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Chapter 1

1. Introduction

Fully updated for Android Studio Hedgehog (2023.1.1) and the new UI, this book teaches you how to develop
Android-based applications using the Kotlin programming language.

This book begins with the basics and outlines how to set up an Android development and testing environment,
followed by an introduction to programming in Kotlin, including data types, control flow, functions, lambdas,
and object-oriented programming. Asynchronous programming using Kotlin coroutines and flow is also
covered in detail.

Chapters also cover the Android Architecture Components, including view models, lifecycle management,
Room database access, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the
ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers,
and direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App Links, Gradle build configuration, in-app
billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.payloadbooks.com/product/hedgehogkotlin/
The steps to load a project from the code samples into Android Studio are as follows:
1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at info@payloadbooks.com.


https://www.payloadbooks.com/product/hedgehogkotlin/

Introduction

1.3 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.payloadbooks.com/hedgehogkotlin

If you find an error not listed in the errata, please let us know by emailing our technical support team at info@
payloadbooks.com. They are there to help you and will work to resolve any problems you may encounter.


https://www.payloadbooks.com/hedgehogkotlin

Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have explained how to configure an environment suitable for developing
Android applications using the Android Studio IDE. Before moving on to slightly more advanced topics, now
is a good time to validate that all required development packages are installed and functioning correctly. The
best way to achieve this goal is to create an Android application and compile and run it. This chapter will cover
creating an Android application project using Android Studio. Once the project has been created, a later chapter
will explore using the Android emulator environment to perform a test run of the application.

3.1 About the Project

The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also use one of the most basic Android Studio project templates. This simplicity allows us to introduce some key
aspects of Android app development without overwhelming the beginner by introducing too many concepts,
such as the recommended app architecture and Android architecture components, at once. When following
the tutorial in this chapter, rest assured that the techniques and code used in this initial example project will be
covered in much greater detail later.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1
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Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity

The next step is to define the type of initial activity to be created for the application. Options are available to
create projects for Phone and Tablet, Wear OS, Television, or Automotive. A range of different activity types is
available when developing Android applications, many of which will be covered extensively in later chapters.
For this example, however, select the Phone and Tablet option from the Templates panel, followed by the option
to create an Empty Views Activity. The Empty Views Activity option creates a template user interface consisting
of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name uniquely identifies the application within the Android application ecosystem. Although this
can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your
domain name followed by the application’s name. For example, if your domain is www.mycompany.com, and the
application has been named AndroidSample, then the package name might be specified as follows:

com.mycompany.androidsample

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your

home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This minimum SDK will be used in most projects
created in this book unless a necessary feature is only available in a more recent version. The objective here is to
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build an app using the latest Android SDK while retaining compatibility with devices running older versions of
Android (in this case, as far back as Android 8.0). The text beneath the Minimum SDXK setting will outline the
percentage of Android devices currently in use on which the app will run. Click on the Help me choose button
(highlighted in Figure 3-3) to see a full breakdown of the various Android versions still in use:

Figure 3-3

Finally, change the Language menu to Kotlin and select Kotlin DSL (build.gradle.kts) as the build configuration
language before clicking Finish to create the project.

3.5 Enabling the New Android Studio Ul

Android Studio is transitioning to a new, modern user interface that is not enabled by default in the Hedgehog
version. If your installation of Android Studio resembles Figure 3-4 below, then you will need to enable the new
UI before proceeding:

Figure 3-4
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Enable the new Ul by selecting the File -> Settings... menu option (Android Studio -> Settings... on macOS) and
selecting the New UI option under Appearance and Behavior in the left-hand panel. From the main panel, turn
on the Enable new UI checkbox before clicking Apply, followed by OK to commit the change:

Figure 3-5

When prompted, restart Android Studio to activate the new user interface.

3.6 Moditying the Example Application

Once Android Studio has restarted, the main window will reappear using the new UI and containing our
AndroidSample project as illustrated in Figure 3-6 below:

Figure 3-6

The newly created project and references to associated files are listed in the Project tool window on the left side
of the main project window. The Project tool window has several modes in which information can be displayed.
By default, this panel should be in Android mode. This setting is controlled by the menu at the top of the panel
as highlighted in Figure 3-7. If the panel is not currently in Android mode, use the menu to switch mode:
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Figure 3-7
3.7 Moditying the User Interface

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the Project tool window file hierarchy. Once located in the Project tool window,
double-click on the file to load it into the user interface Layout Editor tool, which will appear in the center panel
of the Android Studio main window:

Figure 3-8
In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A range of other
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device options are available by clicking on this menu.

Use the System UI Mode button () to turn Night mode on and off for the device screen layout. To change
the orientation of the device representation between landscape and portrait, use the drop-down menu showing

the icon.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user
interface components that may be used to construct a user interface, such as buttons, labels, and text fields.
However, it should be noted that not all user interface components are visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel, which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-9:

Figure 3-9

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to ensure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a
U-shaped icon. When disabled, the icon appears with a diagonal line through it (Figure 3-10). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-10

The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns, with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-11, for example, the Button view is currently selected within the Buttons category:
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Figure 3-11

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-12

The next step is to change the text currently displayed by the Button component. The panel located to the right
of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected
component in the layout. Within this panel, locate the text property in the Common Attributes section and
change the current value from “Button” to “Convert’, as shown in Figure 3-13:
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Figure 3-13

The second text property with a wrench next to it allows a text property to be set, which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing how a visual component and the layout
will behave with different settings without running the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer Constraints
button (Figure 3-14) to add any missing constraints to the layout:

Figure 3-14

It is important to explain the warning button in the top right-hand corner of the Layout Editor tool, as indicated
in Figure 3-15. This warning indicates potential problems with the layout. For details on any problems, click on
the button:

Figure 3-15
When clicked, the Problems tool window (Figure 3-16) will appear, describing the nature of the problems:

Figure 3-16
This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected
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within the layout file. In our example, only the following problem is listed:
button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:

Hardcoded string "Convert", should use @string resource
The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This I18N message informs us that a potential issue exists concerning the future internationalization of the
project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an “N”
and has 18 letters in between). The warning reminds us that attributes and values such as text strings should be
stored as resources wherever possible when developing Android applications. Doing so enables changes to the
appearance of the application to be made by modifying resource files instead of changing the application source
code. This can be especially valuable when translating a user interface to a different spoken language. If all of the
text in a user interface is contained in a single resource file, for example, that file can be given to a translator, who
will then perform the translation work and return the translated file for inclusion in the application. This enables
multiple languages to be targeted without the necessity for any source code changes to be made. In this instance,
we are going to create a new resource named convert_string and assign to it the string “Convert”

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-17:

Figure 3-17

After selecting this option, the Extract Resource panel (Figure 3-18) will appear. Within this panel, change the
resource name field to convert_string and leave the resource value set to Convert before clicking on the OK
button:

Figure 3-18
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The next widget to be added is an EditText widget, into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars” Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout, as shown in Figure 3-19:

Figure 3-19

Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

Figure 3-20
Repeat the steps to set the id of the TextView widget to textView, if necessary.

Add any missing layout constraints by clicking on the Infer Constraints button. At this point, the layout should
resemble that shown in Figure 3-21:
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Figure 3-21
3.8 Reviewing the Layout and Resource Files

Before moving on to the next step, we will look at some internal aspects of user interface design and resource
handling. In the previous section, we changed the user interface by modifying the activity_main.xml file using
the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a user-friendly way to edit the
underlying XML content of the file. In practice, there is no reason why you cannot modify the XML directly to
make user interface changes, and, in some instances, this may actually be quicker than using the Layout Editor
tool. In the top right-hand corner of the Layout Editor panel are the View Modes buttons marked A through C
in Figure 3-22 below:

Figure 3-22

By default, the editor will be in Design mode (button C), whereby only the visual representation of the layout is
displayed. In Code mode (A), the editor will display the XML for the layout, while in Split mode (B), both the
layout and XML are displayed, as shown in Figure 3-23:
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Figure 3-23

The button to the left of the View Modes button (marked B in Figure 3-22 above) is used to toggle between Code
and Split modes quickly.

