints applied to views in the layout.

Figure 4-17

22

A Guided Tour of Xcode 15

4.5 Building and Running an iOS App in Xcode
Before an app can be run, it must first be compiled. Once successfully compiled, it may be run either within a
simulator or on a physical iPhone or iPad device. For this chapter, however, it is sufficient to run the app in the
simulator.

Within the main Xcode project window, make sure that the menu located in the top left-hand corner of the
window (marked C in Figure 4-18) has the iPhone 15 simulator option selected:

Figure 4-18
Click on the Run toolbar button (A) to compile the code and run the app in the simulator. The small panel in
the center of the Xcode toolbar (D) will report the progress of the build process together with any problems or
errors that cause the build process to fail. Once the app is built, the simulator will start, and the HelloWorld app
will run:

Figure 4-19
Note that the user interface appears as designed in the Interface Builder tool. Click on the stop button (B),
change the target menu from iPhone 15 to iPad Air (5th Generation), and rerun the app. Once again, the label
will appear centered on the screen even with the larger screen size. Finally, verify that the layout is correct in
landscape orientation by using the Device -> Rotate Left menu option. This indicates that the Auto Layout
constraints are working and that we have designed a universal user interface for the project.

4.6 Running the App on a Physical iOS Device
Although the Simulator environment provides a valuable way to test an app on various iOS device models, it is
important to also test on a physical iOS device.

If you have entered your Apple ID in the Xcode preferences screen as outlined in the previous chapter and selected

23

A Guided Tour of Xcode 15

a development team for the project, it is possible to run the app on a physical device simply by connecting it to
the development Mac system with a USB cable and selecting it as the run target within Xcode.

With a device connected to the development system and an app ready for testing, refer to the device menu
in the Xcode toolbar. There is a reasonable chance that this will have defaulted to one of the iOS Simulator
configurations. Switch to the physical device by selecting this menu and changing it to the device name, as
shown in Figure 4-20:

Figure 4-20
If the menu indicates that developer mode is disabled on the device, navigate to the Privacy & Security screen
in the device’s Settings app, locate the Developer Mode setting, and enable it. You will then need to restart the
device. After the device restarts, a dialog will appear in which you will need to turn on developer mode. After
entering your security code, the device will be ready for use with Xcode.

With the target device selected, ensure the device is unlocked and click on the run button, at which point Xcode
will install and launch the app. As will be discussed later in this chapter, a physical device may also be configured
for network testing, whereby apps are installed and tested via a network connection without needing to have the
device connected by a USB cable.

4.7 Managing Devices and Simulators
Currently connected iOS devices and the simulators configured for use with Xcode can be viewed and managed
using the Xcode Devices window, accessed via the Window -> Devices and Simulators menu option. Figure 4-21,
for example, shows a typical Device screen on a system where an iPhone has been detected:

Figure 4-21

24

A Guided Tour of Xcode 15

A wide range of simulator configurations are set up within Xcode by default and can be viewed by selecting the
Simulators button at the top of the left-hand panel. Other simulator configurations can be added by clicking on
the + button in the window’s bottom left-hand corner. Once selected, a dialog will appear, allowing the simulator
to be configured in terms of the device model, iOS version, and name.

4.8 Enabling Network Testing
In addition to testing an app on a physical device connected to the development system via a USB cable, Xcode
also supports testing via a network connection. This option is enabled on a per device basis within the Devices
and Simulators dialog introduced in the previous section. With the device connected via the USB cable, display
this dialog, select the device from the list and enable the Connect via network option as highlighted in Figure
4-22:

Figure 4-22
Once the setting has been enabled, the device may continue to be used as the run target for the app even when
the USB cable is disconnected. The only requirement is that the device and development computer be connected
to the same WiFi network. Assuming this requirement has been met, clicking the run button with the device
selected in the run menu will install and launch the app over the network connection.

4.9 Dealing with Build Errors
If for any reason, a build fails, the status window in the Xcode toolbar will report that an error has been detected
by displaying “Build” together with the number of errors detected and any warnings. In addition, the left-hand
panel of the Xcode window will update with a list of the errors. Selecting an error from this list will take you to
the location in the code where corrective action needs to be taken.

4.10 Monitoring Application Performance
Another useful feature of Xcode is the ability to monitor the performance of an application while it is running,
either on a device or simulator or within the Live Preview canvas. This information is accessed by displaying the
Debug Navigator.

When Xcode is launched, the project navigator is displayed in the left-hand panel by default. Along the top of
this panel is a bar with various of other options. The seventh option from the left displays the debug navigator
when selected, as illustrated in Figure 4-23. When displayed, this panel shows real-time statistics relating to the
performance of the currently running application such as memory, CPU usage, disk access, energy efficiency,
network activity, and iCloud storage access.

25

A Guided Tour of Xcode 15

Figure 4-23
When one of these categories is selected, the main panel (Figure 4-24) updates to provide additional information
about that particular aspect of the application’s performance:

Figure 4-24
Yet more information can be obtained by clicking on the Profile in Instruments button in the top right-hand
corner of the panel.

4.11 Exploring the User Interface Layout Hierarchy
Xcode also provides an option to break the user interface layout out into a rotatable 3D view that shows how the
view hierarchy for a user interface is constructed. This can be particularly useful for identifying situations where
one view instance is obscured by another appearing on top of it or a layout is not appearing as intended. This is
also useful for learning how iOS works behind the scenes to construct a layout if only to appreciate how much
work iOS is saving us from having to do.

To access the view hierarchy in this mode, the app needs to be running on a device or simulator. Once the app
is running, click on the Debug View Hierarchy button indicated in Figure 4-25:

26

A Guided Tour of Xcode 15

Figure 4-25
Once activated, a 3D “exploded” view of the layout will appear. Clicking and dragging within the view will rotate
the hierarchy allowing the layers of views that make up the user interface to be inspected:

Figure 4-26
Moving the slider in the bottom left-hand corner of the panel will adjust the spacing between the different views
in the hierarchy. The two markers in the right-hand slider (Figure 4-27) may also be used to narrow the range
of views visible in the rendering. This can be useful, for example, to focus on a subset of views located in the
middle of the hierarchy tree:

Figure 4-27
While the hierarchy is being debugged, the left-hand panel will display the entire view hierarchy tree for the

27

A Guided Tour of Xcode 15

layout as shown in Figure 4-28 below:

Figure 4-28
Selecting an object in the hierarchy tree will highlight the corresponding item in the 3D rendering and vice
versa. The far right-hand panel will also display the Object Inspector populated with information about the
currently selected object. Figure 4-29, for example, shows part of the Object Inspector panel while a Label view
is selected within the view hierarchy.

Figure 4-29

4.12 Summary
Apps are primarily created within the Xcode development environment. This chapter has provided a basic
overview of the Xcode environment and worked through creating a straightforward example app. Finally, a brief
overview was provided of some of the performance monitoring features in Xcode 15. In subsequent chapters of
the book, many more features and capabilities of Xcode and Interface Builder will be covered.

53

Chapter 7

7. Swift Operators and Expressions
So far we have looked at using variables and constants in Swift and also described the different data types. Being
able to create variables, however, is only part of the story. The next step is to learn how to use these variables and
constants in Swift code. The primary method for working with data is in the form of expressions.

7.1 Expression Syntax in Swift
The most basic Swift expression consists of an operator, two operands and an assignment. The following is an
example of an expression:
var myresult = 1 + 2

In the above example, the (+) operator is used to add two operands (1 and 2) together. The assignment operator (=)
subsequently assigns the result of the addition to a variable named myresult. The operands could just have easily
been variables (or a mixture of constants and variables) instead of the actual numerical values used in the
example.

In the remainder of this chapter we will look at the basic types of operators available in Swift.

7.2 The Basic Assignment Operator
We have already looked at the most basic of assignment operators, the = operator. This assignment operator
simply assigns the result of an expression to a variable. In essence, the = assignment operator takes two operands.
The left-hand operand is the variable or constant to which a value is to be assigned and the right-hand operand
is the value to be assigned. The right-hand operand is, more often than not, an expression which performs some
type of arithmetic or logical evaluation, the result of which will be assigned to the variable or constant. The
following examples are all valid uses of the assignment operator:
var x: Int? // Declare an optional Int variable

var y = 10 // Declare and initialize a second Int variable

x = 10 // Assign a value to x

x = x! + y // Assign the result of x + y to x

x = y // Assign the value of y to x

7.3 Swift Arithmetic Operators
Swift provides a range of operators for the purpose of creating mathematical expressions. These operators
primarily fall into the category of binary operators in that they take two operands. The exception is the unary
negative operator (-) which serves to indicate that a value is negative rather than positive. This contrasts with
the subtraction operator (-) which takes two operands (i.e. one value to be subtracted from another). For example:
var x = -10 // Unary - operator used to assign -10 to variable x

x = x - 5 // Subtraction operator. Subtracts 5 from x

The following table lists the primary Swift arithmetic operators:

Operator Description
-(unary) Negates the value of a variable or expression

54

Swift Operators and Expressions

* Multiplication
/ Division
+ Addition
- Subtraction
% Remainder/Modulo

Table 7-1
Note that multiple operators may be used in a single expression.

For example:

x = y * 10 + z - 5 / 4

7.4 Compound Assignment Operators
In an earlier section we looked at the basic assignment operator (=). Swift provides a number of operators
designed to combine an assignment with a mathematical or logical operation. These are primarily of use when
performing an evaluation where the result is to be stored in one of the operands. For example, one might write
an expression as follows:
x = x + y

The above expression adds the value contained in variable x to the value contained in variable y and stores the
result in variable x. This can be simplified using the addition compound assignment operator:
x += y

The above expression performs exactly the same task as x = x + y but saves the programmer some typing.

Numerous compound assignment operators are available in Swift, the most frequently used of which are outlined
in the following table:

Operator Description
x += y Add x to y and place result in x
x -= y Subtract y from x and place result in x
x *= y Multiply x by y and place result in x
x /= y Divide x by y and place result in x
x %= y Perform Modulo on x and y and place result in x

Table 7-2

7.5 Comparison Operators
Swift also includes a set of logical operators useful for performing comparisons. These operators all return a
Boolean result depending on the result of the comparison. These operators are binary operators in that they work
with two operands.

Comparison operators are most frequently used in constructing program flow control logic. For example,
an if statement may be constructed based on whether one value matches another:
if x == y {

 // Perform task

}

The result of a comparison may also be stored in a Bool variable. For example, the following code will result in

55

Swift Operators and Expressions

a true value being stored in the variable result:
var result: Bool?

var x = 10

var y = 20

result = x < y

Clearly 10 is less than 20, resulting in a true evaluation of the x < y expression. The following table lists the full
set of Swift comparison operators:

Operator Description
x == y Returns true if x is equal to y
x > y Returns true if x is greater than y
x >= y Returns true if x is greater than or equal to y
x < y Returns true if x is less than y
x <= y Returns true if x is less than or equal to y
x != y Returns true if x is not equal to y

Table 7-3

7.6 Boolean Logical Operators
Swift also provides a set of so-called logical operators designed to return Boolean true or false values. These
operators both return Boolean results and take Boolean values as operands. The key operators are NOT (!),
AND (&&) and OR (||).

The NOT (!) operator simply inverts the current value of a Boolean variable, or the result of an expression. For
example, if a variable named flag is currently true, prefixing the variable with a ‘!’ character will invert the value
to false:
var flag = true // variable is true

var secondFlag = !flag // secondFlag set to false

The OR (||) operator returns true if one of its two operands evaluates to true, otherwise it returns false. For
example, the following code evaluates to true because at least one of the expressions either side of the OR
operator is true:
if (10 < 20) || (20 < 10) {

 print("Expression is true")

}

The AND (&&) operator returns true only if both operands evaluate to be true. The following example will
return false because only one of the two operand expressions evaluates to true:
if (10 < 20) && (20 < 10) {

 print("Expression is true")

}

7.7 Range Operators
Swift includes several useful operators that allow ranges of values to be declared. As will be seen in later chapters,
these operators are invaluable when working with looping in program logic.

The syntax for the closed range operator is as follows:

56

Swift Operators and Expressions

x…y

This operator represents the range of numbers starting at x and ending at y where both x and y are included
within the range. The range operator 5…8, for example, specifies the numbers 5, 6, 7 and 8.

The half-open range operator, on the other hand uses the following syntax:
x..<y

In this instance, the operator encompasses all the numbers from x up to, but not including, y. A half-closed range
operator 5..<8, therefore, specifies the numbers 5, 6 and 7.

Finally, the one-sided range operator specifies a range that can extend as far as possible in a specified range
direction until the natural beginning or end of the range is reached (or until some other condition is met). A
one-sided range is declared by omitting the number from one side of the range declaration, for example:

x…

or

…y

The previous chapter, for example, explained that a String in Swift is actually a collection of individual characters.
A range to specify the characters in a string starting with the character at position 2 through to the last character
in the string (regardless of string length) would be declared as follows:

2…

Similarly, to specify a range that begins with the first character and ends with the character at position 6, the
range would be specified as follows:

…6

7.8 The Ternary Operator
Swift supports the ternary operator to provide a shortcut way of making decisions within code. The syntax of the
ternary operator (also known as the conditional operator) is as follows:
condition ? true expression : false expression

The way the ternary operator works is that condition is replaced with an expression that will return either true
or false. If the result is true then the expression that replaces the true expression is evaluated. Conversely, if the
result was false then the false expression is evaluated. Let’s see this in action:
let x = 10

let y = 20

print("Largest number is \(x > y ? x : y)")

The above code example will evaluate whether x is greater than y. Clearly this will evaluate to false resulting in y
being returned to the print call for display to the user:
Largest number is 20

7.9 Nil Coalescing Operator
The nil coalescing operator (??) allows a default value to be used in the event that an optional has a nil value. The
following example will output text which reads “Welcome back, customer” because the customerName optional
is set to nil:

57

Swift Operators and Expressions

let customerName: String? = nil

print("Welcome back, \(customerName ?? "customer")")

If, on the other hand, customerName is not nil, the optional will be unwrapped and the assigned value displayed:
let customerName: String? = "John"

print("Welcome back, \(customerName ?? "customer")")

On execution, the print statement output will now read “Welcome back, John”.

7.10 Bitwise Operators
As previously discussed, computer processors work in binary. These are essentially streams of ones and zeros,
each one referred to as a bit. Bits are formed into groups of 8 to form bytes. As such, it is not surprising that we,
as programmers, will occasionally end up working at this level in our code. To facilitate this requirement, Swift
provides a range of bit operators.

Those familiar with bitwise operators in other languages such as C, C++, C#, Objective-C and Java will find
nothing new in this area of the Swift language syntax. For those unfamiliar with binary numbers, now may be a
good time to seek out reference materials on the subject in order to understand how ones and zeros are formed
into bytes to form numbers. Other authors have done a much better job of describing the subject than we can
do within the scope of this book.

For the purposes of this exercise we will be working with the binary representation of two numbers (for the sake
of brevity we will be using 8-bit values in the following examples). First, the decimal number 171 is represented
in binary as:
10101011

Second, the number 3 is represented by the following binary sequence:
00000011

Now that we have two binary numbers with which to work, we can begin to look at the Swift bitwise operators:

7.10.1 Bitwise NOT
The Bitwise NOT is represented by the tilde (~) character and has the effect of inverting all of the bits in a
number. In other words, all the zeros become ones and all the ones become zeros. Taking our example 3 number,
a Bitwise NOT operation has the following result:
00000011 NOT

========

11111100

The following Swift code, therefore, results in a value of -4:
let y = 3

let z = ~y

print("Result is \(z)")

7.10.2 Bitwise AND
The Bitwise AND is represented by a single ampersand (&). It makes a bit by bit comparison of two numbers.
Any corresponding position in the binary sequence of each number where both bits are 1 results in a 1 appearing
in the same position of the resulting number. If either bit position contains a 0 then a zero appears in the result.
Taking our two example numbers, this would appear as follows:
10101011 AND

58

Swift Operators and Expressions

00000011

========

00000011

As we can see, the only locations where both numbers have 1s are the last two positions. If we perform this in
Swift code, therefore, we should find that the result is 3 (00000011):
let x = 171

let y = 3

let z = x & y

print("Result is \(z)")

7.10.3 Bitwise OR
The bitwise OR also performs a bit by bit comparison of two binary sequences. Unlike the AND operation, the
OR places a 1 in the result if there is a 1 in the first or second operand. The operator is represented by a single
vertical bar character (|). Using our example numbers, the result will be as follows:
10101011 OR

00000011

========

10101011

If we perform this operation in a Swift example the result will be 171:
let x = 171

let y = 3

let z = x | y

print("Result is \(z)")

7.10.4 Bitwise XOR
The bitwise XOR (commonly referred to as exclusive OR and represented by the caret ‘^’ character) performs a
similar task to the OR operation except that a 1 is placed in the result if one or other corresponding bit positions
in the two numbers is 1. If both positions are a 1 or a 0 then the corresponding bit in the result is set to a 0. For
example:
10101011 XOR

00000011

========

10101000

The result in this case is 10101000 which converts to 168 in decimal. To verify this we can, once again, try some
Swift code:
let x = 171

let y = 3

let z = x ^ y

print("Result is \(z)")

7.10.5 Bitwise Left Shift
The bitwise left shift moves each bit in a binary number a specified number of positions to the left. Shifting an
integer one position to the left has the effect of doubling the value.

59

Swift Operators and Expressions

As the bits are shifted to the left, zeros are placed in the vacated right most (low order) positions. Note also that
once the left most (high order) bits are shifted beyond the size of the variable containing the value, those high
order bits are discarded:
10101011 Left Shift one bit

========

101010110

In Swift the bitwise left shift operator is represented by the ‘<<’ sequence, followed by the number of bit positions
to be shifted. For example, to shift left by 1 bit:
let x = 171

let z = x << 1

print("Result is \(z)")

When compiled and executed, the above code will display a message stating that the result is 342 which, when
converted to binary, equates to 101010110.

7.10.6 Bitwise Right Shift
A bitwise right shift is, as you might expect, the same as a left except that the shift takes place in the opposite
direction. Shifting an integer one position to the right has the effect of halving the value.

Note that since we are shifting to the right there is no opportunity to retain the lower most bits regardless of the
data type used to contain the result. As a result, the low order bits are discarded. Whether or not the vacated high
order bit positions are replaced with zeros or ones depends on whether the sign bit used to indicate positive and
negative numbers is set or not.
10101011 Right Shift one bit

========

01010101

The bitwise right shift is represented by the ‘>>’ character sequence followed by the shift count:
let x = 171

let z = x >> 1

print("Result is \(z)")

When executed, the above code will report the result of the shift as being 85, which equates to binary 01010101.

7.11 Compound Bitwise Operators
As with the arithmetic operators, each bitwise operator has a corresponding compound operator that allows the
operation and assignment to be performed using a single operator:

Operator Description
x &= y Perform a bitwise AND of x and y and assign result to x
x |= y Perform a bitwise OR of x and y and assign result to x
x ^= y Perform a bitwise XOR of x and y and assign result to x
x <<= n Shift x left by n places and assign result to x
x >>= n Shift x right by n places and assign result to x

Table 7-4

60

Swift Operators and Expressions

7.12 Summary
Operators and expressions provide the underlying mechanism by which variables and constants are manipulated
and evaluated within Swift code. This can take the simplest of forms whereby two numbers are added using the
addition operator in an expression and the result stored in a variable using the assignment operator. Operators
fall into a range of categories, details of which have been covered in this chapter.

121

Chapter 17

17. Creating an Interactive iOS 17
App
The previous chapter looked at the design patterns we need to learn and use regularly while developing iOS-based
apps. In this chapter, we will work through a detailed example intended to demonstrate the View-Controller
relationship together with the implementation of the Target-Action pattern to create an example interactive iOS
app.

17.1 Creating the New Project
The purpose of the app we are going to create is to perform unit conversions from Fahrenheit to Centigrade.
The first step is creating a new Xcode project to contain our app. Start Xcode and, on the Welcome screen, select
Create a new Xcode project. Make sure iOS is selected in the toolbar on the template screen before choosing
the App template. Click Next, set the product name to UnitConverter, enter your company identifier, and select
your development team if you have one. Before clicking Next, change the Language to Swift and the Interface
to Storyboard. On the final screen, choose a location to store the project files and click Create to proceed to the
main Xcode project window.

17.2 Creating the User Interface
Before we begin developing the logic for our interactive app, we will start by designing the user interface. When
we created the new project, Xcode generated a storyboard file for us and named it Main.storyboard. Within this
file, we will create our user interface, so select the Main item from the project navigator in the left-hand panel
to load it into Interface Builder.

Figure 17-1

122

Creating an Interactive iOS 17 App

Display the Library panel by clicking on the toolbar button shown in Figure 17-2 while holding down the
Option key and dragging a Text Field object from the library onto the View design area:

Figure 17-2
Resize the object and position it so it appears as outlined in Figure 17-3:

Figure 17-3
Within the Attributes Inspector panel (View -> Inspectors -> Attributes), type the words Enter temperature into
the Placeholder text field. This text will then appear in light gray in the text field as a visual cue to the user. Since
only numbers and decimal points will be required to be input for the temperature, locate the Keyboard Type
property in the Attributes Inspector panel and change the setting to Numbers and Punctuation.

Now that we have created the text field into which the user will enter a temperature value, the next step is adding
a Button object that may be pressed to initiate the conversion. To achieve this, drag and drop a Button object
from the Library to the View. Next, double-click the button object to change to text edit mode and type the word
Convert onto the button. Finally, select the button and drag it beneath the text field until the blue dotted line
indicates it is centered horizontally within the containing view before releasing the mouse button.

The last user interface object we need to add is the label where the result of the conversion will be displayed. Add
this by dragging a Label object from the Library panel to the View and positioning it beneath the button. Stretch
the width of the label so that it is approximately two-thirds of the overall width of the view, and reposition it
using the blue guidelines to ensure it is centered relative to the containing view. Finally, modify the Alignment
attribute for the label object so that the text is centered.

Double-click on the label to highlight the text and press the backspace key to clear it (we will set the text from
within a method of our View Controller class when the conversion calculation has been performed). Though the
label is no longer visible when it is not selected, it is still present in the view. If you click where it is located, it will
be highlighted with the resize dots visible. It is also possible to view the layout outlines of all the scenes’ views,
including the label, by selecting the Editor -> Canvas -> Bounds Rectangles menu option.

For the user interface design layout to adapt to the many different device orientations and iPad and iPhone
screen sizes, it will be necessary to add some Auto Layout constraints to the views in the storyboard. Auto
Layout will be covered in detail in subsequent chapters, but for this example, we will request that Interface
Builder add what it considers to be the appropriate constraints for this layout. In the lower right-hand corner
of the Interface Builder panel is a toolbar. Click on the background view of the current scene followed by the

123

Creating an Interactive iOS 17 App

Resolve Auto Layout Issues button as highlighted in Figure 17-4:

Figure 17-4
From the menu, select the Reset to Suggested Constraints option listed under All Views in View Controller:

Figure 17-5
At this point, our project’s user interface design phase is complete, and the view should appear as illustrated in
Figure 17-6. We are now ready to try out a test build and run.

Figure 17-6

17.3 Building and Running the Sample App
Before we implement the view controller code for our app and then connect it to the user interface we have
designed, we should perform a test build and run of the app. Click on the run button in the toolbar (the triangular
“play” button) to compile the app and run it in the simulator or a connected iOS device. If you are unhappy with

124

Creating an Interactive iOS 17 App

how your interface looks, feel free to reload it into Interface Builder and make improvements. Assuming the
user interface appears to your satisfaction, we are ready to start writing Swift code to add logic to our controller.

17.4 Adding Actions and Outlets
When the user enters a temperature value into the text field and touches the convert button, we need to trigger
an action to calculate the temperature. The calculation result will then be presented to the user via the label
object. The Action will be a method we will declare and implement in our View Controller class. Access to the
text field and label objects from the view controller method will be implemented through Outlets.

Before we begin, now is a good time to highlight an example of subclassing as previously described in the
chapter titled “The iOS 17 App and Development Architecture”. The UIKit Framework contains a class called
UIViewController which provides the basic foundation for adding view controllers to an app. To create a
functional app, however, we inevitably need to add functionality specific to our app to this generic view
controller class. This is achieved by subclassing the UIViewController class and extending it with the additional
functionality we need.

When we created our new project, Xcode anticipated our needs, automatically created a subclass of
UIViewController, and named it ViewController. In so doing, Xcode also created a source code file named
ViewController.swift.

Selecting the ViewController.swift file in the Xcode project navigator panel will display the contents of the file in
the editing pane:
import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

}

As we can see from the above code, a new class called ViewController has been created that is a subclass of the
UIViewController class belonging to the UIKit framework.

The next step is to extend the subclass to include the two outlets and our action method. This could be achieved
by manually declaring the outlets and actions within the ViewController.swift file. However, a much more
straightforward approach is to use the Xcode Assistant Editor to do this for us.

With the Main.storyboard file selected, display the Assistant Editor by selecting the Editor -> Assistant menu
option. Alternatively, it may also be displayed by selecting the Adjust Editor Options button in the row of Editor
toolbar buttons in the top right-hand corner of the main Xcode window and selecting the Assistant menu
option, as illustrated in the following figure:

125

Creating an Interactive iOS 17 App

Figure 17-7
The editor panel will, by default, appear to the right of the main editing panel in the Xcode window. For example,
in Figure 17-8, the panel (marked A) to the immediate right of the Interface Builder panel is the Assistant Editor:

Figure 17-8
By default, the Assistant Editor will be in Automatic mode, whereby it automatically attempts to display the
correct source file based on the currently selected item in Interface Builder. If the correct file is not displayed,
use the toolbar at the top of the editor panel to select the correct file. The button displaying interlocking circles
in this toolbar can be used to switch to Manual mode allowing the file to be selected from a pull-right menu
containing all the source files in the project.

Make sure that the ViewController.swift file is displayed in the Assistant Editor and establish an outlet for the Text
Field object by right-clicking on the Text Field object in the view. Drag the resulting line to the area immediately
beneath the class declaration line in the Assistant Editor panel, as illustrated in Figure 17-9:

126

Creating an Interactive iOS 17 App

Figure 17-9
Upon releasing the line, the configuration panel illustrated in Figure 17-10 will appear, requesting details about
the outlet to be defined.

Figure 17-10
Since this is an outlet, the Connection menu should be left as Outlet. The type and storage values are also correct
for this type of outlet. The only task that remains is to enter a name for the outlet, so in the Name field, enter
tempText before clicking on the Connect button.

Once the connection has been established, select the ViewController.swift file and note that the outlet property
has been declared for us by the assistant:
import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var tempText: UITextField!

.

.

}

Repeat the above steps to establish an outlet for the Label object named resultLabel.

Next, we need to establish the action that will be called when the user touches the Convert button in our user
interface. The steps to declare an action using the Assistant Editor are the same as those for an outlet. Once
again, select the Main.storyboard file, but this time right-click on the button object. Drag the resulting line to the
area beneath the existing viewDidLoad method in the Assistant Editor panel before releasing it. The connection
box will once again appear. Since we are creating an action rather than an outlet, change the Connection menu to
Action. Name the action convertTemp and make sure the Event type is set to Touch Up Inside:

127

Creating an Interactive iOS 17 App

Figure 17-11
Click on the Connect button to create the action.

Close the Assistant Editor panel, select the ViewController.swift file, and note that a stub method for the action
has now been declared for us by the assistant:
@IBAction func convertTemp(_ sender: Any) {

}

All that remains is to write the Swift code in the action method to perform the conversion:
@IBAction func convertTemp(_ sender: Any) {

 guard let tempString = tempText.text else { return }

 if let fahrenheit = Double(tempString) {
 let celsius = (fahrenheit - 32)/1.8
 let resultText = "Celsius \(celsius)"
 resultLabel.text = resultText
 }
}

Before proceeding, it is probably a good idea to pause and explain what is happening in the above code. However,
those already familiar with Swift may skip the following few paragraphs.

In this file, we are implementing the convertTemp method, a template for which was created for us by the Assistant
Editor. This method takes as a single argument a reference to the sender. The sender is the object that triggered
the call to the method (in this case, our Button object). The sender is declared as being of type Any (different type
options are available using the Type menu in the connection dialog shown in Figure 17-11 above). This special
type can be used to represent any type of class. While we won’t be using this object in the current example, this
can be used to create a general-purpose method in which the method’s behavior changes depending on how
(i.e., via which object) it was called. We could, for example, create two buttons labeled Convert to Fahrenheit
and Convert to Celsius, respectively, each of which calls the same convertTemp method. The method would then
access the sender object to identify which button triggered the event and perform the corresponding type of unit
conversion.

Within the method’s body, we use a guard statement to verify that the tempText view contains some text. If it
does not, the method simply returns.

Next, dot notation is used to access the text property (which holds the text displayed in the text field) of the
UITextField object to access the text in the field. This property is itself an object of type String. This string is

128

Creating an Interactive iOS 17 App

converted to be of type Double and assigned to a new constant named fahrenheit. Since it is possible that the user
has not entered a valid number into the field, optional binding is employed to prevent an attempt to perform the
conversion on invalid data.

Having extracted the text entered by the user and converted it to a number, we then perform the conversion to
Celsius and store the result in another constant named celsius. Next, we create a new string object and initialize
it with text comprising the word Celsius and the result of our conversion. In doing so, we declare a constant
named resultText.

Finally, we use dot notation to assign the new string to the text property of our UILabel object to display it to
the user.

17.5 Building and Running the Finished App
From within the Xcode project window, click on the run button in the Xcode toolbar (the triangular “play” style
button) to compile the app and run it in the simulator or a connected iOS device. Once the app is running, click
inside the text field and enter a Fahrenheit temperature. Next, click the Convert button to display the equivalent
temperature in Celsius. Assuming all went to plan, your app should appear as outlined in the following figure:

Figure 17-12

17.6 Hiding the Keyboard
The final step in the app implementation is to add a mechanism for hiding the keyboard. Ideally, the keyboard
should withdraw from view when the user touches the background view or taps the return key on the keyboard
(note when testing on the simulator that the keyboard may not appear unless the I/O -> Keyboard -> Toggle
Software Keyboard menu option is selected).

To achieve this, we will begin by implementing the touchesBegan event handler method on the view controller
in the ViewController.swift file as follows:
override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {

 tempText.endEditing(true)

}

The keyboard will now be hidden when the user touches the background view.

The next step is to hide the keyboard when the return key is tapped. To do this, display the Assistant Editor and
right-click and drag from the Text Field to a position beneath the viewDidLoad method within the ViewController.

129

Creating an Interactive iOS 17 App

swift file. On releasing the line, change the settings in the connection dialog to establish an Action connection
named textFieldReturn for the Did End on Exit event with the Type menu set to UITextField as shown in Figure
17-13 and click on the Connect button to establish the connection.

Figure 17-13
Select the ViewController.swift file in the project navigator, locate and edit the textFieldReturn stub method so
that it now reads as follows:
@IBAction func textFieldReturn(_ sender: UITextField) {

 _ = sender.resignFirstResponder()
}

In the above method, we call the resignFirstResponder method of the object that triggered the event. The first
responder is the object with which the user is currently interacting (in this instance, the virtual keyboard
displayed on the device screen). Note that the result of the method call is assigned to a value represented by
the underscore character (_). The resignFirstResponder() method returns a Boolean value indicating whether or
not the resign request was successful. Assigning the result this way indicates to the Swift compiler that we are
intentionally ignoring this value.

Save the code and then build and run the app. When the app starts, select the text field so the keyboard appears.
Touching any area of the background or tapping the return key should cause the keyboard to disappear.

17.7 Summary
In this chapter, we have demonstrated some of the theories covered in previous chapters, in particular, separating
the view from the controller, subclassing, and implementing the Target-Action pattern through actions and
outlets.

This chapter also provided steps to hide the keyboard when the user touches either the keyboard Return key or
the background view.

135

Chapter 19

19. An Introduction to Auto Layout
in iOS 17
Arguably one of the most important parts of designing the user interface for an app involves getting the layout
correct. In an ideal world, designing a layout would consist of dragging view objects to the desired location on
the screen and fixing them at these positions using absolute X and Y screen coordinates. However, in reality,
the world of iOS devices is more complex than that, and a layout must be able to adapt to variables such as the
device rotating between portrait and landscape modes, dynamic changes to content, and differences in screen
resolution and size.

Before the release of iOS 6, layout handling involved using a concept referred to as autosizing. Autosizing
involves using a series of “springs” and “struts” to define, on a view-by-view basis, how a subview will be resized
and positioned relative to the superview in which it is contained. Limitations of autosizing, however, typically
meant that considerable amounts of coding were required to augment the autosizing in response to orientation
or other changes.

One of the most significant features in iOS 6 was the introduction of Auto Layout, which has continued to evolve
with the release of subsequent iOS versions. Auto Layout is an extensive subject area allowing layouts of just
about any level of flexibility and complexity to be created once the necessary skills have been learned.

The goal of this and subsequent chapters will be to introduce the basic concepts of Auto Layout, work through
some demonstrative examples and provide a basis to continue learning about Auto Layout as your app design
needs evolve. Auto Layout introduces a lot of new concepts and can, initially, seem a little overwhelming. By the
end of this sequence of chapters, however, it should be more apparent how the pieces fit together to provide a
powerful and flexible layout management system for iOS-based user interfaces.

19.1 An Overview of Auto Layout
The purpose of Auto Layout is to allow the developer to describe the behavior required from the views in a layout
independent of the device screen size and orientation. This behavior is implemented by creating constraints on
the views that comprise a user interface screen. A button view, for example, might have a constraint that tells
the system that it is to be positioned in the horizontal center of its superview. A second constraint might also
declare that the bottom edge of the button should be positioned a fixed distance from the bottom edge of the
superview. Having set these constraints, no matter what happens to the superview, the button will always be
centered horizontally and a fixed distance from the bottom edge.

Unlike autosizing, Auto Layout allows constraints to be declared between a subview and superview and between
subviews. Auto Layout, for example, would allow a constraint to be configured such that two button views are
always positioned a specific distance apart from each other regardless of changes in size and orientation of the
superview. Constraints can also be configured to cross superview boundaries to allow, for example, two views
with different superviews (though on the same screen) to be aligned. This is a concept referred to as cross-view
hierarchy constraints.

Constraints can also be explicit or variable (otherwise referred to in Auto Layout terminology as equal or
unequal). Take, for example, a width constraint on a label object. An explicit constraint could be declared to
fix the width of the label at 70 points. This might be represented as a constraint equation that reads as follows:

136

An Introduction to Auto Layout in iOS 17

myLabel.width = 70

However, this explicit width setting might become problematic if the label is required to display dynamic
content. For example, an attempt to display text on the label that requires a greater width will result in the
content being clipped.

Constraints can, however, be declared using less than, equal to, greater than, or equal to controls. For example,
the width of a label could be constrained to any width as long as it is less than or equal to 800:
myLabel.width <= 800

The label is now permitted to grow in width up to the specified limit, allowing longer content to be displayed
without clipping.

Auto Layout constraints are by nature interdependent. As such, situations can arise where a constraint on one
view competes with a constraint on another view to which it is connected. In such situations, it may be necessary
to make one constraint stronger and the other weaker to provide the system with a way of arriving at a layout
solution. This is achieved by assigning priorities to constraints.

Priorities are assigned on a scale of 0 to 1000, with 1000 representing a required constraint and lower numbers
equating to optional constraints. When faced with a decision between the needs of a required constraint and an
optional constraint, the system will meet the needs of the required constraint exactly while attempting to get
as close as possible to those of the optional constraint. In the case of two optional constraints, the needs of the
constraint with the higher priority will be addressed before those of the lower.

19.2 Alignment Rects
When working with constraints, it is important to be aware that constraints operate on the content of a view, not
the frame in which a view is displayed. This content is referred to as the alignment rect of the view. Alignment
constraints, such as those that cause the center of one view to align with that of another, will do so based on the
alignment rects of the views, disregarding any padding that may have been configured for the frame of the view.

19.3 Intrinsic Content Size
Some views also have what is known as an intrinsic content size. This is the preferred size that a view believes it
needs to be to display its content to the user. A Button view, for example, will have an intrinsic content size in
terms of height and width based primarily on the text or image it is required to display and internal rules on the
margins that should be placed around that content. When a view has an intrinsic content size, Auto Layout will
automatically assign two constraints for each dimension for which the view has indicated an intrinsic content
size preference (i.e., height and/or width). One constraint is intended to prevent the view’s size from becoming
larger than the size of the content (otherwise known as the content hugging constraint). The other constraint is
intended to prevent the view from being sized smaller than the content (referred to as the compression resistance
constraint).

19.4 Content Hugging and Compression Resistance Priorities
The resizing behavior of a view with an intrinsic content size can be controlled by specifying compression
resistance and content hugging priorities. For example, a view with high compression resistance and low content
hugging priority will be allowed to grow but will resist shrinking in the corresponding dimension. Similarly,
a high compression resistance and a high content hugging priority will cause the view to resist any resizing,
keeping the view as close as possible to its intrinsic content size.

19.5 Safe Area Layout Guide
In addition to the views that comprise the layout, a screen may also contain navigation and tab bars at the top
and bottom of the screen. If the layout is designed to use the full screen height, there is a risk that some views

137

An Introduction to Auto Layout in iOS 17

will be obscured by navigation and tab bars. To avoid this problem, UIView provides a safe area layout guide for
constrained views. Constraining views to the safe area instead of the outer edges of the parent UIView ensures
that the views are not obscured by title and tab bars. For example, the screen in Figure 19-1 includes both
navigation and tab bars. The dotted line represents the safe area layout guide to which the top edge of the Button
and bottom edge of the Label has been constrained:

Figure 19-1

19.6 Three Ways to Create Constraints
There are three ways in which constraints in a user interface layout can be created:

• Interface Builder – Interface Builder has been modified extensively to support the visual implementation
of Auto Layout constraints in user interface designs. Examples of using this approach are covered in the
“Working with iOS 17 Auto Layout Constraints in Interface Builder” and “Implementing Cross-Hierarchy Auto
Layout Constraints in iOS 17” chapters of this book.

• Visual Format Language – The visual format language defines a syntax that allows constraints to be declared
using a sequence of ASCII characters that visually approximate the nature of the constraint being created to
make constraints in code both easier to write and understand. Use of the visual format language is documented
in the chapter entitled “Understanding the iOS 17 Auto Layout Visual Format Language”.

• Writing API code – This approach involves directly writing code to create constraints using the standard
programming API calls. This topic is covered in “Implementing iOS 17 Auto Layout Constraints in Code”.

Wherever possible, Interface Builder is the recommended approach to creating constraints. When creating
constraints in code, the visual format language is generally recommended over the API-based approach.

19.7 Constraints in More Detail
A constraint is created as an instance of the NSLayoutConstraint class, which, having been created, is then added
to a view. The rules for a constraint can generally be represented as an equation, the most complex form of which
can be described as follows:
view1.attribute = multiplier * view2.attribute2 + constant

The above equation establishes a constraint relationship between view1 and view2, respectively. In each case,
an attribute is targeted by the constraint. Attributes are represented by NSLayoutConstraint.Attribute.<name>
constants where <name> is one of several options, including left, right, top, bottom, leading, trailing, width,
height, centerX, centerY, and baseline (i.e., NSLayoutConstraint.Attribute.width). The multiplier and constant
elements are floating point values that modify the constraint.

138

An Introduction to Auto Layout in iOS 17

A simple constraint that dictates that view1 and view2 should, for example, be the same width would be
represented using the following equation:
view1.width = view2.width

Similarly, the equation for a constraint to align the horizontal center of view1 with the horizontal center of view2
would read as follows:
view1.centerX = view2.centerX

A slightly more complex constraint to position view1 so that its bottom edge is positioned a distance of 20 points
above the bottom edge of view2 would be expressed as follows:
view1.bottom = view2.bottom – 20

The following constraint equation specifies that view1 is to be twice the width of view2 minus a width of 30
points:
view1.width = view2.width * 2 - 30

So far, the examples have focused on equality. As previously discussed, constraints also support inequality
through <= and >= operators. For example:
view1.width >= 100

A constraint based on the above equation would limit the width of view1 to any value greater than or equal to
100.

The reason for representing constraints in equations is less apparent when working with constraints within
Interface Builder. Still, it will become invaluable when using the API or the visual format language to set
constraints in code.

19.8 Summary
Auto Layout uses constraints to descriptively express a user interface’s geometric properties, behavior, and view
relationships.

Constraints can be created using Interface Builder or in code using either the visual format language or the
standard SDK API calls of the NSLayoutConstraint class.

Constraints are typically expressed using a linear equation, an understanding of which will be particularly
beneficial when working with constraints in code.

Having covered the basic concepts of Auto Layout, the next chapter will introduce the creation and management
of constraints within Interface Builder.

181

Chapter 25

25. Using Storyboards in Xcode 15
Storyboarding is a feature built into Xcode that allows the various screens that comprise an iOS app and
the navigation path through those screens to be visually assembled. Using the Interface Builder component
of Xcode, the developer drags and drops view and navigation controllers onto a canvas and designs the user
interface of each view in the usual manner. The developer then drags lines to link individual trigger controls
(such as a button) to the corresponding view controllers that are to be displayed when the user selects the
control. Having designed both the screens (referred to in the context of storyboarding as scenes) and specified
the transitions between scenes (referred to as segues), Xcode generates all the code necessary to implement the
defined behavior in the completed app. The transition style for each segue (page fold, cross dissolve, etc.) may
also be defined within Interface Builder. Further, segues may be triggered programmatically when behavior
cannot be graphically defined using Interface Builder.

Xcode saves the finished design to a storyboard file. Typically, an app will have a single storyboard file, though
there is no restriction preventing using multiple storyboard files within a single app.

The remainder of this chapter will work through creating a simple app using storyboarding to implement
multiple scenes with segues defined to allow user navigation.

25.1 Creating the Storyboard Example Project
Begin by launching Xcode and creating a new project named Storyboard using the iOS App template with the
language menu set to Swift and the Storyboard Interface option selected. Then, save the project to a suitable
location by clicking the Create button.

25.2 Accessing the Storyboard
Upon creating the new project, Xcode will have created what appears to be the usual collection of files for a
single-view app, including a storyboard named file Main.storyboard. Select this file in the project navigator panel
to view the storyboard canvas as illustrated in Figure 25-1.

The view displayed on the canvas is the view for the ViewController class created for us by Xcode when we
selected the App template. The arrow pointing inwards to the left side of the view indicates that this is the initial
view controller and will be the first view displayed when the app launches. To change the initial view controller,
drag this arrow to any other scene in the storyboard and drop it in place.

182

Using Storyboards in Xcode 15

Figure 25-1
Objects may be added to the view in the usual manner by displaying the Library panel and dragging and
dropping objects onto the view canvas. For this example, drag a label and a button onto the view canvas. Using
the properties panel, change the label text to Scene 1 and the button text to Go to Scene 2.

Figure 25-2
Using the Resolve Auto Layout Issues menu, select the Reset to Suggested Constraints option listed under All Views
in View Controller.

It will be necessary first to establish an outlet to manipulate text displayed on the label object from within the
app code. Select the label in the storyboard canvas and display the Assistant Editor (Editor -> Assistant). Check
that the Assistant Editor is showing the content of the ViewController.swift file. Then, right-click on the label
and drag the resulting line to just below the class declaration line in the Assistant Editor panel. In the resulting
connection dialog, enter scene1Label as the outlet name and click on the Connect button. Upon completion of
the connection, the top of the ViewController.swift file should read as follows:

183

Using Storyboards in Xcode 15

import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var scene1Label: UILabel!

.

.

25.3 Adding Scenes to the Storyboard
To add a second scene to the storyboard, drag a View Controller object from the Library panel onto the canvas.
Figure 25-3 shows a second scene added to a storyboard:

Figure 25-3
Drag and drop a label and a button into the second scene and configure the objects so that the view appears as
shown in Figure 25-4. Then, repeat the steps performed for the first scene to configure Auto Layout constraints
on the two views.

Figure 25-4
As many scenes as necessary may be added to the storyboard, but we will use just two scenes for this exercise.

184

Using Storyboards in Xcode 15

Having implemented the scenes, the next step is to configure segues between the scenes.

25.4 Configuring Storyboard Segues
As previously discussed, a segue is a transition from one scene to another within a storyboard. Within the
example app, touching the Go To Scene 2 button will segue to scene 2. Conversely, the button on scene 2 is
intended to return the user to scene 1. To establish a segue, hold down the Ctrl key on the keyboard, click over
a control (in this case, the button on scene 1), and drag the resulting line to the scene 2 view. Upon releasing the
mouse button, a menu will appear. Select the Present Modally menu option to establish the segue. Once the segue
has been added, a connector will appear between the two scenes, as highlighted in Figure 25-5:

Figure 25-5
As more scenes are added to a storyboard, it becomes increasingly difficult to see more than a few scenes at one
time on the canvas. To zoom out, double-click on the canvas. To zoom back in again, double-click once again on
the canvas. The zoom level may also be changed using the plus and minus control buttons located in the status
bar along the bottom edge of the storyboard canvas or by right-clicking on the storyboard canvas background
to access a menu containing several zoom level options.

25.5 Configuring Storyboard Transitions
Xcode allows changing the visual appearance of the transition that occurs during a segue. To change the
transition, select the corresponding segue connector, display the Attributes Inspector, and modify the Transition
setting. For example, in Figure 25-6, the transition has been changed to Cross Dissolve:

Figure 25-6

185

Using Storyboards in Xcode 15

If animation is not required during the transition, turn off the Animates option. Run the app on a device or
simulator and test that touching the “Go to Scene 2” button causes Scene 2 to appear.

25.6 Associating a View Controller with a Scene
At this point in the example, we have two scenes but only one view controller (the one created by Xcode when we
selected the iOS App template). To add any functionality behind scene 2, it will also need a view controller. The
first step is to add the class source file for a view controller to the project. Right-click on the Storyboard target at
the top of the project navigator panel and select New File… from the resulting menu. In the new file panel, select
iOS in the top bar, followed by Cocoa Touch Class in the main panel, and click Next to proceed. On the options
screen, ensure that the Subclass of menu is set to UIViewController and that the Also create XIB file option is
deselected (since the view already exists in the storyboard there is no need for a XIB user interface file), name
the class Scene2ViewController and proceed through the screens to create the new class file.

Select the Main.storyboard file in the project navigator panel and click the View Controller button located in the
panel above the Scene 2 view, as shown in Figure 25-7:

Figure 25-7
With the view controller for scene 2 selected within the storyboard canvas, display the Identity Inspector (View
-> Inspectors -> Identity) and change the Class from UIViewController to Scene2ViewController:

Figure 25-8
Scene 2 now has a view controller and corresponding Swift source file where code may be written to implement
any required functionality.

Select the label object in scene 2 and display the Assistant Editor. Next, ensure that the Scene2ViewController.
swift file is displayed in the editor, and then establish an outlet for the label named scene2Label.

25.7 Passing Data Between Scenes
One of the most common requirements when working with storyboards involves transferring data from one
scene to another during a segue transition. Before the storyboard runtime environment performs a segue, a call
is made to the prepare(for segue:) method of the current view controller. If any tasks need to be performed before
the segue, implement this method in the current view controller and add code to perform any necessary tasks.
Passed as an argument to this method is a segue object from which a reference to the destination view controller
may be obtained and subsequently used to transfer data.

186

Using Storyboards in Xcode 15

To see this in action, begin by selecting Scene2ViewController.swift and adding a new property variable:
import UIKit

class Scene2ViewController: UIViewController {

 @IBOutlet weak var scene2Label: UILabel!

 var labelText: String?
.

.

.

This property will hold the text to be displayed on the label when the storyboard transitions to this scene. As
such, some code needs to be added to the viewDidLoad method located in the Scene2ViewController.swift file:
override func viewDidLoad() {

 super.viewDidLoad()

 scene2Label.text = labelText
}

Finally, select the ViewController.swift file and implement the prepare(for segue:) method as follows:
override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 let destination = segue.destination

 as! Scene2ViewController

 destination.labelText = "Arrived from Scene 1"

}

This method obtains a reference to the destination view controller and then assigns a string to the labelText
property of the object so that it appears on the label.

Rerun the app and note that the new label text appears when scene 2 is displayed. This is because we have, albeit
using an elementary example, transferred data from one scene to the next.

25.8 Unwinding Storyboard Segues
The next step is configuring the button on scene 2 to return to scene 1. It might seem that the obvious choice is
to implement a segue from the button in scene 2 to scene 1. Instead of returning to the original instance of scene
1, however, this would create an entirely new instance of the ViewController class. If a user were to perform
this transition repeatedly, the app would continue using more memory and eventually be terminated by the
operating system.

The app should instead make use of the Storyboard unwind feature. This involves implementing a method in
the view controller of the scene to which the user is to be returned and then connecting a segue to that method
from the source view controller. This enables an unwind action to be performed across multiple scene levels.

To implement this in our example app, begin by selecting the ViewController.swift file and implementing a
method to be called by the unwind segue named returned:
@IBAction func returned(segue: UIStoryboardSegue) {

 scene1Label.text = "Returned from Scene 2"

}

All this method requires for this example is that it sets some new text on the label object of scene 1. Once the

187

Using Storyboards in Xcode 15

method has been added, it is important to save the ViewController.swift file before continuing.

The next step is to establish the unwind segue. To achieve this, locate scene 2 within the storyboard canvas and
right-click and drag from the button view to the Exit entry in the document outline panel, as shown in Figure
25-9. Release the line and select the returnedWithSegue method from the resulting menu:

Figure 25-9
Once again, run the app and note that the button on scene 2 now returns to scene 1 and, in the process, calls the
returned method resulting in the label on scene 1 changing.

25.9 Triggering a Storyboard Segue Programmatically
In addition to wiring up controls in scenes to trigger a segue, it is possible to initiate a preconfigured segue from
within the app code. This can be achieved by assigning an identifier to the segue and then making a call to the
performSegue(withIdentifier:) method of the view controller from which the segue is to be triggered.

To set the identifier of a segue, select it in the storyboard canvas, display the Attributes Inspector, and set the
value in the Identifier field.

Assuming a segue with the identifier of SegueToScene1, this could be triggered from within code as follows:
self.performSegue(withIdentifier: "SegueToScene1", sender: self)

25.10 Summary
The Storyboard feature of Xcode allows for the navigational flow between the various views in an iOS app to be
visually constructed without the need to write code. In this chapter, we have covered the basic concepts behind
storyboarding, worked through creating an example iOS app using storyboards, and explored the storyboard
unwind feature.