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button, and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although complexity and content vary, all user
interface layouts are structured in this hierarchical, XML-based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel, with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="match parent"
tools:context=".MainActivity"
android:background="#££2438" >

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the layout color changes in real-time to match the new setting in the XML file. Note also that a small
red square appears in the XML editor’s left margin (also called the gutter) next to the line containing the color
setting. This is a visual cue to the fact that the color red has been set on a property. Clicking on the red square
will display a color chooser allowing a different color to be selected:
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Figure 3-24

Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently, the XML should read as follows:
<resources>
<string name="app name">AndroidSample</string>
<string name="convert string">Convert</string>
<string name="dollars hint">dollars</string>
</resources>

To demonstrate resources in action, change the string value currently assigned to the convert_string resource to
“Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file in the editor
panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor
tool in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights, and
then press Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml
file and take you to the line in that file where this resource is declared. Use this opportunity to revert the string
resource to the original “Convert” text and to add the following additional entry for a string resource that will
be referenced later in the app code:
<resources>

<string name="app name">AndroidSample</string>

<string name="convert string">Convert</string>

<string name="dollars hint">dollars</string>

<string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor by clicking on the Open editor
link in the top right-hand corner of the editor window. This will display the Translation Editor in the main panel
of the Android Studio window:
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Figure 3-25

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.9 Adding Interaction

The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button, the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can
be implemented in several ways and is covered in a later chapter entitled “An Overview and Example of Android
Event Handling”. Return the layout editor to Design mode, select the Button widget in the layout editor, refer to
the Attributes tool window, and specify a method named convertCurrency as shown below:

Figure 3-26

Next, double-click on the MainActivity.kt file in the Project tool window (app -> kotlin+java -> <package name>
-> MainActivity) to load it into the code editor and add the code for the convertCurrency method to the class file
so that it reads as follows, noting that it is also necessary to import some additional Android packages:

package com.example.androidsample

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle

import android.view.View

import android.widget.EditText

import android.widget.TextView
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class MainActivity : AppCompatActivity() {
override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)

setContentView (R.layout.activity main)

fun convertCurrency (view: View) ({

val dollarText: EditText = findViewById(R.id.dollarText)
val textView: TextView = findViewById(R.id. textView)

if (dollarText.text.isNotEmpty()) {
val dollarValue = dollarText.text.toString().toFloat()
val euroValue = dollarValue * 0.85f

textView. text = euroValue.toString()
} else {
textView. text = getString(R.string.no_value_string)

}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewByld, passing through the id assigned within the layout file. A check is then made to ensure
that the user has entered a dollar value, and if so, that value is extracted, converted from a String to a floating
point value, and converted to euros. Finally, the result is displayed on the TextView widget.

If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters. In
particular, the topic of accessing widgets from within code using findByViewld and an introduction to an
alternative technique referred to as view binding will be covered in the chapter entitled “An Overview of Android
View Binding”.

3.10 Summary

While not excessively complex, several steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to ensure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly string values, and briefly touched on layouts. Next, we looked at the
underlying XML used to store Android application user interface designs.

Finally, an onClick event was added to a Button connected to a method implemented to extract the user input
from the EditText component, convert it from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.
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Chapter 5

5. Using and Configuring the
Android Studio AVD Emulator

Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features available to
customize the environment in both standalone and tool window modes.

5.1 The Emulator Environment

When launched in standalone mode, the emulator displays an initial splash screen during the loading process.
Once loaded, the main emulator window appears, containing a representation of the chosen device type (in the
case of Figure 5-1, this is a Pixel 4 device):

Figure 5-1

The toolbar positioned along the right-hand edge of the window provides quick access to the emulator controls
and configuration options.

5.2 Emulator Toolbar Options

The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.
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Figure 5-2

Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

Exit / Minimize - The uppermost X’ button in the toolbar exits the emulator session when selected, while the
‘-’ option minimizes the entire window.

Power - The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power oft” request sequence.

Volume Up / Down - Two buttons that control the audio volume of playback within the simulator environment.
Rotate Left/Right — Rotates the emulated device between portrait and landscape orientations.

Take Screenshot — Takes a screenshot of the content displayed on the device screen. The captured image is
stored at the location specified in the Settings screen of the extended controls panel, as outlined later in this
chapter.

Zoom Mode - This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

Back - Performs the standard Android “Back” navigation to return to a previous screen.
Home - Displays the device’s home screen.

Overview - Simulates selection of the standard Android “Overview” navigation, which displays the currently
running apps on the device.
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o Fold Device - Simulates the folding and unfolding of a foldable device. This option is only available if the
emulator is running a foldable device system image.

« Extended Controls - Displays the extended controls panel, allowing for the configuration of options
such as simulated location and telephony activity, battery strength, cellular network type, and fingerprint
identification.

5.3 Working in Zoom Mode

The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active,
the toolbar button is depressed, and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button oft reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode, the screen’s visible area may be panned using the horizontal and vertical scrollbars located
within the emulator window.

5.4 Resizing the Emulator Window

The emulator window’s size (and the device’s corresponding representation) can be changed at any time by
enabling Zoom mode and clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options

The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 5-3
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5.5.1 Location

The location controls allow simulated location information to be sent to the emulator as decimal or sexigesimal
coordinates. Location information can take the form of a single location or a sequence of points representing
the device’s movement, the latter being provided via a file in either GPS Exchange (GPX) or Keyhole Markup
Language (KML) format. Alternatively, the integrated Google Maps panel may be used to select single points or
travel routes visually.

5.5.2 Displays

In addition to the main display shown within the emulator screen, the Displays option allows additional displays
to be added running within the same Android instance. This can be useful for testing apps for dual-screen
devices such as the Microsoft Surface Duo. These additional screens can be configured to be any required size
and appear within the same emulator window as the main screen.

5.5.3 Cellular

The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA, etc.) in addition to a range of voice and data
scenarios, such as roaming and denied access.

5.5.4 Battery

Various battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health, and whether the AC charger is currently connected.

5.5.5 Camera

The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.6 Phone

The phone extended controls provide two straightforward but helpful simulations within the emulator. The first
option simulates an incoming call from a designated phone number. This can be particularly useful when testing
how an app handles high-level interrupts.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.7 Directional Pad

A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.8 Microphone

The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.9 Fingerprint

Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on configuring fingerprint testing within the emulator will be covered later in this
chapter.
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5.5.10 Virtual Sensors

The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device, such as rotation, movement, and tilting through yaw, pitch, and roll settings.

5.5.11 Snapshots

Snapshots contain the state of the currently running AVD session to be saved and rapidly restored, making it
easy to return the emulator to an exact state. Snapshots are covered later in this chapter.

5.5.12 Record and Playback

Allows the emulator screen and audio to be recorded and saved in WebM or animated GIF format.

5.5.13 Google Play

If the emulator is running a version of Android with Google Play Services installed, this option displays the
current Google Play version. It also provides the option to update the emulator to the latest version.

5.5.14 Settings

The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and configure the emulator window to appear on top of other windows on
the desktop.

5.5.15 Help

The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

5.6 Working with Snapshots

When an emulator starts for the first time, it performs a cold boot, much like a physical Android device when
powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory, and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can store additional snapshots at any point during the
execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be restored
to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken using the
Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list (B) and
click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the snapshot
name and description and to delete (E) the currently selected snapshot:
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Figure 5-4
You can also choose whether to start an emulator using either a cold boot, the most recent quick-boot snapshot,
or a previous snapshot by making a selection from the run target menu in the main toolbar, as illustrated in
Figure 5-5:

Figure 5-5
5.7 Configuring Fingerprint Emulation
The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication

within Android apps. Configuring simulated fingerprints begins by launching the emulator, opening the Settings
app, and selecting the Security option.

Within the Security settings screen, select the fingerprint option. On the resulting information screen, click on
the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled, a backup
screen unlocking method (such as a PIN) must be configured. Enter and confirm a suitable PIN and complete
the PIN entry process by accepting the default notifications option.
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Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point,
display the extended controls dialog, select the Fingerprint category in the left-hand panel, and make sure that
Finger 1 is selected in the main settings panel:

Figure 5-6

Click on the Touch Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will report
the successful addition of the fingerprint:

Figure 5-7

To add additional fingerprints, click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch Sensor button again.

5.8 The Emulator in Tool Window Mode

As outlined in the previous chapter (“Creating an Android Virtual Device (AVD) in Android Studio”), Android
Studio can be configured to launch the emulator in an embedded tool window so that it does not appear in a
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separate window. When running in this mode, the same controls available in standalone mode are provided in
the toolbar, as shown in Figure 5-8:

Figure 5-8

From left to right, these buttons perform the following tasks (details of which match those for standalone mode):
» Power

 Volume Up

+ Volume Down

« Rotate Left

Rotate Right
e Back

o Home

o Overview

Screenshot

« Snapshots
« Extended Controls

5.9 Creating a Resizable Emulator

In addition to emulators configured to match specific Android device models, Android Studio also provides a
resizable AVD that allows you to switch between phone, tablet, and foldable device sizes. To create a resizable
emulator, open the Device Manager and click the +” toolbar button. Next, select the Resizable device definition
illustrated in Figure 5-9, and follow the usual steps to create a new AVD:

Figure 5-9

When you run an app on the new emulator within a tool window, the Display mode option will appear in the
toolbar, allowing you to switch between emulator configurations as shown in Figure 5-10:
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Figure 5-10

If the emulator is running in standalone mode, the Display mode option can be found in the side toolbar, as
shown below:

Figure 5-11
5.10 Summary

Android Studio contains an Android Virtual Device emulator environment designed to make it easier to test
applications without running them on a physical Android device. This chapter has provided a brief tour of
the emulator and highlighted key features available to configure and customize the environment to simulate
different testing conditions.
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Chapter 28

28. An Android Studio Layout Editor
ConstraintLayout Tutorial

The easiest and most productive way to design a user interface for an Android application is to use the Android
Studio Layout Editor tool. This chapter will provide an overview of how to create a ConstraintLayout-based user
interface using this approach. The exercise included in this chapter will also be used as an opportunity to outline
the creation of an activity starting with a “bare-bones” Android Studio project.

Having covered the use of the Android Studio Layout Editor, the chapter will also introduce the Layout Inspector
tool.

28.1 An Android Studio Layout Editor Tool Example

The first step in this phase of the example is to create a new Android Studio project. Launch Android Studio and
close any previously opened projects by selecting the File -> Close Project menu option.

Select the New Project option from the welcome screen, select the Empty Views Activity template, and click
Next. Enter LayoutSample into the Name field and specify com.ebookfrenzy.layoutsample as the package name.
Before clicking the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Kotlin.

28.2 Preparing the Layout Editor Environment

Locate and double-click on the activity_main.xml layout file in the app -> res -> layout folder to load it into
the Layout Editor tool. Since this tutorial aims to gain experience with the use of constraints, turn off the
Autoconnect feature using the button located in the Layout Editor toolbar. Once disabled, the button will appear
with a line through it, as is the case in Figure 28-1:

Figure 28-1

If the default margin value to the right of the Autoconnect button is not set to 8dp, click on it and select 8dp
from the resulting panel.

The user interface design will also use the ImageView object to display an image. Before proceeding, this image
should be added to the project, ready for use later in the chapter. This file is named GalaxyS23.webp and can be
found in the project_icons folder of the sample code download available from the following URL:

https://www.payloadbooks.com/product/hedgehogkotlin/
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Within Android Studio, display the Resource Manager tool window (View -> Tool Windows -> Resource
Manager). Locate the GalaxyS23.webp image in the file system navigator for your operating system and drag
and drop the image onto the Resource Manager tool window. In the resulting dialog, click Next, followed by the
Import button, to add the image to the project. The image should now appear in the Resource Manager, as shown
in Figure 28-2 below:

Figure 28-2

The image will also appear in the res -> drawables section of the Project tool window:

Figure 28-3
28.3 Adding the Widgets to the User Interface

From within the Common palette category, drag an ImageView object into the center of the display view. Note
that horizontal and vertical dashed lines appear, indicating the center axes of the display. When centered, release
the mouse button to drop the view into position. Once placed within the layout, the Resources dialog will appear,
seeking the image to be displayed within the view. In the search bar at the top of the dialog, enter “galaxy” to
locate the galaxys6.png resource, as illustrated in Figure 28-4.
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Figure 28-4

Select the image and click OK to assign it to the ImageView object. If necessary, adjust the size of the ImageView
using the resize handles and reposition it in the center of the layout. At this point, the layout should match
Figure 28-5:

Figure 28-5

Click and drag a TextView object from the Common section of the palette and position it to appear above the
ImageView, as illustrated in Figure 28-6.

Using the Attributes panel, unfold the textAppearance attribute entry in the Common Attributes section, change
the textSize property to 24sp, the textAlignment setting to center, and the text to “Samsung Galaxy S23”.
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Figure 28-6

Next, add three Button widgets along the bottom of the layout and set the text attributes of these views to “Buy
Now”, “Pricing’, and “Details”. The completed layout should now match Figure 28-7:

Figure 28-7
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At this point, the widgets are not sufficiently constrained for the layout engine to be able to position and size the
widgets at runtime. Were the app to run now, all of the widgets would be positioned in the top left-hand corner
of the display.

With the widgets added to the layout, use the device rotation menu located in the Layout Editor toolbar
(indicated by the arrow in Figure 28-8) to view the user interface in landscape orientation:

Figure 28-8

The absence of constraints results in a layout that fails to adapt to the change in device orientation, leaving the
content off-center and with part of the image and all three buttons positioned beyond the screen’s viewable area.
Some work still needs to be done to make this a responsive user interface.

28.4 Adding the Constraints

Constraints are the key to creating layouts that adapt to device orientation changes and different screen
sizes. Begin by rotating the layout back to portrait orientation and selecting the TextView widget above the
ImageView. With the widget selected, establish constraints from the left, right and top sides of the TextView
to the corresponding sides of the parent ConstraintLayout, as shown in Figure 28-9. Set the spacing on the top
constraint to 16:

Figure 28-9

With the TextView widget constrained, select the ImageView instance and establish opposing constraints on the
left and right sides, each connected to the corresponding sides of the parent layout. Next, establish a constraint
connection from the top of the ImageView to the bottom of the TextView and from the bottom of the ImageView
to the top of the center Button widget. If necessary, click and drag the ImageView to remain positioned in the
vertical center of the layout.

With the ImageView still selected, use the Inspector in the attributes panel to change the top and bottom
margins on the ImageView to 24 and 8, respectively, and to change both the widget height and width dimension
properties to match_constraint so that the widget will resize to match the constraints. These settings will allow
the layout engine to enlarge and reduce the size of the ImageView when necessary to accommodate layout
changes:
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Figure 28-10

Figure 28-11 shows the currently implemented constraints for the ImageView relative to the other elements in
the layout:

Figure 28-11

The final task is to add constraints to the three Button widgets. For this example, the buttons will be placed in a
chain. Begin by turning on Autoconnect within the Layout Editor by clicking the toolbar button highlighted in
Figure 28-1.
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Next, click on the Buy Now button and then shift-click on the other two buttons to select all three. Right-click
on the Buy Now button and select the Chains -> Create Horizontal Chain menu option from the resulting menu.
By default, the chain will be displayed using the spread style, which is the correct behavior for this example.