231

Chapter 32

32. Working with the iOS 17 Stack
View Class
With hindsight, it seems hard to believe, but until the introduction of iOS 9, there was no easy way to build
stack-based user interface layouts that would adapt automatically to different screen sizes and changes in device
orientation. While such results could eventually be achieved with careful use of size classes and Auto Layout, this
was far from simple. That changed with the introduction of the UIStackView class in the iOS 9 SDK.

32.1 Introducing the UIStackView Class
The UIStackView class is a user interface element that allows subviews to be arranged linearly in a column or
row orientation. The class extensively uses Auto Layout and automatically sets up many of the Auto Layout
constraints needed to provide the required layout behavior. In addition, the class goes beyond simply stacking
views, allowing additional Auto Layout constraints to be added to subviews, and providing a range of properties
that enable the layout behavior of those subviews to be modified to meet different requirements.

The UIStackView object is available for inclusion within Storyboard scenes simply by dragging and dropping
either the Horizontal Stack View or Vertical Stack View from the Library panel onto the scene canvas. Once
added to a scene, subviews are added simply by dragging and dropping the required views onto the stack view.

Existing views in a storyboard scene may be wrapped in a stack view simply by Shift-clicking on the views so
that they are all selected before clicking on the Embed In button located at the bottom of the Interface Builder
panel, as highlighted in Figure 32-1 and selecting the Stack View option. Interface Builder will decide whether to
encapsulate the selected views into a horizontal or vertical stack depending on the layout positions of the views:

Figure 32-1
By default, the stack view will resize to accommodate the subviews as they are added. However, as with any other
view type, Auto Layout constraints may be used to constrain and influence the resize behavior of the stack view
in relation to the containing view and any other views in the scene layout.

Once added to a storyboard scene, a range of properties is available within the Attributes Inspector to customize
the layout behavior of the object.

Stack views may be used to create simple column or row-based layouts or nested within each other to create
more complex layouts. Figure 32-2, for example, shows an example layout consisting of a vertical stack view

232

Working with the iOS 17 Stack View Class

containing three horizontal stack views, each containing a variety of subviews:

Figure 32-2
UIStackView class instances may also be created and managed from within the code of an iOS app. Stack view
instances can be created in code and initialized with an array of subviews. Views may also be inserted and
removed dynamically from within code, and the attributes of the stack view changed via a range of properties.
The subviews of a stack view object are held in an array that can be accessed via the arrangedSubviews property
of the stack view instance.

32.2 Understanding Subviews and Arranged Subviews
The UIStackView class contains a property named subviews. This is an array containing each of the child views
of the stack view object. Figure 32-3, for example, shows the view hierarchy for a stack view with four subviews:

Figure 32-3
At any particular time, however, the stack view will not necessarily be responsible for arranging the layout and
positions of all the subviews it contains. The stack view might, for example, only be configured to arrange the
Label3 and Label4 views in the above hierarchy. This means that Label1 and Label2 may still be visible within
the user interface but will not be positioned within the stack view. Subviews being arranged by the stack view
are contained within a second array accessible via the arrangedSubviews property. Figure 32-4 shows both the
subviews and the subset of the subviews which are currently being arranged by the stack view.

233

Working with the iOS 17 Stack View Class

Figure 32-4
As will be outlined later in this chapter, the distinction between subview and arranged subviews is particularly
important when removing arranged subviews from a stack view.

32.3 StackView Configuration Options
A range of options is available to customize how the stack view arranges its subviews. These properties are
available both from within the Interface Builder Attributes Inspector panel at design time and also to be set
dynamically from within the code of the app:

32.3.1 axis
The axis property controls the orientation of the stack in terms of whether the subviews are arranged in a
vertical column layout or a horizontal row. When setting this property in code, the axis should be set to
UILayoutConstraintAxis.vertical or UILayoutConstraintAxis.horizontal.

32.3.2 distribution
The distribution property dictates how the subviews of the stack view are sized. Options available are as follows:

• Fill – The subviews are resized to fill the entire space available along the stack view’s axis. In other words, the
height of the subviews will be modified to fill the full height of the stack view in a vertical orientation, while
the widths will be changed for a stack view in a horizontal orientation. The amount by which each subview is
resized relative to the other views can be controlled via the compression resistance and hugging priorities of
the views (details of which were covered in the chapter entitled “An Introduction to Auto Layout in iOS 17”)
and the position of the views in the stack view’s arrangedSubviews array.

Figure 32-5
• FillEqually – The subviews are resized equally to fill the stack view along the view’s axis. Therefore, all the

subviews in a vertical stack will be equal in height, while the subviews in a horizontal axis orientation will be

234

Working with the iOS 17 Stack View Class

equal in width.

Figure 32-6
• FillProportionally – In this mode, the subviews are resized proportionally to their intrinsic content size along

the axis of the stack view to fill the width or height of the view.

• EqualSpacing – Padding is used to space the subviews equally to fill the stack view along the axis. The size of
the subviews will be reduced if necessary to fit within the available space based on the compression resistance
priority setting and the position within the arrangedSubviews array.

Figure 32-7
• EqualCentering – This mode positions the subviews along the stack view’s axis with equal center-to-center

spacing. The spacing in this mode is influenced by the spacing property (outlined below). Where possible, the
stack view will honor the prevailing spacing property value but will reduce this value if necessary. If the views
still do not fit, the size of the subviews will be reduced if necessary to fit within the available space based on
the compression resistance priority setting and the position within the arrangedSubviews array.

Figure 32-8
32.3.3 spacing
The spacing property specifies the distance (in points) between the edges of adjacent subviews within a stack
view. When the stack view distribution property is set to FillProportionally, the spacing value dictates the spacing

235

Working with the iOS 17 Stack View Class

between the subviews. In EqualSpacing and EqualCentering modes, the spacing value indicates the minimum
allowed spacing between the adjacent edges of the subviews. A negative spacing value causes subviews to overlap.

32.3.4 alignment
The alignment property controls the positioning of the subviews perpendicularly to the stack view’s axis.
Available alignment options are as follows:

• Fill – In fill mode, the subviews are resized to fill the space perpendicularly to the stack view’s axis. In other
words, the widths of the subviews in a vertical stack view are resized to fill the entire width of the stack view.

Figure 32-9
• Leading – In a vertically oriented stack view, the leading edges of the subviews are aligned with the leading

edge of the stack view.

Figure 32-10
• Trailing - In a vertically oriented stack view, the trailing edges of the subviews are aligned with the trailing

edge of the stack view.

Figure 32-11

236

Working with the iOS 17 Stack View Class

• Top – In a horizontally oriented stack view, the top edges of the subviews are aligned with the top edge of the
stack view.

Figure 32-12
• Bottom - In a horizontally oriented stack view, the bottom edges of the subviews are aligned with the bottom

edge of the stack view.

Figure 32-13
• Center – The centers of the subviews are aligned with the center axis of the stack view.

Figure 32-14
• FirstBaseline – Used only with horizontal stack views, this mode aligns all subviews with their first baseline.

For example, an array of subviews displaying text content would all be aligned based on the vertical position
of the first line of text.

237

Working with the iOS 17 Stack View Class

Figure 32-15
• LastBaseline – Similar to FirstBaseline, this mode aligns all subviews with their last baseline. For example,

an array of subviews displaying text content would all be aligned based on the vertical position of the last line
of text.

Figure 32-16
32.3.5 baseLineRelativeArrangement
Used only for vertical stack views, this property is a Boolean value that controls whether or not the vertical
spacing between subviews is arranged relative to the baseline of the text contained within the views.

32.3.6 layoutMarginsRelativeArrangement
A Boolean value which, if set to true, causes subviews to be arranged relative to the layout margins of the
containing stack view. If set to false, the subviews are arranged relative to the edges of the stack view.

32.4 Creating a Stack View in Code
UIStackView instances can be created in code by passing through an array object containing the subviews
to be arranged by the stack. Once created, all the previously outlined properties may also be set dynamically
from within the code. The following Swift code, for example, creates a new stack view object, configures it for
horizontal axis orientation with FillEqually distribution, and assigns two Label objects as subviews:
let labelOne = UILabel(frame: CGRect(x: 0, y: 0, width: 200, height: 21))

labelOne.text = "Hello"

labelOne.backgroundColor = UIColor.red

let labelTwo = UILabel(frame: CGRect(x: 0, y: 0, width: 200, height: 21))

238

Working with the iOS 17 Stack View Class

labelTwo.text = "There"

labelTwo.backgroundColor = UIColor.blue

let myStack = UIStackView(arrangedSubviews: [labelOne, labelTwo])

myStack.distribution = .fillEqually

myStack.axis = .horizontal

32.5 Adding Subviews to an Existing Stack View
Additional subviews may be appended to the end of a stack view’s arrangedSubviews array using the
addArrangedSubview method as follows:
myStack.addArrangedSubview(labelThree)

Alternatively, a subview may be inserted into a specific index position within the array of arranged subviews
via a call to the insertArrangedSubview:atIndex method. The following line of code, for example, inserts an
additional label at index position 0 within the arrangedSubviews array of a stack view:
myStack.insertArrangedSubview(labelZero, atIndex: 0)

32.6 Hiding and Removing Subviews
To remove an arranged subview from a stack view, call the removeArrangedSubview method of the stack view
object, passing through the view object to be removed:
myStack.removeArrangedSubview(labelOne)

It is essential to be aware that the removeArrangedSubview method only removes the specified view from the
arrangedSubviews array of the stack view. The view still exists in the subviews array and will probably still be
visible within the user interface layout after removal (typically in the top left-hand corner of the stack view).

An alternative to removing the subview is to simply hide it. This has the advantage of making it easy to display
the subview later within the app code. A helpful way to hide a subview is to obtain a reference to the subview to
be hidden from within the arrangedSubviews array. For example, the following code identifies and then hides
the subview located at index position 1 in the array of arranged subviews:
let subview = myStack.arrangedSubviews[1]

subview.hidden = true

If the subview is not needed again, however, it can be removed entirely by calling the removeFromSuperview
method of the subview after it has been removed from the arrangedSubviews array as follows:
myStack.removeArrangedSubview(labelOne)

labelOne.removeFromSuperview()

This approach will remove the view entirely from the view hierarchy.

32.7 Summary
The UIStackView class allows user interface views to be arranged in rows or columns. A wide range of
configuration options combined with the ability to dynamically create and manage stack views from within
code make this a powerful and flexible user interface layout solution.

With the basics of the UIStackView class covered in this chapter, the next chapter will create an example iOS
app that uses this class.

249

Chapter 34

34. A Guide to iPad Multitasking
Since the introduction of iOS 9, users can display and interact with two apps side by side on the iPad screen, a
concept referred to as multitasking. Although the inclusion of support for multitasking within an iPadOS app
is optional, enabling support where appropriate is recommended to provide the user with the best possible
experience when using the app.

This chapter will introduce multitasking in terms of what it means to the user and the steps that can be taken to
effectively adopt and support multitasking within an iOS app running on an iPad device. Once these areas have
been covered, the next chapter (“An iPadOS Multitasking Example”) will create an example project designed to
support multitasking.

Before reading this chapter, it is important to understand that multitasking support makes extensive use of both
the Size Classes and Auto Layout features of iOS, topics which were covered in the “An Introduction to Auto
Layout in iOS 17” and “Using Trait Variations to Design Adaptive iOS 17 User Interfaces” chapters of this book.

34.1 Using iPad Multitasking
Before implementing multitasking support for an iPad app, it is first essential to understand multitasking from
the user’s perspective. Traditionally, when an app was launched from the iPad screen, it would fill the entire
display and continue to do so until placed into the background by the user. However, since the introduction of
iOS 9, two apps can now share the iPad display.

Multitasking mode is initiated by tapping the three gray dots at the top of the screen to display the menu shown
in Figure 34-1:

Figure 34-1
The Full Screen option, as the name suggests, will make the app currently in the foreground occupy the full
device screen. On the other hand, the Split View option will split the screen between the current app and any
other app of your choice. When selected, the current app will slide to the size allowing you to choose a second
app from the launch screen:

250

A Guide to iPad Multitasking

Figure 34-2
Once a second app has been selected, both apps will appear in adjacent panels. Once the display is in Split View
mode, touching and dragging the narrow white button located in the divider between the two panels (indicated
in Figure 34-3) allows the position of the division between the primary and secondary apps to be adjusted:

Figure 34-3
In Slide Over Mode, the app will appear in a floating window, as is the case in Figure 34-4 below:

251

A Guide to iPad Multitasking

Figure 34-4
The three dots at the top of the secondary app can move the slide-over window to the left or right side of the
screen by touching and dragging.

To hide a Slide Over view app, drag it sideways off the right side of the screen. Then, swipe left from the right-
hand screen edge to restore the app.

34.2 Picture-In-Picture Multitasking
In addition to Split View and Slide Over modes, multitasking also supports the presentation of a movable and
resizable video playback window over the top of the primary app window. This topic will be covered in the
chapter entitled “An iPadOS Multitasking Example”.

34.3 Multitasking and Size Classes
A key part of supporting multitasking involves ensuring that the storyboard scenes within an app can adapt
to various window sizes. Each of the different window sizes an app will likely encounter in a multitasking
mode corresponds to one of the existing size classes outlined in the chapter entitled “Using Trait Variations to
Design Adaptive iOS 17 User Interfaces”. As outlined in that chapter, the height and width available to an app are
classified as compact or regular. So, for example, an app running in portrait mode on an iPhone 14 would use the
compact width and regular height size class, while the same app running in portrait orientation would use the
regular width and compact height size class.

When running in a multitasking environment, the primary and secondary apps will pass through a range of
compact and regular widths depending on the prevailing multitasking configuration. The diagrams in Figure
34-4 illustrate how the different multitasking modes translate to equivalent regular and compact-size classes.

252

A Guide to iPad Multitasking

Figure 34-5
The above rules change slightly when the app runs in Split View mode on an iPad Pro. Due to the larger screen
size of the iPad Pro, both apps are presented in Split View mode using the regular width, as illustrated in Figure
34-6:

Figure 34-6
Implementing multitasking support within an iOS app involves designing layouts that adapt appropriately to the
different size classes outlined in the above diagram.

34.4 Handling Multitasking in Code
Much can be achieved using Auto Layout and Size Classes to adapt to the size changes associated with
multitasking. There will, however, inevitably be instances where some code needs to be executed when a scene
transitions from one size class to another (for example, when an app transitions from Slide Over to Split View).
Fortunately, UIKit will call three delegate methods on the container instance (typically a view controller) of the
current scene during the transition to notify it of the transition where code can be added to perform app-specific
tasks at different points in the transition. These delegate methods are outlined below in the order in which they
are called during the transition:

253

A Guide to iPad Multitasking

34.4.1 willTransition(to newcollection: with coordinator:)
This method is called immediately before the traits for the currently displayed view controller view are changed.
For example, the UITraitCollection class represents a trait, which contains a collection of values consisting
of size class settings, the display density of the screen, and the user interface idiom (which is simply a value
indicating whether the device is on which the app is running is an iPhone or iPad).

When called, this method is passed a UITraitCollection object containing the new trait collection from which
information can be accessed and used to decide how to respond to the transition. The following code, for example,
checks that the app is running on an iPad before identifying whether the horizontal size class is transitioning to
a regular or compact size class:
override func willTransition(to newCollection: UITraitCollection, with

 coordinator: UIViewControllerTransitionCoordinator) {

 super.willTransition(to: newCollection,

 with: coordinator)

 if newCollection.userInterfaceIdiom == .pad

 if newCollection.horizontalSizeClass == .regular {

 // Transitioning to Regular Width Size Class

 } else if newCollection.horizontalSizeClass == .compact {

 // Transitioning to Compact Width Size Class

 }

 }

}

The second argument passed through to the method is a UIViewControllerTransitionCoordinator object. This
is the coordinator object that is handling the transition and can be used to add additional animations to those
being performed by UIKit during the transition.

34.4.2 viewWillTransition(to size: with coordinator:)
This method is also called before the size change is implemented and is passed a CGSize value and a coordinator
object. The size object can be used to obtain the new height and width to which the view is transitioning. The
following sample code outputs the new height and width values to the console:
override func viewWillTransition(to size: CGSize,

 with coordinator:

 UIViewControllerTransitionCoordinator) {

 super.viewWillTransition(to: size,

 with: coordinator)

 print("Height = \(size.height), Width = \(size.width)")

}

34.4.3 traitCollectionDidChange(_:)
This method is called once the transition from one trait collection to another is complete and is passed the
UITraitCollection object for the previous trait. In the following example implementation, the method checks to
find out whether the previous horizontal size class was regular or compact:

254

A Guide to iPad Multitasking

override func traitCollectionDidChange(_ previousTraitCollection:

 UITraitCollection?) {

 super.traitCollectionDidChange(previousTraitCollection)

 if previousTraitCollection?.horizontalSizeClass == .regular {

 // The previous horizontal size class was regular

 }

 if previousTraitCollection?.horizontalSizeClass == .compact {

 // The previous horizontal size class was compact

 }

}

34.5 Lifecycle Method Calls
In addition to the transition delegate methods outlined above, several lifecycle methods are called on the
app’s application delegate during a multitasking transition. For example, when the user moves the divider, the
applicationWillResignActive method is called at the point that the divider position changes. Likewise, when the user
slides the divider to the edge of the screen so that the app is no longer visible, the applicationDidEnterBackground
delegate method is called.

These method calls are particularly important when considering what happens behind the scenes when the user
moves the divider. As the divider moves, the system repeatedly resizes the app off-screen and takes snapshots
of various sizes as the slider moves. These snapshots make the sliding transition appear to take place smoothly.
The applicationWillResignActive method may need to be used to preserve the state of the user interface so that
when the user releases the divider, the same data and navigation position within the user interface is presented
as before the slider change.

34.6 Opting Out of Multitasking
To disable multitasking support for an app, add the UIRequiresFullScreen key to the project’s Info.plist file with
the value set to true. This can be set manually within the Info.plist file itself or the Deployment Info section of the
General settings panel for the project target:

Figure 34-7

255

A Guide to iPad Multitasking

34.7 Summary
Multitasking allows the user to display and interact with two apps concurrently when running on recent models
of iPad devices. Multitasking apps are categorized as primary and secondary and can be displayed in either
Slide Over or Split View configurations. Multitasking also supports a “Picture-in-Picture” option whereby video
playback is displayed in a floating, resizable window over the top of the existing app.

Supporting multitasking within an iOS app primarily involves designing the user interface to support both
regular and compact-size classes. A range of delegate methods also allows view controllers to receive size change
notifications and respond accordingly.

Projects created in Xcode 15 are configured to support multitasking by default. However, it is also possible to opt
out of multitasking with a change to the project Info.plist file.

355

Chapter 49

49. Working with iOS 17 Databases
using Core Data
The preceding chapters covered the concepts of database storage using the SQLite database. In these chapters,
the assumption was made that the iOS app code would directly manipulate the database using SQLite API calls
to construct and execute SQL statements. While this is a good approach for working with SQLite in many cases,
it does require knowledge of SQL and can lead to some complexity in terms of writing code and maintaining
the database structure. The non-object-oriented nature of the SQLite API functions further compounds this
complexity. In recognition of these shortcomings, Apple introduced the Core Data Framework. Core Data is
essentially a framework that places a wrapper around the SQLite database (and other storage environments),
enabling the developer to work with data in terms of Swift objects without requiring any knowledge of the
underlying database technology.

We will begin this chapter by defining some concepts that comprise the Core Data model before providing an
overview of the steps involved in working with this framework. Once these topics have been covered, the next
chapter will work through “An iOS 17 Core Data Tutorial”.

49.1 The Core Data Stack
Core Data consists of several framework objects that integrate to provide the data storage functionality. This
stack can be visually represented as illustrated in Figure 49-1.

As shown in Figure 49-1, the iOS-based app sits on top of the stack and interacts with the managed data objects
handled by the managed object context. Of particular significance in this diagram is that although the lower
levels in the stack perform a considerable amount of the work involved in providing Core Data functionality, the
app code does not interact with them directly.

Figure 49-1
Before moving on to the more practical areas of working with Core Data, it is essential to explain the elements

356

Working with iOS 17 Databases using Core Data

that comprise the Core Data stack in a little more detail.

49.2 Persistent Container
The persistent container handles the creation of the Core Data stack and is designed to be easily subclassed to add
additional app-specific methods to the base Core Data functionality. Once initialized, the persistent container
instance provides access to the managed object context.

49.3 Managed Objects
Managed objects are the objects that are created by your app code to store data. For example, a managed object
may be considered a row or a record in a relational database table. For each new record to be added, a new
managed object must be created to store the data. Similarly, retrieved data will be returned as managed objects,
one for each record matching the defined retrieval criteria. Managed objects are actually instances of the
NSManagedObject class or a subclass thereof. These objects are contained and maintained by the managed
object context.

49.4 Managed Object Context
Core Data based apps never interact directly with the persistent store. Instead, the app code interacts with the
managed objects contained in the managed object context layer of the Core Data stack. The context maintains
the status of the objects in relation to the underlying data store and manages the relationships between managed
objects defined by the managed object model. All interactions with the underlying database are held temporarily
within the context until the context is instructed to save the changes. At this point, the changes are passed down
through the Core Data stack and written to the persistent store.

49.5 Managed Object Model
So far, we have focused on managing data objects but have not yet looked at how the data models are defined.
This is the task of the Managed Object Model, which defines a concept referred to as entities.

Much as a class description defines a blueprint for an object instance, entities define the data model for managed
objects. Essentially, an entity is analogous to the schema that defines a table in a relational database. As such,
each entity has a set of attributes associated with it that define the data to be stored in managed objects derived
from that entity. For example, a Contacts entity might contain name, address, and phone number attributes.

In addition to attributes, entities can also contain relationships, fetched properties, and fetch requests:

• Relationships – In the context of Core Data, relationships are the same as those in other relational database
systems in that they refer to how one data object relates to another. Core Data relationships can be one-to-one,
one-to-many, or many-to-many.

• Fetched property – This provides an alternative to defining relationships. Fetched properties allow properties
of one data object to be accessed from another as though a relationship had been defined between those
entities. Fetched properties lack the flexibility of relationships and are referred to by Apple’s Core Data
documentation as “weak, one-way relationships” best suited to “loosely coupled relationships.”

• Fetch request – A predefined query that can be referenced to retrieve data objects based on defined predicates.
For example, a fetch request can be configured into an entity to retrieve all contact objects where the name
field matches “John Smith.”

49.6 Persistent Store Coordinator
The persistent store coordinator coordinates access to multiple persistent object stores. As an iOS developer, you
will never directly interact with the persistence store coordinator. In fact, you will very rarely need to develop
an app that requires more than one persistent object store. When multiple stores are required, the coordinator

357

Working with iOS 17 Databases using Core Data

presents these stores to the upper layers of the Core Data stack as a single store.

49.7 Persistent Object Store
The term persistent object store refers to the underlying storage environment in which data are stored when using
Core Data. Core Data supports three disk-based and one memory-based persistent store. Disk-based options
consist of SQLite, XML, and binary. By default, the iOS SDK will use SQLite as the persistent store. In practice,
the type of store used is transparent to you as the developer. Regardless of your choice of persistent store, your
code will make the same calls to the same Core Data APIs to manage the data objects required by your app.

49.8 Defining an Entity Description
Entity descriptions may be defined from within the Xcode environment. For example, when a new project is
created with the option to include Core Data, a template file will be created named <projectname>.xcdatamodeld.
Selecting this file in the Xcode project navigator panel will load the model into the entity editing environment,
as illustrated in Figure 49-2:

Figure 49-2
Create a new entity by clicking on the Add Entity button located in the bottom panel. The new entity will appear
as a text box in the Entities list. By default, this will be named Entity. Double-click on this name to change it.

To add attributes to the entity, click the Add Attribute button in the bottom panel or use the + button beneath the
Attributes section. Then, in the Attributes panel, name the attribute and specify the type and any other required
options.

Repeat the above steps to add more attributes and additional entities.

The Xcode entity environment also allows relationships to be established between entities. Assume, for example,
two entities named Contacts and Sales. First, select the Contacts entity and click on the + button beneath the
Relationships panel to establish a relationship between the two tables. Then, in the detail panel, name the
relationship, specify the destination as the Sales entity, and any other options required for the relationship.

As demonstrated, Xcode makes the process of entity description creation reasonably straightforward. While a
detailed overview of the process is beyond this book’s scope, many other resources are dedicated to the subject.

49.9 Initializing the Persistent Container
The persistent container is initialized by creating a new NSPersistentContainer instance, passing through the
name of the model to be used, and then making a call to the loadPersistentStores method of that object as follows:

358

Working with iOS 17 Databases using Core Data

let container = NSPersistentContainer(name: "CoreDataDemo")

 container.loadPersistentStores(completionHandler: {

 (description, error) in

 if let error = error {

 fatalError("Unable to load persistent stores: \(error)")

 }

 })

49.10 Obtaining the Managed Object Context
Since many Core Data methods require the managed object context as an argument, the next step after defining
entity descriptions often involves obtaining a reference to the context. This can be achieved by accessing the
viewContext property of the persistent container instance:
let managedObjectContext = persistentContainer.viewContext

49.11 Getting an Entity Description
Before managed objects can be created and manipulated in code, the corresponding entity description must first
be loaded. This is achieved by calling the entity(forName:in:) method of the NSEntityDescription class, passing
through the name of the required entity and the context as arguments. For example, the following code fragment
obtains the description for an entity with the name Contacts:
let entity = NSEntityDescription.entity(

 forName: "Contacts", in: context)

49.12 Setting the Attributes of a Managed Object
As previously discussed, entities and the managed objects from which they are instantiated contain data in the
form of attributes. Once a managed object instance has been created, as outlined above, those attribute values
can store the data before the object is saved. For example, assuming a managed object named contact with
attributes named name, address, and phone, respectively, the values of these attributes may be set as follows
before the object is saved to storage:
contact.name = "John Smith"

contact.address = "1 Infinite Loop"

contact.phone = "555-564-0980"

49.13 Saving a Managed Object
Once a managed object instance has been created and configured with the data to be stored, it can be saved to
storage using the save method of the managed object context as follows:
do {

 try context.save()

} catch let error {

 // Handle error

}

49.14 Fetching Managed Objects
Once managed objects are saved into the persistent object store, those objects and the data they contain will
likely need to be retrieved. Objects are retrieved by executing a fetch request and are returned in an array. The
following code assumes that both the context and entity description have been obtained before making the fetch
request:
let request: NSFetchRequest<Contacts> = Contacts.fetchRequest()

request.entity = entity

359

Working with iOS 17 Databases using Core Data

do {

 let results = try context.fetch(request as!