Finally, establish a constraint between the bottom of the Buy Now button and the bottom of the layout with a
margin of 8. Repeat this step for the remaining buttons.

On completion of these steps, the buttons should be constrained as outlined in Figure 28-12:

Figure 28-12
28.5 Testing the Layout
With the constraints added to the layout, rotate the screen into landscape orientation and verify that the layout

adapts to accommodate the new screen dimensions.

While the Layout Editor tool provides a good visual environment in which to design user interface layouts, when
it comes to testing, there is no substitute for testing the running app. Launch the app on a physical Android
device or emulator session and verify that the user interface reflects the layout created in the Layout Editor.
Figure 28-13, for example, shows the running app in landscape orientation:

Figure 28-13

The user interface design is now complete. Designing a more complex user interface layout is a continuation of
the steps outlined above. Drag and drop views onto the display, position, constrain and set properties as needed.

28.6 Using the Layout Inspector

The hierarchy of components comprising a user interface layout may be viewed using the Layout Inspector tool.
The app must be running on a device or emulator running Android API 29 or later to access this information.
Once the app is running, select the Tools -> Layout Inspector menu option, followed by the process to be inspected
using the menu marked A in Figure 28-14 below).

Once the inspector loads, the leftmost panel (A) shows the hierarchy of components that make up the user
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interface layout. The center panel (B) visually represents the layout design. Clicking on a widget in the visual
layout will cause that item to highlight in the hierarchy list, making it easy to find where a visual component is
situated relative to the overall layout hierarchy.

The right-most panel (marked C in Figure 28-14) contains all the property settings for the currently selected
component, allowing for an in-depth analysis of the component’s internal configuration. Where appropriate, the
value cell will contain a link to the location of the property setting within the project source code.

Figure 28-14

To view the layout in 3D, click on the button labeled D. This displays an “exploded” representation of the
hierarchy so that it can be rotated and inspected. This can be useful for tasks such as identifying obscured views:

Figure 28-15

Click and drag the rendering to rotate it in three dimensions, using the slider indicated by the arrow above to
increase the spacing between the layers. Click the button marked E again to return to the 2D view.

28.7 Summary

The Layout Editor tool in Android Studio has been tightly integrated with the ConstraintLayout class. This
chapter has worked through creating an example user interface intended to outline how a ConstraintLayout-
based user interface can be implemented using the Layout Editor tool to add widgets and set constraints. This
chapter also introduced the Live Layout Inspector tool, which is useful for analyzing the structural composition
of a user interface layout.
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Chapter 35

35. Detecting Common Gestures
Using the Android Gesture Detector
Class

The term “gesture” defines a contiguous sequence of interactions between the touch screen and the user. A
typical gesture begins at the point that the screen is first touched and ends when the last finger or pointing device
leaves the display surface. When correctly harnessed, gestures can be implemented to communicate between
the user and the application. Swiping motions to turn the pages of an eBook or a pinching movement involving
two touches to zoom in or out of an image are prime examples of how gestures can interact with an application.

The Android SDK provides mechanisms for the detection of both common and custom gestures within an
application. Common gestures involve interactions such as a tap, double tap, long press, or a swiping motion in
either a horizontal or a vertical direction (referred to in Android nomenclature as a fling).

This chapter explores using the Android GestureDetector class to detect common gestures performed on
the display of an Android device. The next chapter, “Tmplementing Custom Gesture and Pinch Recognition on
Android”, will cover detecting more complex, custom gestures such as circular motions and pinches.

35.1 Implementing Common Gesture Detection

When a user interacts with the display of an Android device, the onTouchEvent() method of the currently
active application is called by the system and passed MotionEvent objects containing data about the user’s
contact with the screen. This data can be interpreted to identify if the motion on the screen matches a common
gesture such as a tap or a swipe. This can be achieved with minimal programming effort by using the Android
GestureDetectorCompat class. This class is designed to receive motion event information from the application
and trigger method calls based on the type of common gesture, if any, detected.

The basic steps in detecting common gestures are as follows:

1. Declaration of a class which implements the GestureDetector.OnGestureListener interface including the
required onFling(), onDown(), onScroll(), onShowPress(), onSingleTapUp() and onLongPress() callback
methods. Note that this can be either an entirely new or an enclosing activity class. If double-tap gesture
detection is required, the class must also implement the GestureDetector.OnDoubleTapListener interface
and include the corresponding onDoubleTap() method.

2. Creation of an instance of the Android GestureDetectorCompat class, passing through an instance of the
class created in step 1 as an argument.

3. Anoptional call to the setOnDoubleTapListener() method of the GestureDetectorCompat instance to enable
double tap detection if required.

4. Implementation of the onTouchEvent() callback method on the enclosing activity, which, in turn, must call
the onTouchEvent() method of the GestureDetectorCompat instance, passing through the current motion
event object as an argument to the method.
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Once implemented, the result is a set of methods within the application code that will be called when a gesture
of a particular type is detected. The code within these methods can then be implemented to perform any tasks
that need to be performed in response to the corresponding gesture.

In the remainder of this chapter, we will work through creating an example project intended to put the above
steps into practice.

35.2 Creating an Example Gesture Detection Project

This project aims to detect the full range of common gestures currently supported by the GestureDetectorCompat
class and to display status information to the user indicating the type of gesture that has been detected.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter CommonGestures into the Name field and specify com.ebookfrenzy.commongestures as the package name.
Before clicking the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Kotlin.

Adapt the project to use view binding as outlined in section 18.8 Migrating a Project to View Binding.

Once the new project has been created, navigate to the app -> res -> layout -> activity_main.xml file in the
Project tool window and double-click on it to load it into the Layout Editor tool.

Within the Layout Editor tool, select the “Hello, World!” TextView component and, in the Attributes tool
window, enter gestureStatusText as the ID. Finally, set the textSize to 20sp and enable the bold textStyle:

Figure 35-1
35.3 Implementing the Listener Class

As previously outlined, it is necessary to create a class that implements the GestureDetector.OnGestureListener
interface and, if double tap detection is required, the GestureDetector.OnDoubleTapListener interface. While
this can be an entirely new class, it is also perfectly valid to implement this within the current activity class.
Therefore, we will modify the MainActivity class to implement these listener interfaces for this example. Edit the
MainActivity.kt file so that it reads as follows:

package com.ebookfrenzy.commongestures

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.view.GestureDetector

import android.view.MotionEvent
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class MainActivity : AppCompatActivity(),
GestureDetector.OnGesturelListener, GestureDetector.OnDoubleTapListener

Declaring that the class implements the listener interfaces mandates that the corresponding methods also be
implemented in the class:
class MainActivity : AppCompatActivity(),

GestureDetector.OnGesturelListener, GestureDetector.OnDoubleTaplListener

override fun onDown (event: MotionEvent): Boolean {
binding.gestureStatusText.text = "onDown"

return true

override fun onFling(eventl: MotionEvent?, event2: MotionEvent,
velocityX: Float, velocityY: Float): Boolean ({
binding.gestureStatusText.text = "onFling"
return true

override fun onLongPress (event: MotionEvent) {

binding.gestureStatusText.text = "onLongPress"

override fun onScroll (el: MotionEvent?, e2: MotionEvent,
distanceX: Float, distanceY: Float): Boolean {
binding.gestureStatusText.text = "onScroll"

return true

override fun onShowPress (event: MotionEvent) {
binding.gestureStatusText.text = "onShowPress"

override fun onSingleTapUp (event: MotionEvent): Boolean {
binding.gestureStatusText.text = "onSingleTapUp"

return true

override fun onDoubleTap (event: MotionEvent): Boolean {
binding.gestureStatusText.text = "onDoubleTap"
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return true

override fun onDoubleTapEvent (event: MotionEvent): Boolean {
binding.gestureStatusText.text = "onDoubleTapEvent"
return true

override fun onSingleTapConfirmed (event: MotionEvent): Boolean {
binding.gestureStatusText.text = "onSingleTapConfirmed"
return true

}

Note that many of these methods return true. This indicates to the Android Framework that the method has
consumed the event and does not need to be passed to the next event handler in the stack.