 NSFetchRequest<NSFetchRequestResult>)

} catch let error {

 // Handle error

}

Upon execution, the results array will contain all the managed objects retrieved by the request.

49.15 Retrieving Managed Objects based on Criteria
The preceding example retrieved all managed objects from the persistent object store for a specified entity. More
often than not, only managed objects that match specified criteria are required during a retrieval operation. This
is performed by defining a predicate that dictates criteria a managed object must meet to be eligible for retrieval.
For example, the following code implements a predicate to extract only those managed objects where the name
attribute matches “John Smith”:
let request: NSFetchRequest<Contacts> = Contacts.fetchRequest()

request.entity = entity

let pred = NSPredicate(format: "(name = %@)", "John Smith")

request.predicate = pred

do {

 let results = try context.fetch(request as!

 NSFetchRequest<NSFetchRequestResult>)

} catch let error {

 // Handle error

}

49.16 Accessing the Data in a Retrieved Managed Object
Once results have been returned from a fetch request, the data within the returned objects may be accessed
using keys to reference the stored values. The following code, for example, accesses the first result from a fetch
operation results array and extracts the values for the name, address, and phone keys from that managed object:
let match = results[0] as! NSManagedObject

let nameString = match.value(forKey: "name") as! String

let addressString = match.value(forKey: "address") as! String

let phoneString = match.value(forKey: "phone") as! String

49.17 Summary
The Core Data Framework stack provides a flexible alternative to directly managing data using SQLite or other
data storage mechanisms. Providing an object-oriented abstraction layer on top of the data makes managing
data storage significantly easier for the iOS app developer. Now that the basics of Core Data have been covered,
the next chapter, entitled “An iOS 17 Core Data Tutorial”, will work through creating an example app.

471

Chapter 65

65. iOS 17 UIKit Dynamics – An
Overview
UIKit Dynamics provides a powerful and flexible mechanism for combining user interaction and animation
into iOS user interfaces. What distinguishes UIKit Dynamics from other approaches to animation is the ability
to declare animation behavior in terms of real-world physics.

Before moving on to a detailed tutorial in the next chapter, this chapter will provide an overview of the concepts
and methodology behind UIKit Dynamics in iOS.

65.1 Understanding UIKit Dynamics
UIKit Dynamics allows for the animation of user interface elements (typically view items) to be implemented
within a user interface, often in response to user interaction. To fully understand the concepts behind UIKit
Dynamics, it helps to visualize how real-world objects behave.

Holding an object in the air and then releasing it, for example, will cause it to fall to the ground. This behavior is,
of course, the result of gravity. However, whether or not, and by how much, an object bounces upon impact with
a solid surface is dependent upon that object’s elasticity and its velocity at the point of impact.

Similarly, pushing an object positioned on a flat surface will cause that object to travel a certain distance
depending on the magnitude and angle of the pushing force combined with the level of friction at the point of
contact between the two surfaces.

An object tethered to a moving point will react in various ways, such as following the anchor point, swinging
in a pendulum motion, or even bouncing and spinning on the tether in response to more aggressive motions.
However, an object similarly attached using a spring will behave entirely differently in response to the movement
of the point of attachment.

Considering how objects behave in the real world, imagine the ability to selectively apply these same physics-
related behaviors to view objects in a user interface, and you will begin understanding the basic concepts behind
UIKit Dynamics. Not only does UIKit Dynamics allow user interface interaction and animation to be declared
using concepts we are already familiar with, but in most cases, it allows this to be achieved with just a few simple
lines of code.

65.2 The UIKit Dynamics Architecture
Before looking at how UIKit Dynamics are implemented in app code, it helps to understand the different
elements that comprise the dynamics architecture.

The UIKit Dynamics implementation comprises four key elements: a dynamic animator, a set of one or more
dynamic behaviors, one or more dynamic items, and a reference view.

65.2.1 Dynamic Items
The dynamic items are the view elements within the user interface to be animated in response to specified
dynamic behaviors. A dynamic item is any view object that implements the UIDynamicItem protocol, which
includes the UIView and UICollectionView classes and any subclasses thereof (such as UIButton and UILabel).

472

iOS 17 UIKit Dynamics – An Overview

Any custom view item can work with UIKit Dynamics by conforming to the UIDynamicItem protocol.

65.2.2 Dynamic Behaviors
Dynamic behaviors are used to configure the behavior to be applied to one or more dynamic items. A range
of predefined dynamic behavior classes is available, including UIAttachmentBehavior, UICollisionBehavior,
UIGravityBehavior, UIDynamicItemBehavior, UIPushBehavior, and UISnapBehavior. Each is a subclass of the
UIDynamicBehavior class, which will be covered in detail later in this chapter.

In general, an instance of the class corresponding to the desired behavior (UIGravityBehavior for gravity, for
example) will be created, and the dynamic items for which the behavior is to be applied will be added to that
instance. Dynamic items can be assigned to multiple dynamic behavior instances simultaneously and may be
added to or removed from a dynamic behavior instance during runtime.

Once created and configured, behavior objects are added to the dynamic animator instance. Once added to a
dynamic animator, the behavior may be removed at any time.

65.2.3 The Reference View
The reference view dictates the area of the screen within which the UIKit Dynamics animation and interaction
are to take place. This is typically the parent superclass view or collection view, of which the dynamic item views
are children.

65.2.4 The Dynamic Animator
The dynamic animator coordinates the dynamic behaviors and items and works with the underlying physics
engine to perform the animation. The dynamic animator is represented by an instance of the UIDynamicAnimator
class and is initialized with the corresponding reference view at creation time. Once created, suitably configured
dynamic behavior instances can be added and removed as required to implement the desired user interface
behavior.

The overall architecture for a UIKit Dynamics implementation can be represented visually using the diagram
outlined in Figure 65-1:

Figure 65-1
The above example has added three dynamic behaviors to the dynamic animator instance. The reference view
contains five dynamic items, all but one of which have been added to at least one dynamic behavior instance.

473

iOS 17 UIKit Dynamics – An Overview

65.3 Implementing UIKit Dynamics in an iOS App
The implementation of UIKit Dynamics in an app requires three very simple steps:

1. Create an instance of the UIDynamicAnimator class to act as the dynamic animator and initialize it with
reference to the reference view.

2. Create and configure a dynamic behavior instance and assign to it the dynamic items on which the specified
behavior is to be imposed.

3. Add the dynamic behavior instance to the dynamic animator.

4. Repeat from step 2 to create and add additional behaviors.

65.4 Dynamic Animator Initialization
The first step in implementing UIKit Dynamics is to create and initialize an instance of the UIDynamicAnimator
class. The first step is to declare an instance variable for the reference:
var animator: UIDynamicAnimator?

Next, the dynamic animator instance can be created. The following code, for example, creates and initializes the
animator instance within the viewDidLoad method of a view controller, using the view controller’s parent view
as the reference view:
override func viewDidLoad() {

 super.viewDidLoad()

 animator = UIDynamicAnimator(referenceView: self.view)
}

With the dynamic animator created and initialized, the next step is to configure behaviors, the details for which
differ slightly depending on the nature of the behavior.

65.5 Configuring Gravity Behavior
Gravity behavior is implemented using the UIGravityBehavior class, the purpose of which is to cause view items
to want to “fall” within the reference view as though influenced by gravity. UIKit Dynamics gravity is slightly
different from real-world gravity in that it is possible to define a vector for the direction of the gravitational force
using x and y components (x, y) contained within a CGVector instance. The default vector for this class is (0.0,
1.0), corresponding to downward acceleration at a speed of 1000 points per second2. A negative x or y value will
reverse the direction of gravity.

A UIGravityBehavior instance can be initialized as follows, passing through an array of dynamic items on which
the behavior is to be imposed (in this case, two views named view1 and view2):
let gravity = UIGravityBehavior(items: [view1, view2])

Once created, the default vector can be changed if required at any time:
let vector = CGVectorMake(0.0, 0.5)

gravity.gravityDirection = vector

Finally, the behavior needs to be added to the dynamic animator instance:
animator?.addBehavior(gravity)

At any point during the app lifecycle, dynamic items may be added to, or removed from, the behavior:
gravity.addItem(view3)

gravity.removeItem(view)

474

iOS 17 UIKit Dynamics – An Overview

Similarly, the entire behavior may be removed from the dynamic animator:
animator?.removeBehavior(gravity)

When gravity behavior is applied to a view, and in the absence of opposing behaviors, the view will immediately
move in the direction of the specified gravity vector. In fact, as currently defined, the view will fall out of the
bounds of the reference view and disappear. This can be prevented by setting up a collision behavior.

65.6 Configuring Collision Behavior
UIKit Dynamics is all about making items move on the device display. When an item moves, there is a high
chance it will collide either with another item or the boundaries of the encapsulating reference view. As previously
discussed, in the absence of any form of collision behavior, a moving item can move out of the visible area of
the reference view. Such a configuration will also cause a moving item to simply pass over the top of any other
items that happen to be in its path. Collision behavior (defined using the UICollisionBehavior class) allows such
collisions to behave in ways more representative of the real world.

Collision behavior can be implemented between dynamic items (such that certain items can collide with others)
or within boundaries (allowing collisions to occur when an item reaches a designated boundary). Boundaries
can be defined such that they correspond to the boundaries of the reference view, or entirely new boundaries can
be defined using lines and Bezier paths.

As with gravity behavior, a collision is generally created and initialized with an array object containing the items
to which the behavior is to be applied. For example:
let collision = UICollisionBehavior(items: [view1, view2])

animator?.addBehavior(collision)

As configured, view1 and view2 will now collide when coming into contact. The physics engine will decide what
happens depending on the items’ elasticity and the collision’s angle and speed. In other words, the engine will
animate the items to behave as if they were physical objects subject to the laws of physics.

By default, an item under the influence of a collision behavior will collide with other items in the same
collision behavior set and any boundaries set up. To declare the reference view as a boundary, set the
translatesReferenceBoundsIntoBoundary property of the behavior instance to true:
collision.translatesReferenceBoundsIntoBoundary = true

A boundary inset from the edges of the reference view may be defined using the
setsTranslateReferenceBoundsIntoBoundaryWithInsets method, passing through the required insets as an
argument in the form of a UIEdgeInsets object.

The collisionMode property may be used to change default collision behavior by assigning one of the following
constants:

• UICollisionBehaviorMode.items – Specifies that collisions only occur between items added to the collision
behavior instance. Boundary collisions are ignored.

• UICollisionBehaviorMode.boundaries – Configures the behavior to ignore item collisions, recognizing only
collisions with boundaries.

• UICollisionBehaviorMode.everything – Specifies that collisions occur between items added to the behavior
and all boundaries. This is the default behavior.

The following code, for example, enables collisions only for items:
collision.collisionMode = UICollisionBehaviorMode.items

475

iOS 17 UIKit Dynamics – An Overview

If an app needs to react to a collision, declare a class instance that conforms to the UICollisionBehaviorDelegate
class by implementing the following methods and assign it as the delegate for the UICollisionBehavior object
instance.

• collisionBehavior(_:beganContactForItem:withBoundaryIdentifier:atPoint:)

• collisionBehavior(_:beganContactForItem:withItem:atPoint:)

• collisionBehavior(_:endedContactForItem:withBoundaryIdentifier:)

• collisionBehavior(_:endedContactForItem:withItem:)

When implemented, the app will be notified when collisions begin and end. In most cases, the delegate methods
will be passed information about the collision, such as the location and the items or boundaries involved.

In addition, aspects of the collision behavior, such as friction and the elasticity of the colliding items (such that
they bounce on contact), may be configured using the UIDynamicBehavior class. This class will be covered in
detail later in this chapter.

65.7 Configuring Attachment Behavior
As the name suggests, the UIAttachmentBehavior class allows dynamic items to be configured to behave as if
attached. These attachments can take the form of two items attached or an item attached to an anchor point at
specific coordinates within the reference view. In addition, the attachment can take the form of an imaginary
piece of cord that does not stretch or a spring attachment with configurable damping and frequency properties
that control how “bouncy” the attached item is in response to motion.

By default, the attachment point within the item itself is positioned at the center of the view. This can, however,
be changed to a different position causing the real-world behavior outlined in Figure 65-2 to occur:

Figure 65-2
The physics engine will generally simulate animation to match what would typically happen in the real world. As
illustrated above, the item will tilt when not attached in the center. If the anchor point moves, the attached view
will also move. Depending on the motion, the item will swing in a pendulum motion and, assuming appropriate
collision behavior configuration, bounce off any boundaries it collides with as it swings.

As with all UIKit Dynamics behavior, the physics engine performs all the work to achieve this. The only effort
required by the developer is to write a few lines of code to set up the behavior before adding it to the dynamic
animator instance. The following code, for example, sets up an attachment between two dynamic items:
let attachment = UIAttachmentBehavior(item: view1,

476

iOS 17 UIKit Dynamics – An Overview

 attachedToItem: view2)

animator?.addBehavior(attachment)

The following code, on the other hand, specifies an attachment between view1 and an anchor point with the
frequency and damping values set to configure a spring effect:
let anchorpoint = CGPoint(x: 100, y: 100)

let attachment = UIAttachmentBehavior(item: view1,

 attachedToAnchor: anchorPoint)

attachment.frequency = 4.0

attachment.damping = 0.0

The above examples attach to the center point of the view. The following code fragment sets the same attachment
as above, but with an attachment point offset 20, 20 points relative to the center of the view:
let anchorpoint = CGPoint(x: 100, y: 100)

let offset = UIOffset(horizontal: 20, vertical: 20)

let attachment = UIAttachmentBehavior(item: view1,

 offsetFromCenter: offset,

 attachedToAnchor: anchorPoint)

65.8 Configuring Snap Behavior
The UISnapBehavior class allows a dynamic item to be “snapped” to a specific location within the reference view.
When implemented, the item will move toward the snap location as though pulled by a spring and, depending
on the damping property specified, oscillate several times before finally snapping into place. Until the behavior
is removed from the dynamic animator, the item will continue to snap to the location when subsequently moved
to another position.

The damping property can be set to any value between 0.0 and 1.0, with 1.0 specifying maximum oscillation.
The default value for damping is 0.5.

The following code configures snap behavior for dynamic item view1 with damping set to 1.0:
let point = CGPoint(x: 100, y: 100)

let snap = UISnapBehavior(item: view1, snapToPoint: point)

snap.damping = 1.0

animator?.addBehavior(snap)

65.9 Configuring Push Behavior
Push behavior, defined using the UIPushBehavior class, simulates the effect of pushing one or more dynamic
items in a specific direction with a specified force. The force can be specified as continuous or instantaneous.
In the case of a continuous push, the force is continually applied, causing the item to accelerate over time. The
instantaneous push is more like a “shove” than a push in that the force is applied for a short pulse causing the
item to gain velocity quickly but gradually lose momentum and eventually stop. Once an instantaneous push
event has been completed, the behavior is disabled (though it can be re-enabled).

The direction of the push can be defined in radians or using x and y components. By default, the pushing force is
applied to the center of the dynamic item, though, as with attachments, this can be changed to an offset relative
to the center of the view.

A force of magnitude 1.0 is defined as being a force of one UIKit Newton, which equates to a view sized at 100

477

iOS 17 UIKit Dynamics – An Overview

x 100 points with a density of value 1.0 accelerating at a rate of 100 points per second2. As explained in the next
section, the density of a view can be configured using the UIDynamicItemBehavior class.

The following code pushes an item with instantaneous force at a magnitude of 0.2 applied on both the x and y
axes, causing the view to move diagonally down and to the right:
let push = UIPushBehavior(items: [view1],

 mode: UIPushBehaviorMode.instantaneous)

let vector = CGVector(dx: 0.2, dy: 0.2)

push.pushDirection = vector

Continuous push behavior can be achieved by changing the mode in the above code property to
UIPushBehaviorMode.continuous.

To change the point where force is applied, configure the behavior using the setTargetOffsetFromCenter(_:for:)
method of the behavior object, specifying an offset relative to the center of the view. For example:
let offset = UIOffset(horizontal: 20, vertical: 20)

push.setTargetOffsetFromCenter(offset, for:view1)

In most cases, an off-center target for the pushing force will cause the item to rotate as it moves, as indicated in
Figure 65-3:

Figure 65-3

65.10 The UIDynamicItemBehavior Class
The UIDynamicItemBehavior class allows additional behavior characteristics to be defined that complement a
number of the above primitive behaviors. This class can, for example, be used to define the density, resistance,
and elasticity of dynamic items so that they do not move as far when subjected to an instantaneous push or
bounce to a greater extent when involved in a collision. Dynamic items also can rotate by default. If rotation is
not required for an item, this behavior can be turned off using a UIDynamicItemBehavior instance.

The behavioral properties of dynamic items that the UIDynamicItemBehavior class can govern are as follows:

• allowsRotation – Controls whether or not the item is permitted to rotate during animation.

• angularResistence – The amount by which the item resists rotation. The higher the value, the faster the item
will stop rotating.

• density – The mass of the item.

• elasticity – The amount of elasticity an item will exhibit when involved in a collision. The greater the elasticity,
the more the item will bounce.

478

iOS 17 UIKit Dynamics – An Overview

• friction – The resistance exhibited by an item when it slides against another item.

• resistance – The overall resistance that the item exhibits in response to behavioral influences. The greater the
value, the sooner the item will come to a complete stop during animation.

In addition, the class includes the following methods that may be used to increase or decrease the angular or
linear velocity of a specified dynamic item:

• angularVelocity(for:) – Increases or decreases the angular velocity of the specified item. Velocity is specified
in radians per second, where a negative value reduces the angular velocity.

• linearVelocity(for:) – Increases or decreases the linear velocity of the specified item. Velocity is specified in
points per second, where a negative value reduces the velocity.

The following code example creates a new UIDynamicItemBehavior instance and uses it to set resistance and
elasticity for two views before adding the behavior to the dynamic animator instance:
let behavior = UIDynamicItemBehavior(items: [view1, view2])

behavior.elasticity = 0.2

behavior.resistance = 0.5

animator?.addBehavior(behavior)

65.11 Combining Behaviors to Create a Custom Behavior
Multiple behaviors may be combined to create a single custom behavior using an instance of the
UIDynamicBehavior class. The first step is to create and initialize each of the behavior objects. An instance of
the UIDynamicBehavior class is then created, and each behavior is added to it via calls to the addChildBehavior
method. Once created, only the UIDynamicBehavior instance needs to be added to the dynamic animator. For
example:
// Create multiple behavior objects here

let customBehavior = UIDynamicBehavior()

customBehavior.addChildBehavior(behavior)

customBehavior.addChildBehavior(attachment)

customBehavior.addChildBehavior(gravity)

customBehavior.addChildBehavior(push)

animator?.addBehavior(customBehavior)

65.12 Summary
UIKit Dynamics provides a new way to bridge the gap between user interaction with an iOS device and
corresponding animation within an app user interface. UIKit Dynamics takes a novel approach to animation by
allowing view items to be configured such that they behave in much the same way as physical objects in the real
world. This chapter has covered an overview of the basic concepts behind UIKit Dynamics and provided some
details on how such behavior is implemented in terms of coding. The next chapter will work through a tutorial
demonstrating many of these concepts.

567

Chapter 78

78. An Introduction to Extensions in
iOS 17
Extensions are a feature originally introduced as part of the iOS 8 release designed to allow certain capabilities of
an app to be made available for use within other apps. For example, the developer of a photo editing app might
have devised some unique image filtering capabilities and decided that those features would be particularly
useful to users of the iOS Photos app. To achieve this, the developer would implement these features in a Photo
Editing extension which would then appear as an option to users when editing an image within the Photos app.

Extensions fall into various categories, and several rules and guidelines must be followed in the implementation
process. While subsequent chapters will cover the creation of extensions of various types in detail, this chapter
is intended to serve as a general overview and introduction to the subject of extensions in iOS.

78.1 iOS Extensions – An Overview
The sole purpose of an extension is to make a specific feature of an existing app available for access within other
apps. Extensions are separate executable binaries that run independently of the corresponding app. Although
extensions are individual binaries, they must be supplied and installed as part of an app bundle. The app with
which an extension is bundled is called the containing app. Except for Message App extensions, the containing
app must provide useful functionality. An empty app must not be provided solely to deliver an extension to the
user.

Once an extension has been installed, it will be accessible from other apps through various techniques depending
on the extension type. The app from which an extension is launched and used is referred to as a host app.

For example, an app that translates text to a foreign language might include an extension that can be used
to translate the text displayed by a host app. In such a scenario, the user would access the extension via the
Share button in the host app’s user interface, and the extension would display a view controller displaying the
translated text. On dismissing the extension, the user is returned to the host app.

78.2 Extension Types
iOS supports several different extension types dictated by extension points. An extension point is an area of the
iOS operating system that has been opened up to allow extensions to be implemented. When developing an
extension, it is important to select the extension point most appropriate to the extension’s features. The extension
types supported by iOS are constantly evolving, though the key types can be summarized as follows:

78.2.1 Share Extension
Share extensions provide a quick access mechanism for sharing content such as images, videos, text, and websites
within a host app with social network sites or content-sharing services. It is important to understand that Apple
does not expect developers to write Share extensions designed to post content to destinations such as Facebook
or Twitter (such sharing options are already built into iOS) but rather as a mechanism to make sharing easier for
developers hosting their own sharing and social sites. Share extensions appear within the activity view controller
panel when the user taps the Share button from within a host app.

Share extensions can use the SLComposeServiceViewController class to implement the interface for posting

568

An Introduction to Extensions in iOS 17

content. This class displays a view containing a preview of the information to be posted and provides the ability
to modify the content before posting it. In addition, a custom user interface can be designed using Interface
Builder for more complex requirements.

The actual mechanics of posting the content will depend on how the target platform works.

78.2.2 Action Extension
The Action extension point enables extensions to be created that fall into the Action category. Action extensions
allow the content within a host app to be transformed or viewed differently. As with Share extensions, Action
extensions are accessed from the activity view controller via the Share button. Figure 78-1, for example, shows
an example Action extension named “Change It Up” in the activity view controller of the iOS Notes app.

Figure 78-1
Action extensions are context-sensitive in that they only appear as an option when the type of content in the
host app matches one of the content types for which the extension has declared support. For example, an Action
extension that works with images will not appear in the activity view controller panel for a host app displaying
text-based content.

Action extensions are covered in detail in the chapters entitled “Creating an iOS 17 Action Extension” and
“Receiving Data from an iOS 17 Action Extension”.

78.2.3 Photo Editing Extension
The Photo Editing extension allows an app’s photo editing capabilities to be accessed from within the built-
in iOS Photos app. Photo Editing extensions are displayed when the user selects an image in the Photos app,
chooses the edit option, and taps on the button in the top left-hand corner of the Photo editing screen. For
example, Figure 78-2 shows the Photos app displaying two Photo Editing extension options:

Figure 78-2
Photo Editing Extensions are covered in detail in the chapter entitled “Creating an iOS 17 Photo Editing

569

An Introduction to Extensions in iOS 17

Extension”.

78.2.4 Document Provider Extension
The Document Provider extension allows a containing app to act as a document repository for other apps
running on the device. Depending on the level of support implemented in the extension, host apps can import,
export, open, and move documents to and from the storage repository the containing app provides. In most
cases, the storage repository represented by the containing app will be a third-party cloud storage service
providing an alternative to Apple’s iCloud service.

A Document Provider extension consists of a Document Picker View Controller extension and an optional File
Provider extension. The Document Picker View Controller extension provides a user interface, allowing users
to browse and select the documents available for the Document Provider extension.

The optional File Provider extension provides the host app with access to the documents outside the app’s
sandbox and is necessary if the extension is to support move and open operations on the documents stored via
the containing app.

78.2.5 Custom Keyboard Extension
As the name suggests, the Custom Keyboard Extension allows creating and installing custom keyboards onto
iOS devices. Keyboards developed using the Custom Keyboard extension point are available to be used by all
apps on the device and, once installed, are selected from within the keyboard settings section of the Settings app
on the device.

78.2.6 Audio Unit Extension
Audio Unit Extensions allow sound effects, virtual instruments, and other sound-based capabilities to be
available to other audio-oriented host apps such as GarageBand.

78.2.7 Shared Links Extension
The Shared Links Extension provides a mechanism for an iOS app to store URL links in the Safari browser
shared links list.

78.2.8 Content Blocking Extension
Content Blocking allows extensions to be added to the Safari browser to block certain types of content from
appearing when users browse the web. This feature is typically used to create ad-blocking solutions.

78.2.9 Sticker Pack Extension
An extension to the built-in iOS Messages App that allows packs of additional images to be provided for inclusion
in the message content.

78.2.10 iMessage Extension
Allows interactive content to be integrated into the Messages app. This can range from custom user interfaces to
interactive games. iMessage extensions are covered in the chapters entitled “An Introduction to Building iOS 17
Message Apps” and “An iOS 17 Interactive Message App Tutorial”.

78.2.11 Intents Extension
When integrating an app with the SiriKit framework, these extensions define the actions to be performed in
response to voice commands using Siri.

78.3 Creating Extensions
By far, the easiest approach to developing extensions is to use the extension templates provided by Xcode. Once
the project for a containing app is loaded into Xcode, extensions can be added as new targets by selecting the

570

An Introduction to Extensions in iOS 17

File -> New -> Targets… menu option. This will display the panel shown in Figure 78-3, listing a template for
each of the extension types:

Figure 78-3
Once an extension template is selected, click on Next to name and create the template. Once the extension
has been created from the template, the steps to implement the extension will differ depending on the type
of extension selected. The next few chapters will detail the steps in implementing Photo Editing, Action, and
Message app extensions.

78.4 Summary
Extensions in iOS provide a way for narrowly defined areas of functionality of one app to be made available
from within other apps. iOS 17 currently supports a variety of extension types. When developing extensions, it
is important to select the most appropriate extension point before beginning development work and to be aware
that some app features may not be appropriate candidates for an extension.

Although extensions run as separate independent binaries, they can only be installed as part of an app bundle.
The app with which an extension is bundled is called a containing app. An app from which an extension is
launched is called a a host app.

Having covered the basics of extensions in this chapter, subsequent chapters will focus in detail on the more
commonly used extension types.

671

Chapter 92

92. An Introduction to iOS 17 Sprite
Kit Programming
Suppose you have ever had an idea for a game but didn’t create it because you lacked the skills or time to write
complex game code and logic; look no further than Sprite Kit. Introduced as part of the iOS 7 SDK, Sprite Kit
allows 2D games to be developed relatively easily.

Sprite Kit provides almost everything needed to create 2D games for iOS, watchOS, tvOS, and macOS with
minimum coding. Sprite Kit’s features include animation, physics simulation, collision detection, and special
effects. These features can be harnessed within a game with just a few method calls.

In this and the next three chapters, the topic of games development with Sprite Kit will be covered to bring the
reader up to a level of competence to begin creating games while also providing a knowledge base on which to
develop further Sprite Kit development skills.

92.1 What is Sprite Kit?
Sprite Kit is a programming framework that makes it easy for developers to implement 2D-based games that run
on iOS, macOS, tvOS, and watchOS. It provides a range of classes that support the rendering and animation of
graphical objects (otherwise known as sprites) that can be configured to behave in specific programmer-defined
ways within a game. Through actions, various activities can be run on sprites, such as animating a character so
that it appears to be walking, making a sprite follow a specific path within a game scene, or changing the color
and texture of a sprite in real-time.

Sprite Kit also includes a physics engine allowing physics-related behavior to be imposed on sprites. For example,
a sprite can, amongst other things, be made to move by subjecting it to a pushing force, configured to behave as
though affected by gravity, or to bounce back from another sprite as the result of a collision.

In addition, the Sprite Kit particle emitter class provides a useful mechanism for creating special effects within a
game, such as smoke, rain, fire, and explosions. A range of templates for existing special effects is provided with
Sprite Kit and an editor built into Xcode for creating custom particle emitter-based special effects.

92.2 The Key Components of a Sprite Kit Game
A Sprite Kit game will typically consist of several different elements.

92.2.1 Sprite Kit View
Every Sprite Kit game will have at least one SKView class. An SKView instance sits at the top of the component
hierarchy of a game and is responsible for displaying the game content to the user. It is a subclass of the UIView
class and, as such, has many of the traits of that class, including an associated view controller.

92.2.2 Scenes
A game will also contain one or more scenes. One scene might, for example, display a menu when the game
starts, while additional scenes may represent multiple levels within the game. Scenes are represented in a game
by the SKScene class, a subclass of the SKNode class.

672

An Introduction to iOS 17 Sprite Kit Programming

92.2.3 Nodes
Each scene within a Sprite Kit game will have several Sprite Kit node children. These nodes fall into several
different categories, each of which has a dedicated Sprite Kit node class associated with it. These node classes are
all subclasses of the SKNode class and can be summarized as follows:

• SKSpriteNode – Draws a sprite with a texture. These textures will typically be used to create image-based
characters or objects in a game, such as a spaceship, animal, or monster.

• SKLabelNode – Used to display text within a game, such as menu options, the prevailing score, or a “game
over” message.

• SKShapeNode – Allows nodes to be created containing shapes defined using Core Graphics paths. If a sprite
is required to display a circle, for example, the SKShapeNode class could be used to draw the circle as an
alternative to texturing an SKSpriteNode with an image of a circle.

• SKEmitterNode – The node responsible for managing and displaying particle emitter-based special effects.

• SKVideoNode – Allows video playback to be performed within a game node.

• SKEffectNode – Allows Core Image filter effects to be applied to child nodes. A sepia filter effect, for example,
could be applied to all child nodes of an SKEffectNode.

• SKCropNode – Allows the pixels in a node to be cropped subject to a specified mask.

• SKLightNode – The lighting node is provided to add light sources to a SpriteKit scene, including casting
shadows when the light falls on other nodes in the same scene.

• SK3DNode – The SK3DNode allows 3D assets created using the Scene Kit Framework to be embedded into
2D Sprite Kit games.

• SKFieldNode – Applies physics effects to other nodes within a specified area of a scene.

• SKAudioNode – Allows an audio source using 3D spacial audio effects to be included in a Sprite Kit scene.

• SKCameraNode – Provides the ability to control the position from which the scene is viewed. The camera
node may also be adjusted dynamically to create panning, rotation, and scaling effects.

92.2.4 Physics Bodies
Each node within a scene can have associated with it a physics body. Physics bodies are represented by the
SKPhysicsBody class. Assignment of a physics body to a node brings a wide range of possibilities in terms of the
behavior associated with a node. When a node is assigned a physics body, it will, by default, behave as though
subject to the prevailing forces of gravity within the scene. In addition, the node can be configured to behave as
though having a physical boundary. This boundary can be defined as a circle, a rectangle, or a polygon of any
shape.

Once a node has a boundary, collisions between other nodes can be detected, and the physics engine is used to
apply real-world physics to the node, such as causing it to bounce when hitting other nodes. The use of contact
bit masks can be employed to specify the types of nodes for which contact notification is required.

The physics body also allows forces to be applied to nodes, such as propelling a node in a particular direction
across a scene using either a constant or one-time impulse force. Physical bodies can also be combined using
various join types (sliding, fixed, hinged, and spring-based attachments).

The properties of a physics body (and, therefore, the associated node) may also be changed. Mass, density,
velocity, and friction are just a few of the properties of a physics body available for modification by the game

673

An Introduction to iOS 17 Sprite Kit Programming

developer.

92.2.5 Physics World
Each scene in a game has its own physics world object in the form of an instance of the SKPhysicsWorld class. A
reference to this object, which is created automatically when the scene is initialized, may be obtained by accessing
the physicsWorld property of the scene. The physics world object is responsible for managing and imposing
the rules of physics on any nodes in the scene with which a physics body has been associated. Properties are
available on the physics world instance to change the default gravity settings for the scene and also to adjust the
speed at which the physics simulation runs.

92.2.6 Actions
An action is an activity performed by a node in a scene. Actions are the responsibility of SKAction class instances
which are created and configured with the action to be performed. That action is then run on one or more nodes.
An action might, for example, be configured to perform a rotation of 90 degrees. That action would then be run
on a node to make it rotate within the scene. The SKAction class includes various action types, including fade in,
fade out, rotation, movement, and scaling. Perhaps the most interesting action involves animating a sprite node
through a series of texture frames.

Actions can be categorized as sequence, group, or repeating actions. An action sequence specifies a series of
actions to be performed consecutively, while group actions specify a set of actions to be performed in parallel.
Repeating actions are configured to restart after completion. An action may be configured to repeat several
times or indefinitely.

92.2.7 Transitions
Transitions occur when a game changes from one scene to another. While it is possible to switch immediately
from one scene to another, a more visually pleasing result might be achieved by animating the transition in
some way. This can be implemented using the SKTransition class, which provides several different pre-defined
transition animations, such as sliding the new scene down over the top of the old scene or presenting the effect
of doors opening to reveal the new scene.

92.2.8 Texture Atlas
A large part of developing games involves handling images. Many of these images serve as textures for sprites.
Although adding images to a project individually is possible, Sprite Kit also allows images to be grouped into a
texture atlas. Not only does this make it easier to manage the images, but it also brings efficiencies in terms of
image storage and handling. For example, the texture images for a particular sprite animation sequence would
typically be stored in a single texture atlas. In contrast, another atlas might store the images for the background
of a particular scene.

92.2.9 Constraints
Constraints allow restrictions to be imposed on nodes within a scene in terms of distance and orientation in
relation to a point or another node. A constraint can, for example, be applied to a node such that its movement is
restricted to within a certain distance of another node. Similarly, a node can be configured so that it is oriented to
point toward either another node or a specified point within the scene. Constraints are represented by instances
of the SKConstraint class and are grouped into an array and assigned to the constraints property of the node to
which they are to be applied.

92.3 An Example Sprite Kit Game Hierarchy
To aid in visualizing how the various Sprite Kit components fit together, Figure 92-1 outlines the hierarchy for
a simple game:

674

An Introduction to iOS 17 Sprite Kit Programming

Figure 92-1
In this hypothetical game, a single SKView instance has two SKScene children, each with its own SKPhysicsWorld
object. Each scene, in turn, has two node children. In the case of both scenes, the SKSpriteNode instances have
been assigned SKPhysicsBody instances.

92.4 The Sprite Kit Game Rendering Loop
When working with Sprite Kit, it helps to understand how the animation and physics simulation process works.
This process can best be described by looking at the Sprite Kit frame rendering loop.

Sprite Kit performs the work of rendering a game using a game rendering loop. Within this loop, Sprite Kit
performs various tasks to render the visual and behavioral elements of the currently active scene, with an
iteration of the loop performed for each successive frame displayed to the user.

Figure 92-2 provides a visual representation of the frame rendering sequence performed in the loop:

Figure 92-2
When a scene is displayed within a game, Sprite Kit enters the rendering loop and repeatedly performs the same
sequence of steps as shown above. At several points in this sequence, the loop will make calls to your game,
allowing the game logic to respond when necessary.

Before performing any other tasks, the loop begins by calling the update method of the corresponding SKScene
instance. Within this method, the game should perform any tasks before the frame is updated, such as adding
additional sprites or updating the current score.

The loop then evaluates and implements any pending actions on the scene, after which the game can perform
more tasks via a call to the didEvaluateActions method.

Next, physics simulations are performed on the scene, followed by a call to the scene’s didSimulatePhysics
method, where the game logic may react where necessary to any changes resulting from the physics simulation.

The scene then applies any constraints configured on the nodes in the scene. Once this task has been completed,

675

An Introduction to iOS 17 Sprite Kit Programming

a call is made to the scene’s didApplyConstraints method if it has been implemented.

Finally, the SKView instance renders the new scene frame before the loop sequence repeats.

92.5 The Sprite Kit Level Editor
Integrated into Xcode, the Sprite Kit Level Editor allows scenes to be designed by dragging and dropping nodes
onto a scene canvas and setting properties on those nodes using the SKNode Inspector. Though code writing is
still required for anything but the most basic scene requirements, the Level Editor provides a useful alternative
to writing code for some of the less complex aspects of SpriteKit game development. The editor environment
also includes both live and action editors, allowing for designing and testing animation and action sequences
within a Sprite Kit game.

92.6 Summary
Sprite Kit provides a platform for creating 2D games on iOS, tvOS, watchOS, and macOS. Games comprise an
SKView instance with an SKScene object for each game scene. Scenes contain nodes representing the game’s
characters, objects, and items. Various node types are available, all of which are subclassed from the SKNode
class. In addition, each node can have associated with it a physics body in the form of an SKPhysicsBody
instance. A node with a physics body will be subject to physical forces such as gravity, and when given a physical
boundary, collisions with other nodes may also be detected. Finally, actions are configured using the SKAction
class, instances of which are then run by the nodes on which the action is to be performed.

The orientation and movement of a node can be restricted by implementing constraints using the SKConstraint
class.

The rendering of a Sprite Kit game takes place within the game loop, with one loop performed for each game
frame. At various points in this loop, the app can perform tasks to implement and manage the underlying game
logic.

Having provided a high-level overview in this chapter, the next three chapters will take a more practical approach
to exploring the capabilities of Sprite Kit by creating a simple game.

699

Chapter 95

95. An iOS 17 Sprite Kit Particle
Emitter Tutorial
In this, the last chapter dedicated to the Sprite Kit framework, the use of the Particle Emitter class and editor
to add special effects to Sprite Kit-based games will be covered. Having provided an overview of the various
elements that make up particle emitter special effects, the SpriteKitDemo app will be extended using particle
emitter features to make the balls burst when an arrow hits. This will also involve the addition of an audio action.

95.1 What is the Particle Emitter?
The Sprite Kit particle emitter is designed to add special effects to games. It comprises the SKEmitterNode class
and the Particle Emitter Editor bundled with Xcode. A particle emitter special effect begins with an image file
representing the particle. The emitter generates multiple instances of the particle on the scene and animates
each particle subject to a set of properties. These properties control aspects of the special effect, such as the rate
of particle generation, the angle, and speed of motion of particles, whether or not particles rotate, and how the
particles blend in with the background.

With some time and experimentation, a wide range of special effects, from smoke to explosions, can be created
using particle emitters.

95.2 The Particle Emitter Editor
The Particle Emitter Editor is built into Xcode and provides a visual environment to design particle emitter
effects. In addition to providing a platform for developing custom effects, the editor also offers a collection of
pre-built particle-based effects, including rain, fire, magic, snow, and sparks. These template effects also provide
an excellent starting point on which to base other special effects.

Within the editor environment, a canvas displays the current particle emitter configuration. A settings panel
allows the various properties of the emitter node to be changed, with each modification reflected in the canvas in
real time, thereby making creating and refining special effects much easier. Once the design of the special effect
is complete, the effect is saved in a Sprite Kit particle file. This file actually contains an archived SKEmitterNode
object configured to run the particle effects designed in the editor.

95.3 The SKEmitterNode Class
The SKEmitterNode displays and runs the particle emitter effect within a Sprite Kit game. As with other Sprite
Node classes, the SKEmitterNode class has many properties and behaviors of other classes in the Sprite Kit
family. Generally, an SKEmitterNode class is created and initialized with a Sprite Kit particle file created using
the Particle Emitter editor. The following code fragment, for example, initializes an SKEmitterNode instance
with a particle file, configures it to appear at a specific position within the current scene, and adds it to the scene
so that it appears within the game:
if let burstNode = SKEmitterNode(fileNamed: "BurstParticle.sks") {

 burstNode.position = CGPoint(x: target_x, y: target_y)

 secondNode.removeFromParent()

 self.addChild(burstNode)

}

700

An iOS 17 Sprite Kit Particle Emitter Tutorial

Once created, all of the emitter properties available within the Particle Emitter Editor are also controllable from
within the code, allowing the effect’s behavior to be changed in real time. The following code, for example,
adjusts the number of particles the emitter is to emit before ending:
burstNode.numParticlesToEmit = 400

In addition, actions may be assigned to particles from within the app code to add additional behavior to a special
effect. The particles can, for example, be made to display an animation sequence.

95.4 Using the Particle Emitter Editor
By far, the easiest and most productive approach to designing particle emitter-based special effects is to use the
Particle Emitter Editor tool bundled with Xcode. To experience the editor in action, launch Xcode and create a
new iOS Game-based project named ParticleDemo with the Language menu set to Swift.

Once the new project has been created, select the File -> New -> File… menu option. Then, in the resulting
panel, choose the SpriteKit Particle File template option as outlined in Figure 95-1:

Figure 95-1
Click Next and choose a Particle template on which to base the special effect. For this example, we will use the
Fire template. Click Next and name the file RocketFlame before clicking on Create.

At this point, Xcode will have added two files to the project. One is an image file named spark.png representing
the particle, and the other is the RocketFlame.sks file containing the particle emitter configuration. In addition,
Xcode should also have pre-loaded the Particle Emitter Editor panel with the fire effect playing in the canvas,
as shown in Figure 95-2 (the editor can be accessed at any time by selecting the corresponding sks file in the
project navigator panel).

701

An iOS 17 Sprite Kit Particle Emitter Tutorial

Figure 95-2
The right-hand panel of the editor provides access to and control of all of the properties associated with the
emitter node. To access these property settings, click the right-hand toolbar button in the right-hand panel.

Much about particle emitter special effects can be learned through experimentation with the particle editor.
However, before modifying the fire effects in this example, it will be helpful to provide an overview of what these
properties do.

95.5 Particle Emitter Node Properties
A range of property settings controls the behavior of a particle emitter and associated particles. These properties
can be summarized as follows:

95.5.1 Background
Though presented as an option within the editor, this is not actually a property of the emitter node. This option
is provided so that the appearance of the effect can be tested against different backgrounds. This is particularly
important when the particles are configured to blend with the background. Use this setting to test the particle
effects against any background colors the effect is likely to appear with within the game.

95.5.2 Particle Texture
The image file containing the texture that will be used to represent the particles within the emitter.

702

An iOS 17 Sprite Kit Particle Emitter Tutorial

95.5.3 Particle Birthrate
The birthrate defines the rate at which the node emits new particles. The greater the value, the faster new particles
are generated. However, it is recommended that the minimum number of particles needed to achieve the desired
effect be used to avoid performance degradation. Therefore, the total number of particles emitted may also be
specified. A value of zero causes particles to be emitted indefinitely. If a limit is specified, the node will stop
emitting particles when that value is reached.

95.5.4 Particle Life Cycle
The lifetime property controls the time in seconds a particle lives (and is therefore visible) before disappearing
from view. The range property may be used to introduce variance in the lifetime from one particle to the next
based on a random time value between 0 and the specified range value.

95.5.5 Particle Position Range
The position properties define the location from which particles are created. For example, the X and Y values can
be used to declare an area around the center of the node location from which particles will be created randomly.

95.5.6 Angle
The angle at which a newly emitted particle will travel away from the creation point in counter-clockwise degrees,
where a value of 0 degrees equates to rightward movement. Random variance in direction can be introduced via
the range property.

95.5.7 Particle Speed
The speed property specifies the particles’ initial speed at the creation time. The speed can be randomized by
specifying a range value.

95.5.8 Particle Acceleration
The acceleration properties control the degree to which a particle accelerates or decelerates after emission in
terms of both X and Y directions.

95.5.9 Particle Scale
The size of the particles can be configured to change using the scale properties. These settings cause the particles
to grow or shrink throughout their lifetimes. Random resizing behavior can be implemented by specifying a
range value. The speed setting controls the speed with which the size changes take place.

95.5.10 Particle Rotation
The rotation properties control the speed and amount of rotation applied to the particles after creation. Values
are specified in degrees, with positive and negative values correlating to clockwise and counter-clockwise
rotation. In addition, the speed of rotation may be specified in degrees per second.

95.5.11 Particle Color
The particles created by an emitter can be configured to transition through a range of colors during a lifetime. To
add a new color in the lifecycle timeline, click on the color ramp at the location where the color is to change and
select a new color. Change an existing color by double-clicking the marker to display the color selection dialog.
Figure 95-3, for example, shows a color ramp with three color transitions specified:

703

An iOS 17 Sprite Kit Particle Emitter Tutorial

Figure 95-3
To remove a color from the color ramp, click and drag it downward out of the editor panel.

The color blend settings control the amount by which the colors in the particle’s texture blend with the prevailing
color in the color ramp at any given time during the particle’s life. The greater the Factor property, the greater
the colors blend, with 0 indicating no blending. By adjusting the speed property, the blending factor can be
randomized by specifying a range and the speed at which the blend is performed.

95.5.12 Particle Blend Mode
The Blend Mode property governs how particles blend with other images, colors, and graphics in Sprite Kit
game scenes. Options available are as follows:

• Alpha – Blends transparent pixels in the particle with the background.

• Add – Adds the particle pixels to the corresponding background image pixels.

• Subtract – Subtracts the particle pixels from the corresponding background image pixels.

• Multiply - Multiplies the particle pixels by the corresponding background image pixels—resulting in a darker
particle effect.

• MultiplyX2 – This creates a darker particle effect than the standard Multiply mode.

• Screen – Inverts pixels, multiplies, and inverts a second time—resulting in lighter particle effects.

• Replace – No blending with the background. Only the particle’s colors are used.

95.6 Experimenting with the Particle Emitter Editor
Creating compelling special effects with the particle emitter is largely a case of experimentation. As an example
of adapting a template effect for another purpose, we will now modify the fire effect in the RocketFlame.sks file
so that instead of resembling a campfire, it could be attached to the back of a sprite to represent the flame of a
rocket launching into space.

Within Xcode, select the previously created RocketFlame.sks file so that it loads into the Particle Emitter Editor.
The animation should appear and resemble a campfire, as illustrated in Figure 95-2.

1. The first step in modifying the effect is to change the angle of the flames so that they burn downwards. To
achieve this, change the Start property of the Angle setting to 270 degrees. The fire should now be inverted.

2. Change the X value of the Position Range property to 5 so that the flames become narrower and more intense.

3. Increase the Start value of the Speed property to 450.

4. Change the Lifetime start property to 7.

The effect now resembles the flames a user might expect to see shooting out of the back of a rocket against a
nighttime sky (Figure 95-4). Note also that the effects of the motion of the emitter node may be simulated by
clicking and dragging the node around the canvas.

704

An iOS 17 Sprite Kit Particle Emitter Tutorial

Figure 95-4

95.7 Bursting a Ball using Particle Emitter Effects
The final task is to update the SpriteKitDemo game so that the balls burst when they are hit by an arrow shot by
the archer sprite.

The particles for the bursting ball will be represented by the BallFragment.png file located in the sample code
download archive in the sprite_images folder. Open the SpriteKitDemo project within Xcode, locate the
BallFragment.png file in a Finder window, and drag and drop it onto the list of image sets in the Assets file.

Select the File -> New -> File… menu option and, in the resulting panel, select the SpriteKit Particle File template
option. Click Next, and on the template screen, select the Spark template. Click Next, name the file BurstParticle,
and click Create.

The Particle Emitter Editor will appear with the spark effect running. Since the scene on which the effect will
run has a white background, click on the black swatch next to Background in the Attributes Inspector panel and
change the color to white.

Click on the Particles Texture drop-down menu, select the BallFragment image, and change the Blend Mode
menu to Alpha.

Many ball fragments should now be visible, blended with the yellow color specified in the ramp. Set the Emitter
Birthrate property to 15 to reduce the number of particles emitted. Click on the yellow marker at the start of

705

An iOS 17 Sprite Kit Particle Emitter Tutorial

the color ramp and change the color to White in the resulting color dialog. The particles should now look like
fragments of the ball used in the game.

The fragments of a bursting ball would be expected to originate from any part of the ball. As such, the Position
Range X and Y values need to match the dimensions of the ball. Set both of these values to 86 accordingly.

Finally, limit the number of particles by changing the Emitter Maximum property in the Particles section to 8.

The burst particle effect is now ready to be incorporated into the game logic.

95.8 Adding the Burst Particle Emitter Effect
When an arrow scores a hit on a ball node, the ball node will be removed from the scene and replaced with a
BurstParticle SKEmitterNode instance. To implement this behavior, edit the ArcheryScene.swift file and modify
the didBegin(contact:) method to add a new method call to extract the SKEmitterNode from the archive in the
BurstParticle file, remove the ball node from the scene and replace it at the same position with the emitter:
func didBegin(_ contact: SKPhysicsContact) {

 let secondNode = contact.bodyB.node as! SKSpriteNode

 if (contact.bodyA.categoryBitMask == arrowCategory) &&

 (contact.bodyB.categoryBitMask == ballCategory) {

 let contactPoint = contact.contactPoint

 let contact_y = contactPoint.y

 let target_x = secondNode.position.x
 let target_y = secondNode.position.y

 let margin = secondNode.frame.size.height/2 - 25

 if (contact_y > (target_y - margin)) &&

 (contact_y < (target_y + margin)) {

 if let burstNode = SKEmitterNode(fileNamed: "BurstParticle.sks")
 {
 burstNode.position = CGPoint(x: target_x, y: target_y)
 secondNode.removeFromParent()
 self.addChild(burstNode)
 }
 score += 1
 }

 }

}

Compile and run the app. For example, when an arrow hits a ball, it should now be replaced by the particle
emitter effect:

706

An iOS 17 Sprite Kit Particle Emitter Tutorial

Figure 95-5

95.9 Adding an Audio Action
The final effect to add to the game is a bursting sound when an arrow hits the ball. We will again use the Xcode
Action Editor to add this effect.

Begin by adding the sound file to the project. This file is named burstsound.mp3 and is located in the audiofiles
folder of the book code samples download. Locate this file in a Finder window and drag it onto the Project
Navigator panel. In the resulting panel, enable the Copy items if needed option and click on Finish.