35.4 Creating the GestureDetectorCompat Instance

With the activity class now updated to implement the listener interfaces, the next step is to create an instance
of the GestureDetectorCompat class. Since this only needs to be performed once at the point that the activity
is created, the best place for this code is in the onCreate() method. Since we also want to detect double taps, the
code also needs to call the setOnDoubleTapListener() method of the GestureDetectorCompat instance:

import androidx.core.view.GestureDetectorCompat

class MainActivity : AppCompatActivity(), GestureDetector.OnGesturelistener,
GestureDetector.OnDoubleTapListener

{
private lateinit var binding: ActivityMainBinding

var gDetector: GestureDetectorCompat? = null

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
binding = ActivityMainBinding.inflate (layoutInflater)

setContentView (binding.root)

this.gDetector = GestureDetectorCompat (this, this)
gDetector?.setOnDoubleTapListener (this)

35.5 Implementing the onTouchEvent() Method

If the application were to be compiled and run at this point, nothing would happen if gestures were performed on
the device display. This is because no code has been added to intercept touch events and to pass them through to the
GestureDetectorCompat instance. To achieve this, it is necessary to override the onTouchEvent() method within
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the activity class and implement it such that it calls the onTouchEvent() method of the GestureDetectorCompat
instance. Remaining in the MainActivity.kt file, therefore, implement this method so that it reads as follows:
override fun onTouchEvent (event: MotionEvent): Boolean {
this.gDetector?.onTouchEvent (event)
// Be sure to call the superclass implementation

return super.onTouchEvent (event)

}
35.6 Testing the Application

Compile and run the application on either a physical Android device or an AVD emulator. Once launched,
experiment with swipes, presses, scrolling motions, and double and single taps. Note that the text view updates
to reflect the events as illustrated in Figure 35-2:

Figure 35-2
35.7 Summary

Any physical contact between the user and the touchscreen display of a device can be considered a “gesture”.
Lacking the physical keyboard and mouse pointer of a traditional computer system, gestures are widely used
as a method of interaction between the user and the application. While a gesture can comprise just about any
sequence of motions, there is a widely used set of gestures with which users of touchscreen devices have become
familiar. Some of these so-called “common gestures” can be easily detected within an application by using the
Android Gesture Detector classes. In this chapter, the use of this technique has been outlined both in theory and
through the implementation of an example project.

Having covered common gestures in this chapter, the next chapter will look at detecting a wider range of gesture
types, including the ability to design and detect your own gestures.
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Chapter 37

37. An Introduction to Android
Fragments

As you progress through the chapters of this book, it will become increasingly evident that many of the design
concepts behind the Android system were conceived to promote the reuse of and interaction between the
different elements that make up an application. One such area that will be explored in this chapter involves
using Fragments.

This chapter will provide an overview of the basics of fragments in terms of what they are and how they can be
created and used within applications. The next chapter will work through a tutorial designed to show fragments
in action when developing applications in Android Studio, including the implementation of communication
between fragments.

37.1 What is a Fragment?

A fragment is a self-contained, modular section of an application’s user interface and corresponding behavior
that can be embedded within an activity. Fragments can be assembled to create an activity during the application
design phase and added to or removed from an activity during application runtime to create a dynamically
changing user interface.

Fragments may only be used as part of an activity and cannot be instantiated as standalone application elements.
However, a fragment can be considered a functional “sub-activity” with its own lifecycle similar to that of a full
activity.

Fragments are stored in the form of XML layout files. They may be added to an activity by placing appropriate
<fragment> elements in the activity’s layout file or through code within the activity’s class implementation.

37.2 Creating a Fragment
The two components that make up a fragment are an XML layout file and a corresponding Kotlin class. The
XML layout file for a fragment takes the same format as a layout for any other activity layout and can contain
any combination and complexity of layout managers and views. The following XML layout, for example, is for
a fragment consisting of a ConstraintLayout with a red background containing a single TextView with a white
foreground:
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/constraintLayout"
android:layout width="match parent"
android:layout height="match parent"
android:background="@android:color/holo red dark"

tools:context=".FragmentOne">
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<TextView
android:id="@+id/textViewl"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="My First Fragment"
android:textAppearance="@style/TextAppearance.AppCompat.Large"
android:textColor="Qcolor/white"
app:layout constraintBottom toBottomOf="parent"
app:layout constraintEnd toEndOf="parent"
app:layout constraintStart toStartOf="parent"
app:layout constraintTop toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

The corresponding class to go with the layout must be a subclass of the Android Fragment class. This class
should, at a minimum, override the onCreateView() method, which is responsible for loading the fragment
layout. For example:

package com.example.myfragmentdemo

import android.os.Bundle

import android.view.LayoutInflater
import android.view.View

import android.view.ViewGroup

import androidx.fragment.app.Fragment

class FragmentOne : Fragment () {
private var binding: FragmentTextBinding? = null
private val binding get() = binding!!

override fun onCreateView (
inflater: LayoutInflater, container: ViewGroup?,
savedInstanceState: Bundle?

) : View? {
_binding = FragmentTextBinding.inflate (inflater, container, false)

return binding.root

}

In addition to the onCreateView() method, the class may also override the standard lifecycle methods.

Once the fragment layout and class have been created, the fragment is ready to be used within application
activities.

37.3 Adding a Fragment to an Activity using the Layout XML File

Fragments may be incorporated into an activity by writing Kotlin code or embedding the fragment into the
activity’s XML layout file. Regardless of the approach used, a key point to be aware of is that when the support
library is being used for compatibility with older Android releases, any activities using fragments must be
implemented as a subclass of FragmentActivity instead of the AppCompatActivity class:
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package com.example.myFragmentDemo

import androidx.fragment.app.FragmentActivity

import android.os.Bundle

class MainActivity : FragmentActivity() {

Fragments are embedded into activity layout files using the FragmentContainerView class. The following
example layout embeds the fragment created in the previous section of this chapter into an activity layout:
<?xml version="1.0" encoding="utf-8"?2>
<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"

tools:context=".MainActivity">

<androidx.fragment.app.FragmentContainerView
android:id="@+id/fragment2"
android:name="com.ebookfrenzy.myfragmentdemo.FragmentOne"
android:layout_width="0dp"
android:layout height="wrap_ content"
android:layout marginStart="32dp"
android:layout_marginEnd="32dp"
app:layout_constraintBottom_ toBottomOf="parent"
app:layout constraintEnd_ toEndOf="parent"
app:layout_constraintStart_ toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:layout="@layout/fragment one" />

</androidx.constraintlayout.widget.ConstraintLayout>

The key properties within the <fragment> element are android:name, which must reference the class associated
with the fragment, and tools:layout, which must reference the XML resource file containing the fragment’s layout.

Once added to the layout of an activity, fragments may be viewed and manipulated within the Android Studio
Layout Editor tool. Figure 37-1, for example, shows the above layout with the embedded fragment within the
Android Studio Layout Editor:
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Figure 37-1
37.4 Adding and Managing Fragments in Code

The ease of adding a fragment to an activity via the activity’s XML layout file comes at the cost of the activity not
being able to remove the fragment at runtime. To achieve full dynamic control of fragments during runtime,
those activities must be added via code. This has the advantage that the fragments can be added, removed, and
even made to replace one another dynamically while the application is running.

When using code to manage fragments, the fragment will still consist of an XML layout file and a corresponding
class. The difference comes when working with the fragment within the hosting activity. There is a standard
sequence of steps when adding a fragment to an activity using code:

1. Create an instance of the fragment’s class.
2. Pass any additional intent arguments through to the class instance.
3. Obtain a reference to the fragment manager instance.

4. Call the beginTransaction() method on the fragment manager instance. This returns a fragment transaction
instance.

5. Call the add() method of the fragment transaction instance, passing through as arguments the resource ID
of the view that is to contain the fragment and the fragment class instance.

6. Call the commit() method of the fragment transaction.

The following code, for example, adds a fragment defined by the FragmentOne class so that it appears in the
container view with an ID of LinearLayoutl:

val firstFragment = FragmentOne ()
firstFragment.arguments = intent.extras
val transaction = fragmentManager.beginTransaction ()

transaction.add(R.id.LinearLayoutl, firstFragment)

transaction.commit ()
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The above code breaks down each step into a separate statement for clarity. The last four lines can, however, be
abbreviated into a single line of code as follows:
supportFragmentManager.beginTransaction () .add (

R.id.LinearLayoutl, firstFragment) .commit ()

Once added to a container, a fragment may subsequently be removed via a call to the remove() method of the
fragment transaction instance, passing through a reference to the fragment instance that is to be removed:

transaction.remove (firstFragment)

Similarly, one fragment may be replaced with another by a call to the replace() method of the fragment
transaction instance. This takes as arguments the ID of the view containing the fragment and an instance of the
new fragment. The replaced fragment may also be placed on what is referred to as the back stack so that it can
be quickly restored if the user navigates back to it. This is achieved by making a call to the addToBackStack()
method of the fragment transaction object before making the commit() method call:

val secondFragment = FragmentTwo ()

transaction.replace (R.id.LinearLayoutl, secondFragment)
transaction.addToBackStack (null)

transaction.commit ()

37.5 Handling Fragment Events

As previously discussed, a fragment is like a sub-activity with its layout, class, and lifecycle. The view components
(such as buttons and text views) within a fragment can generate events like regular activity. This raises the
question of which class receives an event from a view in a fragment, the fragment itself, or the activity in which
the fragment is embedded. The answer to this question depends on how the event handler is declared.

In the chapter entitled “An Overview and Example of Android Event Handling”, two approaches to event handling
were discussed. The first method involved configuring an event listener and callback method within the activity’s
code. For example:

binding.button.setOnClickListener { // Code to be performed on button click }

In the case of intercepting click events, the second approach involved setting the android:onClick property
within the XML layout file:
<Button

android:id="@+id/buttonl"

android:layout width="wrap content"

android:layout height="wrap content"

android:onClick="onClick"

android:text="Click me" />

The general rule for events generated by a view in a fragment is that if the event listener were declared in the
fragment class using the event listener and callback method approach, the event would be handled first by the
fragment. However, if the android:onClick resource is used, the event will be passed directly to the activity
containing the fragment.

37.6 Implementing Fragment Communication

Once one or more fragments are embedded within an activity, the chances are good that some form of
communication will need to take place between the fragments and the activity and between one fragment
and another. Good practice dictates that fragments do not communicate directly with one another. All
communication should take place via the encapsulating activity.
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To communicate with a fragment, the activity must identify the fragment object via the ID assigned to it. Once
this reference has been obtained, the activity can call the public methods of the fragment object.

Communicating in the other direction (from fragment to activity) is a little more complicated. In the first
instance, the fragment must define a listener interface, which is then implemented within the activity class. For
example, the following code declares a ToolbarListener interface on a fragment named ToolbarFragment. The
code also declares a variable in which a reference to the activity will later be stored:

class ToolbarFragment : Fragment () {
var activityCallback: ToolbarFragment.ToolbarListener? = null

interface ToolbarListener {
fun onButtonClick (fontsize: Int, text: String)

}
The above code dictates that any class that implements the ToolbarListener interface must also implement a
callback method named onButtonClick which, in turn, accepts an integer and a String as arguments.

Next, the onAttach() method of the fragment class needs to be overridden and implemented. This method is
called automatically by the Android system when the fragment has been initialized and associated with an
activity. The method is passed a reference to the activity in which the fragment is contained. The method must
store a local reference to this activity and verify that it implements the ToolbarListener interface:
override fun onAttach (context: Context?) {
super.onAttach (context)
try {
activityCallback = context as ToolbarListener
} catch (e: ClassCastException) {
throw ClassCastException (context?.toString/()

+ " must implement ToolbarListener")

}

Upon execution of this example, a reference to the activity will be stored in the local activityCallback variable,
and an exception will be thrown if that activity does not implement the ToolbarListener interface.

The next step is to call the callback method of the activity from within the fragment. When and how this happens
depends entirely on the circumstances under which the activity needs to be contacted by the fragment. The
following code, for example, calls the callback method on the activity when a button is clicked:

override fun onButtonClick(argl: Int, arg2: String) {

activityCallback.onButtonClick(argl, arg2)
}

All that remains is to modify the activity class to implement the ToolbarListener interface. For example:
class MainActivity : FragmentActivity(),
ToolbarFragment.ToolbarListener {
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override fun onButtonClick(argl: Int, arg2: String) {
// Implement code for callback method

}
As we can see from the above code, the activity declares that it implements the ToolbarListener interface of the
ToolbarFragment class and then proceeds to implement the onButtonClick() method as required by the interface.

37.7 Summary

Fragments provide a powerful mechanism for creating reusable modules of user interface layout and application
behavior, which, once created, can be embedded in activities. A fragment consists of a user interface layout file
and a class. Fragments may be utilized in an activity by adding the fragment to the activity’s layout file or writing
code to manage the fragments at runtime. Fragments added to an activity in code can be removed and replaced
dynamically at runtime. All communication between fragments should be performed via the activity within
which the fragments are embedded.

Having covered the basics of fragments in this chapter, the next chapter will work through a tutorial designed to
reinforce the techniques outlined in this chapter.
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Chapter 39

39. Modern Android App
Architecture with Jetpack

For many years, Google did not recommend a specific approach to building Android apps other than to provide
tools and development kits while letting developers decide what worked best for a particular project or individual
programming style. That changed in 2017 with the introduction of the Android Architecture Components,
which, in turn, became part of Android Jetpack when it was released in 2018.

This chapter provides an overview of the concepts of Jetpack, Android app architecture recommendations, and
some key architecture components. Once the basics have been covered, these topics will be covered in more
detail and demonstrated through practical examples in later chapters.

39.1 What is Android Jetpack?

Android Jetpack consists of Android Studio, the Android Architecture Components, the Android Support
Library, and a set of guidelines recommending how an Android App should be structured. The Android
Architecture Components are designed to make it quicker and easier to perform common tasks when developing
Android apps while also conforming to the key principle of the architectural guidelines.

While all Android Architecture Components will be covered in this book, this chapter will focus on the key
architectural guidelines and the ViewModel, LiveData, and Lifecycle components while introducing Data
Binding and Repositories.

Before moving on, it is important to understand that the Jetpack approach to app development is optional.
While highlighting some of the shortcomings of other techniques that have gained popularity over the years,
Google stopped short of completely condemning those approaches to app development. Google is taking the
position that while there is no right or wrong way to develop an app, there is a reccommended way.

39.2 The “Old” Architecture

In the chapter entitled “Creating an Example Android App in Android Studio”, an Android project was created
consisting of a single activity that contained all of the code for presenting and managing the user interface
together with the back-end logic of the app. Until the introduction of Jetpack, the most common architecture
followed this paradigm with apps consisting of multiple activities (one for each screen within the app), with each
activity class to some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example, an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

39.3 Modern Android Architecture

At the most basic level, Google now advocates single-activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept referred to as “separation of concerns”). One of the keys to this approach
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is the ViewModel component.

39.4 The ViewModel Component

The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the
code responsible for displaying and managing the user interface and interacting with the operating system.
When designed this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data those controllers need.