Within the Project Navigator panel, select the ArcherScene.sks file. Then, from the Library panel, locate the Play-
Sound-File-Named-Action object and drag and drop it onto the timeline so that it is added to the archerNode
object:

Figure 95-6
Select the new action object in the timeline and use the Attributes Inspector panel to set the Filename property
to the burstsound file.

Right-click on the sound action and select the Convert to Reference menu option. Name the reference audioAction
and click on the Create button. The action has now been saved to the ArcherActions.sks file. Next, select the
object in the timeline, right-click, and select the Delete option to remove it from the scene file.

Finally, modify the didBegin(contact:) method to play the sound action when a ball bursts:
func didBegin(_ contact: SKPhysicsContact) {

 let secondNode = contact.bodyB.node as! SKSpriteNode

707

An iOS 17 Sprite Kit Particle Emitter Tutorial

 if (contact.bodyA.categoryBitMask == arrowCategory) &&

 (contact.bodyB.categoryBitMask == ballCategory) {

 let contactPoint = contact.contactPoint

 let contact_y = contactPoint.y

 let target_x = secondNode.position.x

 let target_y = secondNode.position.y

 let margin = secondNode.frame.size.height/2 - 25

 if (contact_y > (target_y - margin)) &&

 (contact_y < (target_y + margin)) {

 print("Hit")

 if let burstNode = SKEmitterNode(fileNamed: "BurstParticle.sks")

 {

 burstNode.position = CGPoint(x: target_x, y: target_y)

 secondNode.removeFromParent()

 self.addChild(burstNode)

 if let audioAction = SKAction(named: "audioAction") {
 burstNode.run(audioAction)
 }
 }

 score += 1

 }

 }

}

Run the app and verify that the sound file plays when a hit is registered on a ball.

95.10 Summary
The particle emitter allows special effects to be added to Sprite Kit games. All that is required is an image file to
represent the particles and some configuration of the particle emitter properties. This work can be simplified
using the Particle Emitter Editor included with Xcode. The editor is supplied with a set of pre-configured special
effects, such as smoke, fire, and rain, which can be used as supplied or modified to meet many special effects
needs.

717

Index

Index

Symbols
& 57

^ 58

^= 59

<< 59

<<= 59

&= 59

>> 59

>>= 59

| 58

|= 59

~ 57

$0 79

@IBDesignable 443

@IBInspectable 444

?? operator 56

A
Action Extension 568

add target 584

overview 583

receiving data from 593

tutorial 583

Adaptive User Interface

tutorial 174

addArc method 447, 451

addConstraint method 154

addCurve(to:) method 451

addEllipse(in:) method 449

addQuadCurve method 452

addRect method 448

addTask() function 272

Affine Transformations 464

Alert Views 134

Alignment Rects 136

alpha property 463

AND (&&) operator 55

AND operator 57

Animation 463

example 465

Animation Blocks 463

Animation Curves 464

AnyObject 106

App Icons 711

Apple Developer Program 3

applicationDidEnterBackground delegate method 254

Application Performance 24

applicationWillResignActive method 254

App project template 181

App Store

creating archive 712

submission 709

App Store Connect 713

Arranged Subviews 232

arrangedSubviews property 232

Array

forEach() 105

mixed type 106

Array Initialization 103

Array Item Count 104

Array Items

accessing 104

appending 105

inserting and deleting 105

Array Iteration 105

Arrays

immutable 103

mutable 103

as! keyword 51

Aspect Ratio Constraints 149

Assistant Editor 124, 125

async

suspend points 266

async/await 265

718

Index

Asynchronous Properties 275

async keyword 266

async-let bindings 268

AsyncSequence protocol 274

attributesOfItemAtPath method 281

Audio 645

Audio Formats 645

Audio Session

category 563

Audio Unit Extension 569

Augmented Reality App 12

Auto Layout

addConstraint 154

Add New Constraints menu 141

Alignment Rects 136

Align menu 145

Auto Resizing Translation 155

Compression Resistance 136

constraintsWithVisualFormat 166

Content Hugging 136

Creating Constraints in Code 153

Cross Hierarchy Constraints 161

cross-view hierarchy constraints 135

Editing Constraints 147

Interface Builder example 139

Intrinsic Content Size 136

introduction 135

Removing Constraints 159

Suggested Constraints 142

Visual Format Language 137, 165

Auto Layout Problems

resolving 149

Auto Resizing Translation 155

autosizing 135

AVAudioPlayer 651

AVAudioPlayerDelegate protocol

methods 645

AVAudioRecorder 651

AVAudioSession.Category.playback 563

AVPlayerViewController 557, 559

await keyword 266, 267

B
background colors

changing scene 196

binary operators 53

Biometric Authentication 425

bit operators 57

Bitwise AND 57

Bitwise Left Shift 58

bitwise OR 58

bitwise right shift 59

bitwise XOR 58

Boolean Logical Operators 55

bottomAnchor 156

Bounds Rectangles 122

break statement 63

Build Errors 24

Build Phases 15

Build Rules 15

Build Settings 15

Bundle display name key 585

C
calculateETA(completionHandler:) method 514

Camera

tutorial 551

Camera and Photo Library 547

cancelAll() function 273

canHandle(adjustmentData:) method 575

case Statement 68

catch statement 113

multiple matches 113

cellForRowAt indexPath method 203

Cell Reuse Identifier 209

centerXAnchor 155

centerYAnchor 156

CFBundleTypeName 323

CFBundleTypeRole 323, 328

CGAffineTransformMakeRotation() function 464

CGColor property 436

CGColorSpaceCreateDeviceCMYK() function 436

CGColorSpaceCreateDeviceGray function 436

CGContextRef 436

719

Index
CGCreateSetStrokeColorWithColor function 436

CGGradient class 454

CGImageRef 461

CGPoint 435

CGRect 435

CGRect structure 435

CGSize 435

Character data type 42

checkCancellation() method 271

childNode(withName:) method 683

CIContext 460

CIFilter 460

CIImage 460, 461

CKAcceptSharesOperation 379, 380

CKConfiguration 375

CKContainer class 367

CKDatabase 367, 368, 371, 396

CKFetchRecordsOperation 380

CKModifyRecordsOperation 369, 375

CKRecord 368, 370, 371, 391, 396

CKRecordID 370

CKRecordTypeUserRecord 372

CKRecordZone 371

CKReference 370

CKShare class 375

CKShare.Metadata 380

CKShareParticipant , 376

CKSharingSupported key , 375

Class Extensions 94

CLGeocoder 487

CLLocation 487, 499

CLLocationManager 499

CLLocationManagerDelegate protocol 501, 506

CLLocationManager Object 506

closed range operator 55

Closure Expressions 78

shorthand argument names 79

closures 71

Closures 79

CloudKit 367

add container 307, 384

Assets 370

Console 392

deleting a record 396

example 383

overview 367

Private Database 387

Private Databases 367

Public Database 367

quotas 368

Record IDs 370

Records 368

Record Zones 371

Saving a Record 390

searching 394

Subscriptions 371

tutorial 383

Updating records 395

CloudKit Console 392

CloudKit Containers 367

CloudKit Data Storage 293

CloudKit Share

accepting 379, 399

creating 398

CloudKit Sharing 371, 375

creating a share object 375

example 397

fetching records 380

fetching shared records 400

Info.plist 375

overview 375

preparing project for 397

CLPlacemark 488

coalesced touches 405

Coalesced Touches

accessing 411

coalescedTouchesForTouch method 405

Cocoa Touch 117

Color

working with 436

colorspace 436

compact size class 169

company identifier 13

Comparison Operators 54

720

Index

Completion Handlers 263

Component Properties 18

Compound Bitwise Operators 59

Compression Resistance 136

computed properties 85

concrete type 89

Conditional Control Flow 64

constants 45

constraint() method 156

Constraints 135

editing 147

Outlets 162

Removing 159

constraintsWithVisualFormat 166

constraintsWithVisualFormat method 167

constraintWithItem method 153

Container Views 134

Content Blocking Extension 569

Content Hugging 136

continue Statement 63

Controls 134

Coordinates 435

Core Animation 463

Core Data 355

Entity Description 357

Fetched Property 356

Fetch request 356

Managed Object Context 356

Managed Object Model 356

Managed Objects 356

Persistent Object Store 357

Persistent Store Coordinator 356

relationships 356

stack 355

tutorial 361

Core Graphics 435

Core Image Framework 460

Core Location

basics of 499

CoreML

classification request 630

example 627

CoreML framework 620

CouldKit

References 370

CPU cores 263

Create ML 619

building a model 621

CreateMLUI 619

cross-view hierarchy constraints 135

Current Location

getting 503

Current Working Directory 278

Custom Keyboard Extension 569

D
data encapsulation 82

Data Races 273

defaultContainer method 367

Default Function Parameters 73

defer statement 114

Delegation 119

dequeueReusableCell(withIdentifier:) method 203, 213

design patterns 117

Detached Tasks 271

Developer Mode setting 23

Developer Program 3

Dictionary Collections 106

Dictionary Entries

adding and removing 108

Dictionary Initialization 106

Dictionary Item Count 108

Dictionary Items

accessing and updating 108

Dictionary Iteration 108

didBegin(contact:) method 695

didChangeAuthorizationStatus delegate method 502

didEnd(contact:) method 695

Did End on Exit event 129

didFinishLaunchingWithOptions 119

didFinishPickingMediaWithInfo method 548

didMove(to view:) method 678, 695

didUpdateLocations delegate method 502

Directories

721

Index
working with filesystem 277

Directory

attributes of 281

changing 279

contents of 280

creating 279

deleting 280

dispatch_async 588

display

dimension of 459

Display Views 134

do-catch statement 113

multiple matches 113

Document App 12

Document Based App 322

Document Browser View Controller 321

adding actions 325

declaring file types 327

delegate methods 323

tutorial 327

Document Provider Extension 569

Documents Directory 277

locating 278

Double 42

downcasting 50

Drawing

arc 451

Cubic Bézier Curve 451

dashed line 453

ellipse 449

filling with color 449

gradients 454

images 458

line 446

paths 447

Quadratic Bézier Curve 452

rectangle 448

shadows 454

drawLinearGradient method 455

drawRadialGradient method 457

draw(rect:) method 435, 446

Dynamic Animator 472

Dynamic Type 201

E
Embedded Frameworks 439

creating 441

enum 100, 111

associated values 101

Enumeration 100

Errata 1

Error

throwing 112

Error Catching

disabling 114

Error Object

accessing 114

ErrorType protocol 111

Event forwarding 403

exclusive OR 58

Expression Syntax 53

Extensions 567

creating 570

overview 567

Extensions and Adjustment Data 575

Extension Types 567

external parameter names 73

F
Face ID

checking availability 425

example 427

policy evaluation 426

privacy statement 431

seeking authentication 429

Face ID Authentication

Authentication 425

fallthrough statement 70

File

access permissions 284

comparing 283

copying 284

deleting 284

existence of 283

722

Index

offsets and seeking 286

reading and writing 285

reading data 286

renaming and moving 284

symbolic link 285

truncation 287

writing data 287

File Inspector 18

fillEllipse(in:) method 449

fillPath method 449

fill(rect:) method 449

finishContentEditing(completionHandler:) method 579

firstBaselineAnchor 156

first responder 129

Float 42

flow control 61

FMDatabase 343

FMDatabaseQueue 343

FMDB Classes 343

FMDB Source Code 347

FMResultSet 343

font setting 20

for-await 274

forced unwrapping 47

forEach() 105

for loop 61

forward-geocoding 488

Forward Geocoding 494

function

arguments 71

parameters 71

Function Parameters

variable number of 74

functions 71

as parameters 76

default function parameters 73

external parameter names 73

In-Out Parameters 75

parameters as variables 75

return multiple results 74

G

Game project template 12

geocodeAddressString method 488

Geocoding 487, 494

Gesture

identification 417

Gesture Recognition 421

Gestures 404

continuous 418

discreet 418

Graphics Context 436

guard statement 65

H
half-closed range operator 56

heightAnchor 156

Horizontal Stack View 231

I
IBAction 119

IBOutlet 119

iCloud

application preparation 293

conflict resolution 297

document storage 293, 305

enabling on device 313

enabling support 294

entitlements 295

guidelines 305

key-value change notifications 336

key-value conflict resolution 336

key-value data storage 335

key-value storage 293

key-value storage restrictions 336

searching 308

storage services 293

UBUIQUITY_CONTAINER_URL 296

iCloud Drive

enabling 315

overview 315

iCloud User Information

obtaining 372

if ... else if ... Statements 65

723

Index
if ... else … Statements 64

if-let 48

if Statement 64

Image Filtering 460

imagePickerControllerDidCancel delegate 554

iMessage App 12

iMessage Extension 569

implicitly unwrapped 50

Inheritance, Classes and Subclasses 91

Initial View Controller 190

init method 83

in keyword 78

inout keyword 76

In-Out Parameters 75

Instance Properties 82

Intents Extension 569

Interface Builder 15

Live Views 439

Intrinsic Content Size 136

iOS 12

architecture 117

iOS Distribution Certificate 709

iOS SDK

installation 7

system requirements 7

iPad Pro

multitasking 252

Split View 252

isActive property 159

isCancelled property 271

isEmpty property 273

is keyword 52

isSourceTypeAvailable method 549

K
keyboard

change return key 525

Keyboard Type property 122

Key Messages Framework 599

kUTTypeImage 547

kUTTypeMovie 547

L
LAError.biometryNotAvailable 426

LAError.biometryNotEnrolled 426

LAError.passcodeNotSet 426

lastBaselineAnchor 156

Layout Anchors

constraint() method 156

isActive property 159

Layout Hierarchy 25

lazy

keyword 87

Lazy properties 86

leadingAnchor 155

leftAnchor 155

Left Shift Operator 58

Library panel

displaying 16

libsqlite3.tbd 347

Live Views 439

loadItem(forTypeIdentifier:)

 587

Local Authentication Framework 425

Local Notifications 633

local parameter names 73

Local Search

overview 523

Location Access Authorization 499

Location Accuracy 500

Location Information 499

permission request 518

Location Manager Delegate 501

Long Touch Gestures 419

Loops

breaking from 63

LSHandlerRank 323, 328

LSItemContentTypes 323

M
Machine learning

datasets 619

models 619

Machine Learning

724

Index

example 627

iOS Frameworks 620

overview 619

Main.storyboard file 126

Main Thread 263

MapKit

Local Search 523

Transit ETA Information 514

MapKit Framework 513

Map Regions 513

Map Type

changing 519

mapView(didUpdate userLocation:) method 520

MapView Region

changing 519

mathematical expressions 53

mediaTypes property 547

Message App

preparing message URL 613

tutorial 605

types of 598

Message Apps 597

introduction 597

Message App Store 597

metadataQueryDidFinishGathering method 310

Methods

declaring 82

Mixed Type Arrays 106

MKDirections class 535

MKDirections.Request class 535

MKLocalSearch class 523

MKLocalSearchRequest 524

MKLocalSearchRequest class 523

MKLocalSearchResponse class 523

MKMapItem 487

example app 493

options 490

turn-by-turn directions 490

MKMapItem forCurrentLocation method 490

MKMapType.Hybrid 519

MKMapType.HybridFlyover 519

MKMapType.Satellite 519

MKMapType.SatelliteFlyover 519

MKMapType.Standard 519

MKMapView 513

tutorial 514

MKPlacemark 487

creating 489

MKPolylineRenderer class 536

MKRouteStep class 535

MKUserLocation 521

Model View Controller (MVC) 117

modifyRecordsResultBlock 376

MSConversation class 599

MSMessage

creating a message 602

MSMessage class 600, 601

MSMessagesAppViewController 599, 602

MSMessageTemplateLayout class 600

Multiple Storyboard Files 189

Multitasking 249

disabling 254

example 257

handling in code 252

Lifecycle Methods 254

Picture-in-Picture 251, 561

Multitouch

enabling 408

multiview application 193

MVC 118

N
NaturalLangauge framework 620

navigation controller 217

stack 217

Navigation Controller

adding to storyboard 218

overview 217

Network Testing 24

new line 44

nextResponder property 403

nil coalescing operator 56

Notification Actions

adding 638

725

Index
Notification Authorization

requesting 633

Notification Request

creating 635

Notifications

managing 642

Notification Trigger

specifying 635

NOT (!) operator 55

NSData 277

NSDocumentDirectory 278

NSExtensionContext 586

NSExtensionItem 586, 587, 589, 595

NSFileHandle 277

creating 285

working with files 285

NSFileManager 277, 283

creating 283

defaultManager 283

reading and writing files 285

NSFileManager class

default manager 278

NSItemProvider 586, 587, 588, 595

NSLayoutAnchor 153, 155

constraint() method 156

NSLayoutAttributeBaseline 144

NSLayoutConstraint 137, 153

NSLocationAlwaysUsageDescription 500

NSLocationWhenInUseUsageDescription 500

NSMetaDataQuery 308

NSMicrophoneUsageDescription 657

NSSearchPathForDirectoriesInDomains 278

NSSecureCoding protocol 588

NSSpeechRecognitionUsageDescription 658

NSUbiquitousContainers

iCloud Drive 316

numberOfSectionsInTableView

method 212

O
Objective-C 41

offsetInFile method 286

Opaque Return Types 89

openInMaps(launchOptions:) method 489

operands 53

optional

implicitly unwrapped 50

optional binding 48

Optional Type 47

OR (||) operator 55

OR operator 58

outlet collection 611

P
Pan and Dragging Gestures 419

Parameter Names 73

external 73

local 73

parent class 81

Particle Emitter

node properties 701

overview 699

Particle Emitter Editor 699

Pathnames 278

Performance

monitoring 24

perRecordResultBlock 381

PHAdjustmentData 581

PHContentEditingController Protocol 575

PHContentEditingInput 577

PHContentEditingInput object 576

PHContentEditingOutput class 580

Photo Editing Extension 568

Info.plist configuration 573

tutorial 571

PHSupportedMediaTypes key 573

Picture-in-Picture 251, 561

opting out 566

Pinch Gestures 418

Pixels 435

playground

working with UIKit 35

Playground 29

adding resources 36

726

Index

creating a 29

Enhanced Live Views 38

pages 35

rich text comments 34

Rich Text Comments 34

Playground editor 30

PlaygroundSupport module 38

Playground Timelines 32

Points 435

predictedTouchesForTouch method 405

preferredFontForTextStyle property 202

prepare(for segue:) method 221

Profile in Instruments 25

Project Navigator 14

Protocols 88

Q
Quartz 2D API 435

R
Range Operators 55

Recording Audio 651

Refactor to Storyboard 189

Referenced ID 191

Reference Types 98

registerClass method 203

regular

size class 169

removeArrangedSubview method 238

removeConstraint method 159

removeItemAtPath method 280

repeat ... while loop 62

resignFirstResponder 129

responder chain 133, 403

reverseGeocodeLocation method 488

reverse-geocoding 488

Reverse Geocoding 487

RGBA components 436

rightAnchor 155

Right Shift Operator 59

root controller 193

Rotation

restricting 679

Rounded Rect Button 122

S
Safari Extension App 12

Safe Area Layout 136

scene delegate 399

SceneDelegate.swift 379, 399

screen

dimension of 459

searchResultsUpdater property 225

searchViewController property 225

seekToEndOfFile method 286

seekToFileOffset method 286

Segue

unwind 186

self 87

setFillColor method 450

setLineDash method 453

setNeedsDisplayInRect method 435

setNeedsDisplay method 435

setShadow method 454

setUbiquitous 314

SFSpeechURLRecognitionRequest 658

Share Button

adding 594

shared cloud database 380

sharedCloudDatabase 381

Shared Links Extension 569

Share Extension 567

shorthand argument names 79, 105

sign bit 59

Signing Identities 9

Size Classes 169

Defaults 170

in Interface Builder 169

Size Inspector 18

SK3DNode class 672

SKAction class 673

SKAudioNode class 672

SKCameraNode class 672

SKConstraint class 673

727

Index
SKCropNode class 672

SKEffectNode class 672

SKEmitterNode class 672, 699

SKFieldNode class 672

SKLabelNode class 672

SKLightNode class 672

SKPhysicsBody class 672

SKPhysicsContactDelegate protocol 695

SKPhysicsWorld class 673

SKShapeNode class 672

SKSpriteNode class 672

SKTransition class 673

SKVideoNode class 672

sleep() method 265

some

keyword 89

Speech Recognition 657

real-time 663

seeking authorization 657, 660

Transcribing Live Audio 658

Transcribing Recorded Audio 658

tutorial 658, 663

Sprite Kit

Actions 673

Category Bit Masks 693

components 671

Contact Delegate 695

Contact Masks 694

Nodes 672

overview 671

Physics Bodies 672

Physics World 673

Rendering Loop 674

Scenes 671

Texture Atlas 673

Transitions 673

SpriteKit

Audio Action 706

Named Action Reference 688

Sprite Kit Level Editor 675

SpriteKit Live Editor 686

Sprite Kit View 671

SQLite 341

application preparation 343

closing database 344

data extraction 344

on Mac OS X 341

overview 341

swift wrappers 343

table creation 344

StackView

adding subviews 238

alignment 235

axis 233

baseLineRelativeArrangement 237

Bottom 236

Center 236

configuration options 233

distribution 233

EqualCentering 234

EqualSpacing 234

Fill 233, 235

FillEqually 233

FillProportionally 234

FirstBaseLine 236

Hiding and Removing Subviews 238

LastBaseLine 237

layoutMarginsRelativeArrangement 237

leading 235

spacing 234

Top 236

trailing 235

tutorial 239

Stack View Class 231

startContentEditing method 576

startContentEditingWithInput method 576

Sticker Pack App 12

Sticker Pack Extension 569

Stored and Computed Properties 85

stored properties 85

Storyboard

add navigation controller 218

add table view controller 207

add view controller relationship 195

728

Index

design scene 196

design table view cell prototype 210

dynamic table view example 207

file 181

Insert Tab Bar Controller 194

prepare(for: segue) method 221

programming segues 187

scenes 183

segues 184

static vs. dynamic table views 199

Tab Bar 193

Tab Bar example 193

table view navigation 217

table view overview 199

table view segue 218

unwind segue 186

Storyboards

multiple 189

Storyboard Transitions 184

String

data type 43

struct keyword 97

Structured Concurrency 263, 264, 274

addTask() function 272

async/await 265

Asynchronous Properties 275

async keyword 266

async-let bindings 268

await keyword 266, 267

cancelAll() function 273

cancel() method 272

Data Races 273

detached tasks 271

error handling 269

for-await 274

isCancelled property 271

isEmpty property 273

priority 270

suspend point 268

suspend points 266

synchronous code 265

Task Groups 272

task hierarchy 270

Task object 266

Tasks 270

throw/do/try/catch 269

withTaskGroup() 272

withThrowingTaskGroup() 272

yield() method 272

Structured Query Language 341

Structures 97

Subclassing 119

subtraction operator 53

subview 132

superview 132

suspend points 266, 268

Swift

Arithmetic Operators 53

array iteration 105

arrays 103

Assignment Operator 53

async/await 265

async keyword 266

async-let bindings 268

await keyword 266, 267

base class 91

Binary Operators 54

Bitwise AND 57

Bitwise Left Shift 58

Bitwise NOT 57

Bitwise Operators 57

Bitwise OR 58

Bitwise Right Shift 59

Bitwise XOR 58

Bool 42

Boolean Logical Operators 55

break statement 63

calling a function 72

case statement 67

character data type 42

child class 91

class declaration 81

class deinitialization 83

class extensions 94

729

Index
class hierarchy 91

class initialization 83

Class Methods 82

class properties 81

closed range operator 55

Closure Expressions 78

Closures 79

Comparison Operators 54

Compound Bitwise Operators 59

constant declaration 45

constants 45

continue statement 63

control flow 61

data types 41

Dictionaries 106

do ... while loop 62

error handling 111

Escape Sequences 44

exclusive OR 58

expressions 53

floating point 42

for Statement 61

function declaration 71

functions 71

guard statement 65

half-closed range operator 56

if ... else … Statements 64

if Statement 64

implicit returns 72

Inheritance, Classes and Subclasses 91

Instance Properties 82

instance variables 82

integers 42

methods 81

opaque return types 89

operators 53

optional binding 48

optional type 47

Overriding 92

parent class 91

protocols 88

Range Operators 55

Reference Types 98

root class 91

single expression functions 72

single expression returns 72

single inheritance 91

Special Characters 44

Stored and Computed Properties 85

String data type 43

structured concurrency 263

structures 97

subclass 91

suspend points 266

switch fallthrough 70

switch statement 67

syntax 67

Ternary Operator 56

tuples 46

type annotations 45

type casting 50

type checking 50

type inference 45

Value Types 98

variable declaration 45

variables 44

while loop 62

Swift Playground 29

Swift Structures 97

Swipe Gestures 419

switch statement 67

example 67

switch Statement 67

example 67

range matching 69

synchronous code 265

T
Tab Bar Controller

adding to storyboard 194

Tab Bar Items

configuring 197

Table Cells

self-sizing 201

730

Index

Table View 199

cell styles 202

datasource 211

styles 200

Table View Cell

reuse 203

TableView Navigation 217

Tap Gestures 418

Taps 404

Target-Action 118

Task.detached() method 271

Task Groups 272

addTask() function 272

cancelAll() function 273

isEmpty property 273

withTaskGroup() 272

withThrowingTaskGroup() 272

Task Hierarchy 270

Task object 266

Tasks 270

cancel() 272

detached tasks 271

isCancelled property 271

overview 270

priority 270

Temporary Directory 279

ternary operator 56

Texture Atlas 673

adding to project 683

example 686

Threads

overview 263

throw statement 112

topAnchor 156

Touch

coordinates of 409

Touches 404

touchesBegan 404

touchesBegan event 128

touchesCancelled 405

touchesEnded 404

touchesMoved 404

Touch ID

checking availability 425

example 427

policy evaluation 426

seeking authentication 429

Touch ID Authentication 425

Touch Notification Methods 404

Touch Prediction 405

Touch Predictions

checking for 410

touch scan rate 405

Touch Up Inside event 118

trailingAnchor 155

traitCollectionDidChange method 253

Traits 169

variations 173

Trait Variations 169, 170

Attributes Inspector 171

in Interface Builder 170

Transit ETA Information 514

try statement 112

try! statement 114

Tuple 46

Type Annotations 45

type casting 50

Type Checking 50

Type Inference 45

type safe programming 45

U
ubiquity-container-identifiers 295

UIActivityViewController 595

UIApplication 119

UIAttachmentBehavior class 475

UIButton 131

UICloudSharingController

sample code 376

UICloudSharingController Class 376

UICollisionBehavior class 474

UICollisionBehaviorMode 474

UIColor class 436

UIControl 134

731

Index
UIDocument 297

contents(forType:)

 297

documentState 297

example 298

load(fromContents:)

 297

overview 297

subclassing 298

UIDocumentBrowserViewController 327

UIDocumentState options 297

UIDynamicAnimator class 472, 473

UIDynamicItemBehavior class 477

UIFontTextStyle

properties 202

UIGestureRecognizer 417, 418

UIGraphicsGetCurrentContext() function 436

UIGravityBehavior class 473

UIImagePickerController 547

delegate 548

source types 547

UIImageWriteToSavedPhotosAlbum 549

UIKit

in playgrounds 35

UIKit Dynamics 471

architecture 471

Attachment Behavior 475

collision behavior 474

Dynamic Animator 472

dynamic behaviors 472

dynamic items 471

example 479

gravity behavior 473

overview of 471

push behavior 476

reference view 472

snap behavior 476

UIKIt Dynamics

dynamic items 471

UIKit Newton 476

UILabel 128

set color 35

UILongPressGestureRecognizer 417

UINavigationBar 217

UINavigationController 193

UInt8 42

UInt16 42

UInt32 42

UInt64 42

UIPanGestureRecognizer 417

UIPinchGestureRecognizer 417

UIPushBehavior class 476

UIRotationGestureRecognizer 417

UISaveVideoAtPathToSavedPhotosAlbum 549

UIScreen 459

UIScreenEdgePanGestureRecognizer 417

UIScrollView 134

UISearchBarDelegate 225

UISearchController 225

UISearchControllerDelegate 225

UISnapBehavior class 476

UISpringTimingParameters class 468

UIStackView class 231, 239

UISwipeGestureRecognizer 417

UITabBar 193

UITabBarController 193

UITableView 134, 207, 217

Prototype Cell 210

UITableViewCell 199, 207

UITableViewCell class 199

UITableViewCellStyle

types 202

UITableViewDataSource protocol 199

UITableViewDelegate protocol 199

UITapGestureRecognizer 417

UITextField 131

UITextView 134

UIToolbar 134

UIViewAnimationOptions 464

UIViewController 119, 124

UIViewPropertyAnimator 463

UIWindow 131

unary negative operator 53

Unicode scalar 44

732

Index

Universal Image Assets 176

universal interface 169

Universal User Interfaces 169

UNMutableNotificationContent class 635

UNNotificationRequest 635

Unstructured Concurrency 270

cancel() method 272

detached tasks 271

isCancelled property 271

priority 270

yield() method 272

UNUserNotificationCenter 633

UNUserNotificationCenterDelegate 637

upcasting 50

updateSeatchResults 225

userDidAcceptCloudKitShareWith method , 379, 379

user location

updating 520

userNotification

didReceive method 639

UserNotifications framework 633

Utilities panel 17

V
Value Types 98

variables 44

variadic parameters 74

Vertical Stack View 231

Video Playback 557

ViewController.swift file 124

viewDidLoad method 128

view hierarchies 131

View Hierarchy 131

views 131

View Types 133

viewWillTransitionToSize method 253

Vision framework 620

Vision Framework

example 627

Visual Format Language 137, 165

constraintsWithVisualFormat 166

examples 165

VNCoreMLModel 628

VNCoreMLRequest 628

VNImageRequestHandler 628

W
where clause 49

where statement 69

while Loop 62

widthAnchor 156

willTransitionToTraitCollection method 253

windows 131

withTaskGroup() 272

withThrowingTaskGroup() 272

WKWebView 134

X
Xcode

installation 7

preferences 8

Utilities panel 17

XCPShowView 38

XOR operator 58

Y
yield() method 272

	1. Start Here
	1.1 Source Code Download
	1.2 Feedback
	1.3 Errata
	1.4 Find more books

	2. Joining the Apple Developer Program
	2.1 Downloading Xcode 15 and the iOS 17 SDK
	2.2 Apple Developer Program
	2.3 When to Enroll in the Apple Developer Program?
	2.4 Enrolling in the Apple Developer Program
	2.5 Summary

	3. Installing Xcode 15 and the iOS 17 SDK
	3.1 Identifying Your macOS Version
	3.2 Installing Xcode 15 and the iOS 17 SDK
	3.3 Starting Xcode
	3.4 Adding Your Apple ID to the Xcode Preferences
	3.5 Developer and Distribution Signing Identities
	3.6 Summary

	4. A Guided Tour of Xcode 15
	4.1 Starting Xcode 15
	4.2 Creating the iOS App User Interface
	4.3 Changing Component Properties
	4.4 Adding Objects to the User Interface
	4.5 Building and Running an iOS App in Xcode
	4.6 Running the App on a Physical iOS Device
	4.7 Managing Devices and Simulators
	4.8 Enabling Network Testing
	4.9 Dealing with Build Errors
	4.10 Monitoring Application Performance
	4.11 Exploring the User Interface Layout Hierarchy
	4.12 Summary

	5. An Introduction to Xcode 15 Playgrounds
	5.1 What is a Playground?
	5.2 Creating a New Playground
	5.3 A Swift Playground Example
	5.4 Viewing Results
	5.5 Adding Rich Text Comments
	5.6 Working with Playground Pages
	5.7 Working with UIKit in Playgrounds
	5.8 Adding Resources to a Playground
	5.9 Working with Enhanced Live Views
	5.10 When to Use Playgrounds
	5.11 Summary

	6. Swift Data Types, Constants and Variables
	6.1 Using a Swift Playground
	6.2 Swift Data Types
	6.2.1 Integer Data Types
	6.2.2 Floating Point Data Types
	6.2.3 Bool Data Type
	6.2.4 Character Data Type
	6.2.5 String Data Type
	6.2.6 Special Characters/Escape Sequences

	6.3 Swift Variables
	6.4 Swift Constants
	6.5 Declaring Constants and Variables
	6.6 Type Annotations and Type Inference
	6.7 The Swift Tuple
	6.8 The Swift Optional Type
	6.9 Type Casting and Type Checking
	6.10 Summary

	7. Swift Operators and Expressions
	7.1 Expression Syntax in Swift
	7.2 The Basic Assignment Operator
	7.3 Swift Arithmetic Operators
	7.4 Compound Assignment Operators
	7.5 Comparison Operators
	7.6 Boolean Logical Operators
	7.7 Range Operators
	7.8 The Ternary Operator
	7.9 Nil Coalescing Operator
	7.10 Bitwise Operators
	7.10.1 Bitwise NOT
	7.10.2 Bitwise AND
	7.10.3 Bitwise OR
	7.10.4 Bitwise XOR
	7.10.5 Bitwise Left Shift
	7.10.6 Bitwise Right Shift

	7.11 Compound Bitwise Operators
	7.12 Summary

	8. Swift Control Flow
	8.1 Looping Control Flow
	8.2 The Swift for-in Statement
	8.2.1 The while Loop

	8.3 The repeat ... while loop
	8.4 Breaking from Loops
	8.5 The continue Statement
	8.6 Conditional Control Flow
	8.7 Using the if Statement
	8.8 Using if ... else … Statements
	8.9 Using if ... else if ... Statements
	8.10 The guard Statement
	8.11 Summary

	9. The Swift Switch Statement
	9.1 Why Use a switch Statement?
	9.2 Using the switch Statement Syntax
	9.3 A Swift switch Statement Example
	9.4 Combining case Statements
	9.5 Range Matching in a switch Statement
	9.6 Using the where statement
	9.7 Fallthrough
	9.8 Summary

	10. Swift Functions, Methods and Closures
	10.1 What is a Function?
	10.2 What is a Method?
	10.3 How to Declare a Swift Function
	10.4 Implicit Returns from Single Expressions
	10.5 Calling a Swift Function
	10.6 Handling Return Values
	10.7 Local and External Parameter Names
	10.8 Declaring Default Function Parameters
	10.9 Returning Multiple Results from a Function
	10.10 Variable Numbers of Function Parameters
	10.11 Parameters as Variables
	10.12 Working with In-Out Parameters
	10.13 Functions as Parameters
	10.14 Closure Expressions
	10.15 Shorthand Argument Names
	10.16 Closures in Swift
	10.17 Summary

	11. The Basics of Swift Object-Oriented Programming
	11.1 What is an Instance?
	11.2 What is a Class?
	11.3 Declaring a Swift Class
	11.4 Adding Instance Properties to a Class
	11.5 Defining Methods
	11.6 Declaring and Initializing a Class Instance
	11.7 Initializing and De-initializing a Class Instance
	11.8 Calling Methods and Accessing Properties
	11.9 Stored and Computed Properties
	11.10 Lazy Stored Properties
	11.11 Using self in Swift
	11.12 Understanding Swift Protocols
	11.13 Opaque Return Types
	11.14 Summary

	12. An Introduction to Swift Subclassing and Extensions
	12.1 Inheritance, Classes and Subclasses
	12.2 A Swift Inheritance Example
	12.3 Extending the Functionality of a Subclass
	12.4 Overriding Inherited Methods
	12.5 Initializing the Subclass
	12.6 Using the SavingsAccount Class
	12.7 Swift Class Extensions
	12.8 Summary

	13. An Introduction to Swift Structures and Enumerations
	13.1 An Overview of Swift Structures
	13.2 Value Types vs. Reference Types
	13.3 When to Use Structures or Classes
	13.4 An Overview of Enumerations
	13.5 Summary

	14. Working with Array and Dictionary Collections in Swift
	14.1 Mutable and Immutable Collections
	14.2 Swift Array Initialization
	14.3 Working with Arrays in Swift
	14.3.1 Array Item Count
	14.3.2 Accessing Array Items
	14.3.3 Random Items and Shuffling
	14.3.4 Appending Items to an Array
	14.3.5 Inserting and Deleting Array Items
	14.3.6 Array Iteration

	14.4 Creating Mixed Type Arrays
	14.5 Swift Dictionary Collections
	14.6 Swift Dictionary Initialization
	14.7 Sequence-based Dictionary Initialization
	14.8 Dictionary Item Count
	14.9 Accessing and Updating Dictionary Items
	14.10 Adding and Removing Dictionary Entries
	14.11 Dictionary Iteration
	14.12 Summary

	15. Understanding Error Handling in Swift 5
	15.1 Understanding Error Handling
	15.2 Declaring Error Types
	15.3 Throwing an Error
	15.4 Calling Throwing Methods and Functions
	15.5 Accessing the Error Object
	15.6 Disabling Error Catching
	15.7 Using the defer Statement
	15.8 Summary

	16. The iOS 17 App and Development Architecture
	16.1 An Overview of the iOS 17 Operating System Architecture
	16.2 Model View Controller (MVC)
	16.3 The Target-Action pattern, IBOutlets, and IBActions
	16.4 Subclassing
	16.5 Delegation
	16.6 Summary

	17. Creating an Interactive iOS 17 App
	17.1 Creating the New Project
	17.2 Creating the User Interface
	17.3 Building and Running the Sample App
	17.4 Adding Actions and Outlets
	17.5 Building and Running the Finished App
	17.6 Hiding the Keyboard
	17.7 Summary

	18. Understanding iOS 17 Views, Windows, and the View Hierarchy
	18.1 An Overview of Views and the UIKit Class Hierarchy
	18.2 The UIWindow Class
	18.3 The View Hierarchy
	18.4 Viewing Hierarchy Ancestors in Interface Builder
	18.5 View Types
	18.5.1 The Window
	18.5.2 Container Views
	18.5.3 Controls
	18.5.4 Display Views
	18.5.5 Text and WebKit Views
	18.5.6 Navigation Views and Tab Bars
	18.5.7 Alert Views

	18.6 Summary

	19. An Introduction to Auto Layout in iOS 17
	19.1 An Overview of Auto Layout
	19.2 Alignment Rects
	19.3 Intrinsic Content Size
	19.4 Content Hugging and Compression Resistance Priorities
	19.5 Safe Area Layout Guide
	19.6 Three Ways to Create Constraints
	19.7 Constraints in More Detail
	19.8 Summary

	20. Working with iOS 17 Auto Layout Constraints in Interface Builder
	20.1 An Example of Auto Layout in Action
	20.2 Working with Constraints
	20.3 The Auto Layout Features of Interface Builder
	20.3.1 Suggested Constraints
	20.3.2 Visual Cues
	20.3.3 Highlighting Constraint Problems
	20.3.4 Viewing, Editing, and Deleting Constraints

	20.4 Creating New Constraints in Interface Builder
	20.5 Adding Aspect Ratio Constraints
	20.6 Resolving Auto Layout Problems
	20.7 Summary

	21. Implementing iOS 17 Auto Layout Constraints in Code
	21.1 Creating Constraints Using NSLayoutConstraint
	21.2 Adding a Constraint to a View
	21.3 Turning off Auto Resizing Translation
	21.4 Creating Constraints Using NSLayoutAnchor
	21.5 An Example App
	21.6 Creating the Views
	21.7 Creating and Adding the Constraints
	21.8 Using Layout Anchors
	21.9 Removing Constraints
	21.10 Summary

	22. Implementing Cross-Hierarchy Auto Layout Constraints in iOS 17
	22.1 The Example App
	22.2 Establishing Outlets
	22.3 Writing the Code to Remove the Old Constraint
	22.4 Adding the Cross Hierarchy Constraint
	22.5 Testing the App
	22.6 Summary

	23. Understanding the iOS 17 Auto Layout Visual Format Language
	23.1 Introducing the Visual Format Language
	23.2 Visual Format Language Examples
	23.3 Using the constraints(withVisualFormat:) Method
	23.4 Summary

	24. Using Trait Variations to Design Adaptive iOS 17 User Interfaces
	24.1 Understanding Traits and Size Classes
	24.2 Size Classes in Interface Builder
	24.3 Enabling Trait Variations
	24.4 Setting “Any” Defaults
	24.5 Working with Trait Variations in Interface Builder
	24.6 Attributes Inspector Trait Variations
	24.7 Using Constraint Variations
	24.8 An Adaptive User Interface Tutorial
	24.9 Designing the Initial Layout
	24.10 Adding Universal Image Assets
	24.11 Increasing Font Size for iPad Devices
	24.12 Adding Width Constraint Variations
	24.13 Testing the Adaptivity
	24.14 Summary

	25. Using Storyboards in Xcode 15
	25.1 Creating the Storyboard Example Project
	25.2 Accessing the Storyboard
	25.3 Adding Scenes to the Storyboard
	25.4 Configuring Storyboard Segues
	25.5 Configuring Storyboard Transitions
	25.6 Associating a View Controller with a Scene
	25.7 Passing Data Between Scenes
	25.8 Unwinding Storyboard Segues
	25.9 Triggering a Storyboard Segue Programmatically
	25.10 Summary

	26. Organizing Scenes over Multiple Storyboard Files
	26.1 Organizing Scenes into Multiple Storyboards
	26.2 Establishing a Connection between Different Storyboards
	26.3 Summary

	27. Using Xcode 15 Storyboards to Create an iOS 17 Tab Bar App
	27.1 An Overview of the Tab Bar
	27.2 Understanding View Controllers in a Multiview App
	27.3 Setting up the Tab Bar Example App
	27.4 Reviewing the Project Files
	27.5 Adding the View Controllers for the Content Views
	27.6 Adding the Tab Bar Controller to the Storyboard
	27.7 Designing the View Controller User interfaces
	27.8 Configuring the Tab Bar Items
	27.9 Building and Running the App
	27.10 Summary

	28. An Overview of iOS 17 Table Views and Xcode 15 Storyboards
	28.1 An Overview of the Table View
	28.2 Static vs. Dynamic Table Views
	28.3 The Table View Delegate and dataSource
	28.4 Table View Styles
	28.5 Self-Sizing Table Cells
	28.6 Dynamic Type
	28.7 Table View Cell Styles
	28.8 Table View Cell Reuse
	28.9 Table View Swipe Actions
	28.10 Summary

	29. Using Xcode 15 Storyboards to Build Dynamic TableViews
	29.1 Creating the Example Project
	29.2 Adding the TableView Controller to the Storyboard
	29.3 Creating the UITableViewController and UITableViewCell Subclasses
	29.4 Declaring the Cell Reuse Identifier
	29.5 Designing a Storyboard UITableView Prototype Cell
	29.6 Modifying the AttractionTableViewCell Class
	29.7 Creating the Table View Datasource
	29.8 Downloading and Adding the Image Files
	29.9 Compiling and Running the App
	29.10 Handling TableView Swipe Gestures
	29.11 Summary

	30. Implementing iOS 17 TableView Navigation using Storyboards
	30.1 Understanding the Navigation Controller
	30.2 Adding the New Scene to the Storyboard
	30.3 Adding a Navigation Controller
	30.4 Establishing the Storyboard Segue
	30.5 Modifying the AttractionDetailViewController Class
	30.6 Using prepare(for segue:) to Pass Data between Storyboard Scenes
	30.7 Testing the App
	30.8 Customizing the Navigation Title Size
	30.9 Summary

	31. Integrating Search using the iOS UISearchController
	31.1 Introducing the UISearchController Class
	31.2 Adding a Search Controller to the TableViewStory Project
	31.3 Implementing the updateSearchResults Method
	31.4 Reporting the Number of Table Rows
	31.5 Modifying the cellForRowAt Method
	31.6 Modifying the Trailing Swipe Delegate Method
	31.7 Modifying the Detail Segue
	31.8 Handling the Search Cancel Button
	31.9 Testing the Search Controller
	31.10 Summary

	32. Working with the iOS 17 Stack View Class
	32.1 Introducing the UIStackView Class
	32.2 Understanding Subviews and Arranged Subviews
	32.3 StackView Configuration Options
	32.3.1 axis
	32.3.2 distribution
	32.3.3 spacing
	32.3.4 alignment
	32.3.5 baseLineRelativeArrangement
	32.3.6 layoutMarginsRelativeArrangement

	32.4 Creating a Stack View in Code
	32.5 Adding Subviews to an Existing Stack View
	32.6 Hiding and Removing Subviews
	32.7 Summary

	33. An iOS 17 Stack View Tutorial
	33.1 About the Stack View Example App
	33.2 Creating the First Stack View
	33.3 Creating the Banner Stack View
	33.4 Adding the Switch Stack Views
	33.5 Creating the Top-Level Stack View
	33.6 Adding the Button Stack View
	33.7 Adding the Final Subviews to the Top Level Stack View
	33.8 Dynamically Adding and Removing Subviews
	33.9 Summary

	34. A Guide to iPad Multitasking
	34.1 Using iPad Multitasking
	34.2 Picture-In-Picture Multitasking
	34.3 Multitasking and Size Classes
	34.4 Handling Multitasking in Code
	34.4.1 willTransition(to newcollection: with coordinator:)
	34.4.2 viewWillTransition(to size: with coordinator:)
	34.4.3 traitCollectionDidChange(_:)

	34.5 Lifecycle Method Calls
	34.6 Opting Out of Multitasking
	34.7 Summary

	35. An iPadOS Multitasking Example
	35.1 Creating the Multitasking Example Project
	35.2 Adding the Image Files
	35.3 Designing the Regular Width Size Class Layout
	35.4 Designing the Compact Width Size Class
	35.5 Testing the Project in a Multitasking Environment
	35.6 Summary

	36. An Overview of Swift Structured Concurrency
	36.1 An Overview of Threads
	36.2 The Application Main Thread
	36.3 Completion Handlers
	36.4 Structured Concurrency
	36.5 Preparing the Project
	36.6 Non-Concurrent Code
	36.7 Introducing async/await Concurrency
	36.8 Asynchronous Calls from Synchronous Functions
	36.9 The await Keyword
	36.10 Using async-let Bindings
	36.11 Handling Errors
	36.12 Understanding Tasks
	36.13 Unstructured Concurrency
	36.14 Detached Tasks
	36.15 Task Management
	36.16 Working with Task Groups
	36.17 Avoiding Data Races
	36.18 The for-await Loop
	36.19 Asynchronous Properties
	36.20 Summary

	37. Working with Directories in Swift on iOS 17
	37.1 The Application Documents Directory
	37.2 The FileManager, FileHandle, and Data Classes
	37.3 Understanding Pathnames in Swift
	37.4 Obtaining a Reference to the Default FileManager Object
	37.5 Identifying the Current Working Directory
	37.6 Identifying the Documents Directory
	37.7 Identifying the Temporary Directory
	37.8 Changing Directory
	37.9 Creating a New Directory
	37.10 Deleting a Directory
	37.11 Listing the Contents of a Directory
	37.12 Getting the Attributes of a File or Directory
	37.13 Summary

	38. Working with Files in Swift on iOS 17
	38.1 Obtaining a FileManager Instance Reference
	38.2 Checking for the Existence of a File
	38.3 Comparing the Contents of Two Files
	38.4 Checking if a File is Readable/Writable/Executable/Deletable
	38.5 Moving/Renaming a File
	38.6 Copying a File
	38.7 Removing a File
	38.8 Creating a Symbolic Link
	38.9 Reading and Writing Files with FileManager
	38.10 Working with Files using the FileHandle Class
	38.11 Creating a FileHandle Object
	38.12 FileHandle File Offsets and Seeking
	38.13 Reading Data from a File
	38.14 Writing Data to a File
	38.15 Truncating a File
	38.16 Summary

	39. iOS 17 Directory Handling and File I/O in Swift – A Worked Example
	39.1 The Example App
	39.2 Setting up the App Project
	39.3 Designing the User Interface
	39.4 Checking the Data File on App Startup
	39.5 Implementing the Action Method
	39.6 Building and Running the Example
	39.7 Summary

	40. Preparing an iOS 17 App to use iCloud Storage
	40.1 iCloud Data Storage Services
	40.2 Preparing an App to Use iCloud Storage
	40.3 Enabling iCloud Support for an iOS 17 App
	40.4 Reviewing the iCloud Entitlements File
	40.5 Accessing Multiple Ubiquity Containers
	40.6 Ubiquity Container URLs
	40.7 Summary

	41. Managing Files using the iOS 17 UIDocument Class
	41.1 An Overview of the UIDocument Class
	41.2 Subclassing the UIDocument Class
	41.3 Conflict Resolution and Document States
	41.4 The UIDocument Example App
	41.5 Creating a UIDocument Subclass
	41.6 Designing the User Interface
	41.7 Implementing the App Data Structure
	41.8 Implementing the contents(forType:) Method
	41.9 Implementing the load(fromContents:) Method
	41.10 Loading the Document at App Launch
	41.11 Saving Content to the Document
	41.12 Testing the App
	41.13 Summary

	42. Using iCloud Storage in an iOS 17 App
	42.1 iCloud Usage Guidelines
	42.2 Preparing the iCloudStore App for iCloud Access
	42.3 Enabling iCloud Capabilities and Services
	42.4 Configuring the View Controller
	42.5 Implementing the loadFile Method
	42.6 Implementing the metadataQueryDidFinishGathering Method
	42.7 Implementing the saveDocument Method
	42.8 Enabling iCloud Document and Data Storage
	42.9 Running the iCloud App
	42.10 Making a Local File Ubiquitous
	42.11 Summary

	43. Using iCloud Drive Storage in an iOS 17 App
	43.1 Preparing an App to use iCloud Drive Storage
	43.2 Making Changes to the NSUbiquitousContainers Key
	43.3 Creating the iCloud Drive Example Project
	43.4 Modifying the Info.plist File
	43.5 Designing the User Interface
	43.6 Accessing the Ubiquitous Container
	43.7 Saving the File to iCloud Drive
	43.8 Testing the App
	43.9 Summary

	44. An Overview of the iOS 17 Document Browser View Controller
	44.1 An Overview of the Document Browser View Controller
	44.2 The Anatomy of a Document-Based App
	44.3 Document Browser Project Settings
	44.4 The Document Browser Delegate Methods
	44.4.1 didRequestDocumentCreationWithHandler
	44.4.2 didImportDocumentAt
	44.4.3 didPickDocumentURLs
	44.4.4 failedToImportDocumentAt

	44.5 Customizing the Document Browser
	44.6 Adding Browser Actions
	44.7 Summary

	45. An iOS 17 Document Browser Tutorial
	45.1 Creating the DocumentBrowser Project
	45.2 Declaring the Supported File Types
	45.3 Completing the didRequestDocumentCreationWithHandler Method
	45.4 Finishing the UIDocument Subclass
	45.5 Modifying the Document View Controller
	45.6 Testing the Document Browser App
	45.7 Summary