The ViewModel only knows about the data model and corresponding logic. It knows nothing about the user
interface and does not attempt to directly access or respond to events relating to views within the user interface.
When a Ul controller needs data to display, it asks the ViewModel to provide it. Similarly, when the user enters
data into a view within the user interface, the UI controller passes it to the ViewModel for handling.

This separation of responsibility addresses the issues relating to the lifecycle of UI controllers. Regardless of how
often the UT controller is recreated during the lifecycle of an app, the ViewModel instances remain in memory,
thereby maintaining data consistency. For example, a ViewModel used by an activity will remain in memory
until the activity finishes, which, in the single activity app, is not until the app exits.

Figure 39-1
39.5 The LiveData Component

Consider an app that displays real-time data, such as the current price of a financial stock. The app could
use a stock price web service to continuously update the data model within the ViewModel with the latest
information. This real-time data is of use only if it is displayed to the user promptly. There are only two ways that
the UI controller can ensure that the latest data is displayed in the user interface. One option is for the controller
to continuously check with the ViewModel to determine if the data has changed since it was last displayed.
However, the problem with this approach is that it could be more efficient. To maintain the real-time nature of
the data feed, the UI controller would have to run on a loop, continuously checking for the data to change.

A better solution would be for the UI controller to receive a notification when a specific data item within a
ViewModel changes. This is made possible by using the LiveData component. LiveData is a data holder that
allows a value to become observable. In basic terms, an observable object can notify other objects when changes
to its data occur, thereby solving the problem of ensuring that the user interface always matches the data within
the ViewModel.

This means, for example, that a UI controller interested in a ViewModel value can set up an observer, which will,
in turn, be notified when that value changes. In our hypothetical application, for example, the stock price would
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be wrapped in a LiveData object within the ViewModel, and the UI controller would assign an observer to the
value, declaring a method to be called when the value changes. When triggered by data change, this method will
read the updated value from the ViewModel and use it to update the user interface.

Figure 39-2

A LiveData instance may also be declared as mutable, allowing the observing entity to update the underlying
value held within the LiveData object. The user might, for example, enter a value in the user interface that needs
to overwrite the value stored in the ViewModel.

Another of the key advantages of using LiveData is that it is aware of the lifecycle state of its observers. If,
for example, an activity contains a LiveData observer, the corresponding LiveData object will know when the
activity’s lifecycle state changes and respond accordingly. If the activity is paused (perhaps the app is put into the
background), the LiveData object will stop sending events to the observer. Suppose the activity has just started
or resumes after being paused. In that case, the LiveData object will send a LiveData event to the observer so
that the activity has the most up-to-date value. Similarly, the LiveData instance will know when the activity is
destroyed and remove the observer to free up resources.

So far, we've only talked about UI controllers using observers. In practice, however, an observer can be used
within any object that conforms to the Jetpack approach to lifecycle management.

39.6 ViewModel Saved State

Android allows the user to place an active app in the background and return to it after performing other tasks
on the device (including running other apps). When a device runs low on resources, the operating system will
rectify this by terminating background app processes, starting with the least recently used app. However, when
the user returns to the terminated background app, it should appear in the same state as when it was placed in
the background, regardless of whether it was terminated. In terms of the data associated with a ViewModel, this
can be implemented using the ViewModel Saved State module. This module allows values to be stored in the
app’s saved state and restored in case of system-initiated process termination. This topic will be covered later in
the “An Android ViewModel Saved State Tutorial” chapter.

39.7 LiveData and Data Binding

Android Jetpack includes the Data Binding Library, which allows data in a ViewModel to be mapped directly to
specific views within the XML user interface layout file. In the AndroidSample project created earlier, code had
to be written to obtain references to the EditText and TextView views and to set and get the text properties to
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reflect data changes. Data binding allows the LiveData value stored in the ViewModel to be referenced directly
within the XML layout file avoiding the need to write code to keep the layout views updated.

Figure 39-3

Data binding will be covered in greater detail, starting with the chapter “An Overview of Android Jetpack Data
Binding”.

39.8 Android Lifecycles

The duration from when an Android component is created to the point that it is destroyed is called the lifecycle.
During this lifecycle, the component will change between different lifecycle states, usually under the operating
systemy’s control and in response to user actions. An activity, for example, will begin in the initialized state before
transitioning to the created state. Once the activity runs, it will switch to the started state, from which it will cycle
through various states, including created, started, resumed, and destroyed.

Many Android Framework classes and components allow other objects to access their current state. Lifecycle
observers may also be used so that an object receives a notification when the lifecycle state of another object
changes. The ViewModel component uses this technique behind the scenes to identify when an observer
has restarted or been destroyed. This functionality is not limited to Android framework and architecture
components. It may also be built into any other classes using a set of lifecycle components included with the
architecture components.

Objects that can detect and react to lifecycle state changes in other objects are said to be lifecycle-aware. In
contrast, objects that provide access to their lifecycle state are called lifecycle owners. The chapter entitled
“Working with Android Lifecycle-Aware Components” will cover Lifecycles in greater detail.

39.9 Repository Modules

If a ViewModel obtains data from one or more external sources (such as databases or web services, it is important
to separate the code involved in handling those data sources from the ViewModel class. Failure to do this would,
after all, violate the separation of concerns guidelines. To avoid mixing this functionality with the ViewModel,
Google’s architecture guidelines recommend placing this code in a separate Repository module.

A repository is not an Android architecture component but a Kotlin class created by the app developer that is
responsible for interfacing with the various data sources. The class then provides an interface to the ViewModel,
allowing that data to be stored in the model.
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Figure 39-4
39.10 Summary

Until recently, Google has tended not to recommend any particular approach to structuring an Android app.
That has now changed with the introduction of Android Jetpack, consisting of tools, components, libraries, and
architecture guidelines. Google now recommends that an app project be divided into separate modules, each
responsible for a particular area of functionality, otherwise known as “separation of concerns”.

In particular, the guidelines recommend separating the view data model of an app from the code responsible
for handling the user interface. In addition, the code responsible for gathering data from data sources such as
web services or databases should be built into a separate repository module instead of being bundled with the
view model.

Android Jetpack includes the Android Architecture Components, designed to make developing apps that
conform to the recommended guidelines easier. This chapter has introduced the ViewModel, LiveData, and
Lifecycle components. These will be covered in more detail, starting with the next chapter. Other architecture
components not mentioned in this chapter will be covered later in the book.
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Chapter 47

47. An Overview of the Navigation
Architecture Component

Very few Android apps today consist of just a single screen. In reality, most apps comprise multiple screens
through which the user navigates using screen gestures, button clicks, and menu selections. Before the
introduction of Android Jetpack, implementing navigation within an app was largely a manual coding process
with no easy way to view and organize potentially complex navigation paths. However, this situation has
improved considerably with the introduction of the Android Navigation Architecture Component combined
with support for navigation graphs in Android Studio.

47.1 Understanding Navigation

Every app has a home screen that appears after the app has launched and after any splash screen has appeared
(a splash screen being the app branding screen that appears temporarily while the app loads). The user will
typically perform tasks from this home screen, resulting in other screens appearing. These screens will usually
take the form of other activities and fragments within the app. For example, a messaging app may have a home
screen listing current messages from which users can navigate to another screen to access a contact list or a
settings screen. The contacts list screen, in turn, might allow the user to navigate to other screens where new
users can be added or existing contacts updated. Graphically, the app’s navigation graph might be represented as
shown in Figure 47-1:

Figure 47-1

Each screen that makes up an app, including the home screen, is referred to as a destination and is usually a
fragment or activity. The Android navigation architecture uses a navigation stack to track the user’s path through
the destinations within the app. When the app first launches, the home screen is the first destination placed
onto the stack and becomes the current destination. When the user navigates to another destination, that screen
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becomes the current destination and is pushed onto the stack above the home destination. As the user navigates
to other screens, they are also pushed onto the stack. Figure 47-2, for example, shows the current state of the
navigation stack for the hypothetical messaging app after the user has launched the app and is navigating to the
“Add Contact” screen:

Figure 47-2

As the user navigates back through the screens using the system back button, each destination is popped oft the
stack until the home screen is once again the only destination on the stack. In Figure 47-3, the user has navigated
back from the Add Contact screen, popping it off the stack and making the Contacts List screen the current
destination:

Figure 47-3
All of the work involved in navigating between destinations and managing the navigation stack is handled by a

navigation controller, represented by the NavController class.