	46. Synchronizing iOS 17 Key-Value Data using iCloud
	46.1 An Overview of iCloud Key-Value Data Storage
	46.2 Sharing Data Between Apps
	46.3 Data Storage Restrictions
	46.4 Conflict Resolution
	46.5 Receiving Notification of Key-Value Changes
	46.6 An iCloud Key-Value Data Storage Example
	46.7 Enabling the App for iCloud Key-Value Data Storage
	46.8 Designing the User Interface
	46.9 Implementing the View Controller
	46.10 Modifying the viewDidLoad Method
	46.11 Implementing the Notification Method
	46.12 Implementing the saveData Method
	46.13 Testing the App
	46.14 Summary

	47. iOS 17 Database Implementation using SQLite
	47.1 What is SQLite?
	47.2 Structured Query Language (SQL)
	47.3 Trying SQLite on macOS
	47.4 Preparing an iOS App Project for SQLite Integration
	47.5 SQLite, Swift, and Wrappers
	47.6 Key FMDB Classes
	47.7 Creating and Opening a Database
	47.8 Creating a Database Table
	47.9 Extracting Data from a Database Table
	47.10 Closing an SQLite Database
	47.11 Summary

	48. An Example SQLite-based iOS 17 App using Swift and FMDB
	48.1 About the Example SQLite App
	48.2 Creating and Preparing the SQLite App Project
	48.3 Checking Out the FMDB Source Code
	48.4 Designing the User Interface
	48.5 Creating the Database and Table
	48.6 Implementing the Code to Save Data to the SQLite Database
	48.7 Implementing Code to Extract Data from the SQLite Database
	48.8 Building and Running the App
	48.9 Summary

	49. Working with iOS 17 Databases using Core Data
	49.1 The Core Data Stack
	49.2 Persistent Container
	49.3 Managed Objects
	49.4 Managed Object Context
	49.5 Managed Object Model
	49.6 Persistent Store Coordinator
	49.7 Persistent Object Store
	49.8 Defining an Entity Description
	49.9 Initializing the Persistent Container
	49.10 Obtaining the Managed Object Context
	49.11 Getting an Entity Description
	49.12 Setting the Attributes of a Managed Object
	49.13 Saving a Managed Object
	49.14 Fetching Managed Objects
	49.15 Retrieving Managed Objects based on Criteria
	49.16 Accessing the Data in a Retrieved Managed Object
	49.17 Summary

	50. An iOS 17 Core Data Tutorial
	50.1 The Core Data Example App
	50.2 Creating a Core Data-based App
	50.3 Creating the Entity Description
	50.4 Designing the User Interface
	50.5 Initializing the Persistent Container
	50.6 Saving Data to the Persistent Store using Core Data
	50.7 Retrieving Data from the Persistent Store using Core Data
	50.8 Building and Running the Example App
	50.9 Summary

	51. An Introduction to CloudKit Data Storage on iOS 17
	51.1 An Overview of CloudKit
	51.2 CloudKit Containers
	51.3 CloudKit Public Database
	51.4 CloudKit Private Databases
	51.5 Data Storage and Transfer Quotas
	51.6 CloudKit Records
	51.7 CloudKit Record IDs
	51.8 CloudKit References
	51.9 CloudKit Assets
	51.10 Record Zones
	51.11 CloudKit Sharing
	51.12 CloudKit Subscriptions
	51.13 Obtaining iCloud User Information
	51.14 CloudKit Console
	51.15 Summary

	52. An Introduction to CloudKit Sharing
	52.1 Understanding CloudKit Sharing
	52.2 Preparing for CloudKit Sharing
	52.3 The CKShare Class
	52.4 The UICloudSharingController Class
	52.5 Accepting a CloudKit Share
	52.6 Fetching a Shared Record
	52.7 Summary

	53. An iOS 17 CloudKit Example
	53.1 About the Example CloudKit Project
	53.2 Creating the CloudKit Example Project
	53.3 Designing the User Interface
	53.4 Establishing Outlets and Actions
	53.5 Implementing the notifyUser Method
	53.6 Accessing the Private Database
	53.7 Hiding the Keyboard
	53.8 Implementing the selectPhoto method
	53.9 Saving a Record to the Cloud Database
	53.10 Testing the Record Saving Method
	53.11 Reviewing the Saved Data in the CloudKit Console
	53.12 Searching for Cloud Database Records
	53.13 Updating Cloud Database Records
	53.14 Deleting a Cloud Record
	53.15 Testing the App
	53.16 Summary

	54. An iOS 17 CloudKit Sharing Example
	54.1 Preparing the Project for CloudKit Sharing
	54.2 Adding the Share Button
	54.3 Creating the CloudKit Share
	54.4 Accepting a CloudKit Share
	54.5 Fetching the Shared Record
	54.6 Testing the CloudKit Share Example
	54.7 Summary

	55. An Overview of iOS 17 Multitouch, Taps, and Gestures
	55.1 The Responder Chain
	55.2 Forwarding an Event to the Next Responder
	55.3 Gestures
	55.4 Taps
	55.5 Touches
	55.6 Touch Notification Methods
	55.6.1 touchesBegan method
	55.6.2 touchesMoved method
	55.6.3 touchesEnded method
	55.6.4 touchesCancelled method

	55.7 Touch Prediction
	55.8 Touch Coalescing
	55.9 Summary

	56. An Example iOS 17 Touch, Multitouch, and Tap App
	56.1 The Example iOS Tap and Touch App
	56.2 Creating the Example iOS Touch Project
	56.3 Designing the User Interface
	56.4 Enabling Multitouch on the View
	56.5 Implementing the touchesBegan Method
	56.6 Implementing the touchesMoved Method
	56.7 Implementing the touchesEnded Method
	56.8 Getting the Coordinates of a Touch
	56.9 Building and Running the Touch Example App
	56.10 Checking for Touch Predictions
	56.11 Accessing Coalesced Touches
	56.12 Summary

	57. Detecting iOS 17 Touch Screen Gesture Motions
	57.1 The Example iOS 17 Gesture App
	57.2 Creating the Example Project
	57.3 Designing the App User Interface
	57.4 Implementing the touchesBegan Method
	57.5 Implementing the touchesMoved Method
	57.6 Implementing the touchesEnded Method
	57.7 Building and Running the Gesture Example
	57.8 Summary

	58. Identifying Gestures using iOS 17 Gesture Recognizers
	58.1 The UIGestureRecognizer Class
	58.2 Recognizer Action Messages
	58.3 Discrete and Continuous Gestures
	58.4 Obtaining Data from a Gesture
	58.5 Recognizing Tap Gestures
	58.6 Recognizing Pinch Gestures
	58.7 Detecting Rotation Gestures
	58.8 Recognizing Pan and Dragging Gestures
	58.9 Recognizing Swipe Gestures
	58.10 Recognizing Long Touch (Touch and Hold) Gestures
	58.11 Summary

	59. An iOS 17 Gesture Recognition Tutorial
	59.1 Creating the Gesture Recognition Project
	59.2 Designing the User Interface
	59.3 Implementing the Action Methods
	59.4 Testing the Gesture Recognition Application
	59.5 Summary

	60. Implementing Touch ID and Face ID Authentication in iOS 17 Apps
	60.1 The Local Authentication Framework
	60.2 Checking for Biometric Authentication Availability
	60.3 Identifying Authentication Options
	60.4 Evaluating Biometric Policy
	60.5 A Biometric Authentication Example Project
	60.6 Checking for Biometric Availability
	60.7 Seeking Biometric Authentication
	60.8 Adding the Face ID Privacy Statement
	60.9 Testing the App
	60.10 Summary

	61. Drawing iOS 17 2D Graphics with Core Graphics
	61.1 Introducing Core Graphics and Quartz 2D
	61.2 The draw Method
	61.3 Points, Coordinates, and Pixels
	61.4 The Graphics Context
	61.5 Working with Colors in Quartz 2D
	61.6 Summary

	62. Interface Builder Live Views and iOS 17 Embedded Frameworks
	62.1 Embedded Frameworks
	62.2 Interface Builder Live Views
	62.3 Creating the Example Project
	62.4 Adding an Embedded Framework
	62.5 Implementing the Drawing Code in the Framework
	62.6 Making the View Designable
	62.7 Making Variables Inspectable
	62.8 Summary

	63. An iOS 17 Graphics Tutorial using Core Graphics and Core Image
	63.1 The iOS Drawing Example App
	63.2 Creating the New Project
	63.3 Creating the UIView Subclass
	63.4 Locating the draw Method in the UIView Subclass
	63.5 Drawing a Line
	63.6 Drawing Paths
	63.7 Drawing a Rectangle
	63.8 Drawing an Ellipse or Circle
	63.9 Filling a Path with a Color
	63.10 Drawing an Arc
	63.11 Drawing a Cubic Bézier Curve
	63.12 Drawing a Quadratic Bézier Curve
	63.13 Dashed Line Drawing
	63.14 Drawing Shadows
	63.15 Drawing Gradients
	63.16 Drawing an Image into a Graphics Context
	63.17 Image Filtering with the Core Image Framework
	63.18 Summary

	64. iOS 17 Animation using UIViewPropertyAnimator
	64.1 The Basics of UIKit Animation
	64.2 Understanding Animation Curves
	64.3 Performing Affine Transformations
	64.4 Combining Transformations
	64.5 Creating the Animation Example App
	64.6 Implementing the Variables
	64.7 Drawing in the UIView
	64.8 Detecting Screen Touches and Performing the Animation
	64.9 Building and Running the Animation App
	64.10 Implementing Spring Timing
	64.11 Summary

	65. iOS 17 UIKit Dynamics – An Overview
	65.1 Understanding UIKit Dynamics
	65.2 The UIKit Dynamics Architecture
	65.2.1 Dynamic Items
	65.2.2 Dynamic Behaviors
	65.2.3 The Reference View
	65.2.4 The Dynamic Animator

	65.3 Implementing UIKit Dynamics in an iOS App
	65.4 Dynamic Animator Initialization
	65.5 Configuring Gravity Behavior
	65.6 Configuring Collision Behavior
	65.7 Configuring Attachment Behavior
	65.8 Configuring Snap Behavior
	65.9 Configuring Push Behavior
	65.10 The UIDynamicItemBehavior Class
	65.11 Combining Behaviors to Create a Custom Behavior
	65.12 Summary

	66. An iOS 17 UIKit Dynamics Tutorial
	66.1 Creating the UIKit Dynamics Example Project
	66.2 Adding the Dynamic Items
	66.3 Creating the Dynamic Animator Instance
	66.4 Adding Gravity to the Views
	66.5 Implementing Collision Behavior
	66.6 Attaching a View to an Anchor Point
	66.7 Implementing a Spring Attachment Between two Views
	66.8 Summary

	67. Integrating Maps into iOS 17 Apps using MKMapItem
	67.1 MKMapItem and MKPlacemark Classes
	67.2 An Introduction to Forward and Reverse Geocoding
	67.3 Creating MKPlacemark Instances
	67.4 Working with MKMapItem
	67.5 MKMapItem Options and Configuring Directions
	67.6 Adding Item Details to an MKMapItem
	67.7 Summary

	68. An Example iOS 17 MKMapItem App
	68.1 Creating the MapItem Project
	68.2 Designing the User Interface
	68.3 Converting the Destination using Forward Geocoding
	68.4 Launching the Map
	68.5 Building and Running the App
	68.6 Summary

	69. Getting Location Information using the iOS 17 Core Location Framework
	69.1 The Core Location Manager
	69.2 Requesting Location Access Authorization
	69.3 Configuring the Desired Location Accuracy
	69.4 Configuring the Distance Filter
	69.5 Continuous Background Location Updates
	69.6 The Location Manager Delegate
	69.7 Starting and Stopping Location Updates
	69.8 Obtaining Location Information from CLLocation Objects
	69.8.1 Longitude and Latitude
	69.8.2 Accuracy
	69.8.3 Altitude

	69.9 Getting the Current Location
	69.10 Calculating Distances
	69.11 Summary

	70. An Example iOS 17 Location App
	70.1 Creating the Example iOS 17 Location Project
	70.2 Designing the User Interface
	70.3 Configuring the CLLocationManager Object
	70.4 Setting up the Usage Description Keys
	70.5 Implementing the startWhenInUse Method
	70.6 Implementing the startAlways Method
	70.7 Implementing the resetDistance Method
	70.8 Implementing the App Delegate Methods
	70.9 Building and Running the Location App
	70.10 Adding Continuous Background Location Updates
	70.11 Summary

	71. Working with Maps on iOS 17 with MapKit and the MKMapView Class
	71.1 About the MapKit Framework
	71.2 Understanding Map Regions
	71.3 Getting Transit ETA Information
	71.4 About the MKMapView Tutorial
	71.5 Creating the Map Project
	71.6 Adding the Navigation Controller
	71.7 Creating the MKMapView Instance and Toolbar
	71.8 Obtaining Location Information Permission
	71.9 Setting up the Usage Description Keys
	71.10 Configuring the Map View
	71.11 Changing the MapView Region
	71.12 Changing the Map Type
	71.13 Testing the MapView App
	71.14 Updating the Map View based on User Movement
	71.15 Summary

	72. Working with MapKit Local Search in iOS 17
	72.1 An Overview of iOS Local Search
	72.2 Adding Local Search to the MapSample App
	72.3 Adding the Local Search Text Field
	72.4 Performing the Local Search
	72.5 Testing the App
	72.6 Customized Annotation Markers
	72.7 Annotation Marker Clustering
	72.8 Summary

	73. Using MKDirections to get iOS 17 Map Directions and Routes
	73.1 An Overview of MKDirections
	73.2 Adding Directions and Routes to the MapSample App
	73.3 Adding the New Classes to the Project
	73.4 Configuring the Results Table View
	73.5 Implementing the Result Table View Segue
	73.6 Adding the Route Scene
	73.7 Identifying the User’s Current Location
	73.8 Getting the Route and Directions
	73.9 Establishing the Route Segue
	73.10 Testing the App
	73.11 Summary

	74. Accessing the iOS 17 Camera and Photo Library
	74.1 The UIImagePickerController Class
	74.2 Creating and Configuring a UIImagePickerController Instance
	74.3 Configuring the UIImagePickerController Delegate
	74.4 Detecting Device Capabilities
	74.5 Saving Movies and Images
	74.6 Summary

	75. An Example iOS 17 Camera App
	75.1 An Overview of the App
	75.2 Creating the Camera Project
	75.3 Designing the User Interface
	75.4 Implementing the Action Methods
	75.5 Writing the Delegate Methods
	75.6 Seeking Camera and Photo Library Access
	75.7 Building and Running the App
	75.8 Summary

	76. iOS 17 Video Playback using AVPlayer and AVPlayerViewController
	76.1 The AVPlayer and AVPlayerViewController Classes
	76.2 The iOS Movie Player Example App
	76.3 Designing the User Interface
	76.4 Initializing Video Playback
	76.5 Build and Run the App
	76.6 Creating an AVPlayerViewController Instance from Code
	76.7 Summary

	77. An iOS 17 Multitasking Picture-in-Picture Tutorial
	77.1 An Overview of Picture-in-Picture Multitasking
	77.2 Adding Picture-in-Picture Support to the AVPlayerDemo App
	77.3 Adding the Navigation Controller
	77.4 Setting the Audio Session Category
	77.5 Implementing the Delegate
	77.6 Opting Out of Picture-in-Picture Support
	77.7 Additional Delegate Methods
	77.8 Summary

	78. An Introduction to Extensions in iOS 17
	78.1 iOS Extensions – An Overview
	78.2 Extension Types
	78.2.1 Share Extension
	78.2.2 Action Extension
	78.2.3 Photo Editing Extension
	78.2.4 Document Provider Extension
	78.2.5 Custom Keyboard Extension
	78.2.6 Audio Unit Extension
	78.2.7 Shared Links Extension
	78.2.8 Content Blocking Extension
	78.2.9 Sticker Pack Extension
	78.2.10 iMessage Extension
	78.2.11 Intents Extension

	78.3 Creating Extensions
	78.4 Summary

	79. Creating an iOS 17 Photo Editing Extension
	79.1 Creating a Photo Editing Extension
	79.2 Accessing the Photo Editing Extension
	79.3 Configuring the Info.plist File
	79.4 Designing the User Interface
	79.5 The PHContentEditingController Protocol
	79.6 Photo Extensions and Adjustment Data
	79.7 Receiving the Content
	79.8 Implementing the Filter Actions
	79.9 Returning the Image to the Photos App
	79.10 Testing the App
	79.11 Summary

	80. Creating an iOS 17 Action Extension
	80.1 An Overview of Action Extensions
	80.2 About the Action Extension Example
	80.3 Creating the Action Extension Project
	80.4 Adding the Action Extension Target
	80.5 Changing the Extension Display Name
	80.6 Designing the Action Extension User Interface
	80.7 Receiving the Content
	80.8 Returning the Modified Data to the Host App
	80.9 Testing the Extension
	80.10 Summary

	81. Receiving Data from an iOS 17 Action Extension
	81.1 Creating the Example Project
	81.2 Designing the User Interface
	81.3 Importing the Mobile Core Services Framework
	81.4 Adding an Action Button to the App
	81.5 Receiving Data from an Extension
	81.6 Testing the App
	81.7 Summary

	82. An Introduction to Building iOS 17 Message Apps
	82.1 Introducing Message Apps
	82.2 Types of Message Apps
	82.3 The Key Messages Framework Classes
	82.3.1 MSMessagesAppViewController
	82.3.2 MSConversation
	82.3.3 MSMessage
	82.3.4 MSMessageTemplateLayout

	82.4 Sending Simple Messages
	82.5 Creating an MSMessage Message
	82.6 Receiving a Message
	82.7 Supported Message App Platforms
	82.8 Summary

	83. An iOS 17 Interactive Message App Tutorial
	83.1 About the Example Message App Project
	83.2 Creating the MessageApp Project
	83.3 Designing the MessageApp User Interface
	83.4 Creating the Outlet Collection
	83.5 Creating the Game Model
	83.6 Responding to Button Selections
	83.7 Preparing the Message URL
	83.8 Preparing and Inserting the Message
	83.9 Message Receipt Handling
	83.10 Setting the Message Image
	83.11 Summary

	84. An Introduction to Machine Learning on iOS
	84.1 Datasets and Machine Learning Models
	84.2 Machine Learning in Xcode and iOS
	84.3 iOS Machine Learning Frameworks
	84.4 Summary

	85. Using Create ML to Build an Image Classification Model
	85.1 About the Dataset
	85.2 Creating the Machine Learning Model
	85.3 Importing the Training and Testing Data
	85.4 Training and Testing the Model
	85.5 Summary

	86. An iOS Vision and Core ML Image Classification Tutorial
	86.1 Preparing the Project
	86.2 Adding the Model
	86.3 Modifying the User Interface
	86.4 Initializing the Core ML Request
	86.5 Handling the Results of the Core ML Request
	86.6 Making the Classification Request
	86.7 Testing the App
	86.8 Summary

	87. An iOS 17 Local Notification Tutorial
	87.1 Creating the Local Notification App Project
	87.2 Requesting Notification Authorization
	87.3 Designing the User Interface
	87.4 Creating the Message Content
	87.5 Specifying a Notification Trigger
	87.6 Creating the Notification Request
	87.7 Adding the Request
	87.8 Testing the Notification
	87.9 Receiving Notifications in the Foreground
	87.10 Adding Notification Actions
	87.11 Handling Notification Actions
	87.12 Hidden Notification Content
	87.13 Managing Notifications
	87.14 Summary

	88. Playing Audio on iOS 17 using AVAudioPlayer
	88.1 Supported Audio Formats
	88.2 Receiving Playback Notifications
	88.3 Controlling and Monitoring Playback
	88.4 Creating the Audio Example App
	88.5 Adding an Audio File to the Project Resources
	88.6 Designing the User Interface
	88.7 Implementing the Action Methods
	88.8 Creating and Initializing the AVAudioPlayer Object
	88.9 Implementing the AVAudioPlayerDelegate Protocol Methods
	88.10 Building and Running the App
	88.11 Summary

	89. Recording Audio on iOS 17 with AVAudioRecorder
	89.1 An Overview of the AVAudioRecorder Tutorial
	89.2 Creating the Recorder Project
	89.3 Configuring the Microphone Usage Description
	89.4 Designing the User Interface
	89.5 Creating the AVAudioRecorder Instance
	89.6 Implementing the Action Methods
	89.7 Implementing the Delegate Methods
	89.8 Testing the App
	89.9 Summary

	90. An iOS 17 Speech Recognition Tutorial
	90.1 An Overview of Speech Recognition in iOS
	90.2 Speech Recognition Authorization
	90.3 Transcribing Recorded Audio
	90.4 Transcribing Live Audio
	90.5 An Audio File Speech Recognition Tutorial
	90.6 Modifying the User Interface
	90.7 Adding the Speech Recognition Permission
	90.8 Seeking Speech Recognition Authorization
	90.9 Performing the Transcription
	90.10 Testing the App
	90.11 Summary

	91. An iOS 17 Real-Time Speech Recognition Tutorial
	91.1 Creating the Project
	91.2 Designing the User Interface
	91.3 Adding the Speech Recognition Permission
	91.4 Requesting Speech Recognition Authorization
	91.5 Declaring and Initializing the Speech and Audio Objects
	91.6 Starting the Transcription
	91.7 Implementing the stopTranscribing Method
	91.8 Testing the App
	91.9 Summary

	92. An Introduction to iOS 17 Sprite Kit Programming
	92.1 What is Sprite Kit?
	92.2 The Key Components of a Sprite Kit Game
	92.2.1 Sprite Kit View
	92.2.2 Scenes
	92.2.3 Nodes
	92.2.4 Physics Bodies
	92.2.5 Physics World
	92.2.6 Actions
	92.2.7 Transitions
	92.2.8 Texture Atlas
	92.2.9 Constraints

	92.3 An Example Sprite Kit Game Hierarchy
	92.4 The Sprite Kit Game Rendering Loop
	92.5 The Sprite Kit Level Editor
	92.6 Summary

	93. An iOS 17 Sprite Kit Level Editor Game Tutorial
	93.1 About the Sprite Kit Demo Game
	93.2 Creating the SpriteKitDemo Project
	93.3 Reviewing the SpriteKit Game Template Project
	93.4 Restricting Interface Orientation
	93.5 Modifying the GameScene SpriteKit Scene File
	93.6 Creating the Archery Scene
	93.7 Transitioning to the Archery Scene
	93.8 Adding the Texture Atlas
	93.9 Designing the Archery Scene
	93.10 Preparing the Archery Scene
	93.11 Preparing the Animation Texture Atlas
	93.12 Creating the Named Action Reference
	93.13 Triggering the Named Action from the Code
	93.14 Creating the Arrow Sprite Node
	93.15 Shooting the Arrow
	93.16 Adding the Ball Sprite Node
	93.17 Summary

	94. An iOS 17 Sprite Kit Collision Handling Tutorial
	94.1 Defining the Category Bit Masks
	94.2 Assigning the Category Masks to the Sprite Nodes
	94.3 Configuring the Collision and Contact Masks
	94.4 Implementing the Contact Delegate
	94.5 Game Over
	94.6 Summary

	95. An iOS 17 Sprite Kit Particle Emitter Tutorial
	95.1 What is the Particle Emitter?
	95.2 The Particle Emitter Editor
	95.3 The SKEmitterNode Class
	95.4 Using the Particle Emitter Editor
	95.5 Particle Emitter Node Properties
	95.5.1 Background
	95.5.2 Particle Texture
	95.5.3 Particle Birthrate
	95.5.4 Particle Life Cycle
	95.5.5 Particle Position Range
	95.5.6 Angle
	95.5.7 Particle Speed
	95.5.8 Particle Acceleration
	95.5.9 Particle Scale
	95.5.10 Particle Rotation
	95.5.11 Particle Color
	95.5.12 Particle Blend Mode

	95.6 Experimenting with the Particle Emitter Editor
	95.7 Bursting a Ball using Particle Emitter Effects
	95.8 Adding the Burst Particle Emitter Effect
	95.9 Adding an Audio Action
	95.10 Summary

	96. Preparing and Submitting an iOS 17 Application to the App Store
	96.1 Verifying the iOS Distribution Certificate
	96.2 Adding App Icons
	96.3 Assign the Project to a Team
	96.4 Archiving the Application for Distribution
	96.5 Configuring the Application in App Store Connect
	96.6 Validating and Submitting the Application
	96.7 Configuring and Submitting the App for Review

	Index
	_Ref302558281
	_Ref504467476
	_Ref362425536
	_Ref401646208
	_Ref401650569
	_Ref302558390
	_Ref401646807
	_Ref401648106
	_Ref429745526
	_Ref500159872
	_Ref302559385
	_Ref336262998
	_Ref302559412
	OLE_LINK434
	OLE_LINK435
	OLE_LINK436
	OLE_LINK437
	OLE_LINK440
	OLE_LINK441
	OLE_LINK438
	OLE_LINK439
	OLE_LINK442
	OLE_LINK443
	_Ref425151038
	_Ref424740171
	_Ref424721567
	_Ref431304379
	_Ref424721769
	_Ref302560021
	_iOS_7_UIKit
	_Ref361042235
	_Ref506294773
	_Ref506294792
	_Ref506294813
	_Ref506295932
	_Ref506295943
	_Ref506296063
	_Ref506296074
	_Ref506296088
	OLE_LINK1108
	OLE_LINK1109
	OLE_LINK1110
	OLE_LINK1111
	OLE_LINK1112
	OLE_LINK1113