Adding navigation to an Android project using the Navigation Architecture Component is a straightforward
process involving a navigation host, navigation graph, navigation actions, and minimal code writing to obtain a
reference to, and interact with, the navigation controller instance.

47.2 Declaring a Navigation Host

A navigation host is a special fragment (NavHostFragment) embedded into the user interface layout of an
activity and serves as a placeholder for the destinations through which the user will navigate. Figure 47-4, for
example, shows a typical activity screen and highlights the area represented by the navigation host fragment:
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Figure 47-4
A NavHostFragment can be placed into an activity layout within the Android Studio layout editor either by
dragging and dropping an instance from the Containers section of the palette or by manually editing the XML
as follows:
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res—-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/container"
android:layout width="match parent"
android:layout height="match parent"

tools:context=".MainActivity" >

<androidx. fragment.app.FragmentContainerView

android:id="@+id/demo_nav_host_ fragment"
android:name="androidx.navigation. fragment.NavHostFragment"
android:layout width="match_parent"
android:layout_height="match_parent"
app:defaultNavHost="true"
app:navGraph="@navigation/navigation_graph" />

</FrameLayout>

The points of note in the above navigation host fragment element are the reference to the NavHostFragment in

the name property, the setting of defaultNavHost to true, and the assignment of the file containing the navigation
graph to the navGraph property.

When the activity launches, this navigation host fragment is replaced by the home destination designated in
the navigation graph. As the user navigates through the app screens, the host fragment will be replaced by the
appropriate fragment for the destination.
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47.3 The Navigation Graph

A navigation graph is an XML file that contains the destinations that will be included in the app navigation. In
addition to these destinations, the file contains navigation actions that define navigation between destinations
and optional arguments for passing data from one destination to another. Android Studio includes a navigation
graph editor that can be used to design graphs and implement actions either visually or by manually editing the
XML.

Figure 47-5 shows the Android Studio navigation graph editor in Design mode:

Figure 47-5

The destinations list (A) lists all destinations within the graph. Selecting a destination from the list will locate and
select the corresponding destination in the graph (particularly useful for locating specific destinations in a large
graph). The navigation graph panel (B) contains a dialog for each destination representing the user interface
layout. In this example, this graph contains two destinations named mainFragment and secondFragment.
Arrows between destinations (C) represent navigation action connections. Actions are added by hovering the
mouse pointer over the edge of the origin until a circle appears, then clicking and dragging from the circle to
the destination. The Attributes panel (D) allows the properties of the currently selected destination or action
connection to be viewed and modified. In the above figure, the attributes for the action are displayed. New
destinations are added by clicking on the button marked E and selecting options from a menu. Options are
available to add existing fragments or activities as destinations or to create new blank fragment destinations. The
Component Tree panel (F) provides a hierarchical overview of the navigation graph.

The underlying XML for the navigation graph can be viewed and modified by switching the editor into Code

mode. The following XML listing represents the navigation graph for the destinations and action connection

shown in Figure 47-5 above:

<?xml version="1.0" encoding="utf-8"?>

<navigation xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/navigation_graph"

app:startDestination="@id/mainFragment">

<fragment

android:id="@+id/mainFragment"
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android:name="com.ebookfrenzy.navigationdemo.ui.main.MainFragment"
android:label="fragment main"
tools:layout="@layout/fragment main" >
<action
android:id="@+id/mainToSecond"
app:destination="@id/secondFragment" />
</fragment>
<fragment
android:id="Q@+id/secondFragment"
android:name="com.ebookfrenzy.navigationdemo.SecondFragment"
android:label="fragment second"
tools:layout="@layout/fragment second" >
</fragment>
</navigation>
Navigation graphs can also be split over multiple files to improve organization and promote reuse. When
structured in this way, nested graphs are embedded into root graphs. To create a nested graph, shift-click on the
destinations to be nested, right-click over the first destination and select the Move to Nested Graph -> New Graph
menu option. The nested graph will then appear as a new node in the graph. Double-click on the nested graph
node to load the graph file into the editor to access the nested graph.

47.4 Accessing the Navigation Controller

Navigating from one destination to another usually occurs in response to an event within an app, such as a
button click or menu selection. Before a navigation action can be triggered, the code must first obtain a reference
to the navigation controller instance. This requires a call to the findNavController() method of the Navigation or
NavHostFragment classes. The following code, for example, can be used to access the navigation controller of an
activity. Note that for the code to work, the activity must contain a navigation host fragment:

val controller: NavController =

Navigation.findNavController (activity, R.id.demo nav_ host fragment)

In this case, the method call is passed a reference to the activity and the id of the NavHostFragment embedded
in the activity’s layout.

Alternatively, the navigation controller associated with any view may be identified by passing that view to the
method:

val controller: NavController = Navigation.findNavController (button)

The final option finds the navigation controller for a fragment by calling the findNavController() method of the
NavHostFragment class, passing through a reference to the fragment:

val controller: NavController = NavHostFragment.findNavController (fragment)

47.5 Triggering a Navigation Action

Once the navigation controller has been found, a navigation action is triggered by calling the controller’s
navigate() method and passing through the resource id of the action to be performed. For example:

controller.navigate (R.id.goToContactsList)

The id of the action is defined within the Attributes panel of the navigation graph editor when an action
connection is selected.
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47.6 Passing Arguments

Data may be passed from one destination to another during a navigation action by using arguments declared
within the navigation graph file. An argument consists of a name, type, and an optional default value and may
be added manually within the XML or using the Attributes panel when an action arrow or destination is selected
within the graph. In Figure 47-6, for example, an integer argument named contactsCount has been declared with
a default value of 0:

Figure 47-6
Once added, arguments are placed within the XML element of the receiving destination, for example:
<fragment
android:id="@+id/secondFragment"
android:name="com.ebookfrenzy.navigationdemo.SecondFragment"
android:label="fragment second"
tools:layout="@layout/fragment second" >
<argument
android:name="contactsCount"
android:defaultValue=0
app:type="integer" />
</fragment>

The Navigation Architecture Component provides two techniques for passing data between destinations. One
approach involves placing the data into a Bundle object that is passed to the destination during an action, where
it is then unbundled and the arguments extracted.

The main drawback to this particular approach is that it is not “type safe”. In other words, if the receiving
destination treats an argument as a different type than it was declared (for example, treating a string as an
integer) this error will not be caught by the compiler and will likely cause problems at runtime.

A better option, which is used in this book, is safeargs. Safeargs is a plugin for the Android Studio Gradle build
system which automatically generates special classes that allow arguments to be passed in a type-safe way. The
safeargs approach to argument passing will be described and demonstrated in the next chapter (“An Android
Jetpack Navigation Component Tutorial”).

47.7 Summary

Navigation within the context of an Android app user interface refers to the ability of a user to move back and
forth between different screens. Once time-consuming to implement and difficult to organize, Android Studio
and the Navigation Architecture Component now make it easier to implement and manage navigation within
Android app projects.

The different screens within an app are referred to as destinations and are usually represented by fragments
or activities. All apps have a home destination, including the screen displayed when the app first loads. The
content area of this layout is replaced by a navigation host fragment which is swapped out for other destination
fragments as the user navigates the app. The navigation path is defined by the navigation graph file consisting of
destinations and the actions that connect them together with any arguments to be passed between destinations.
Navigation is handled by navigation controllers, which, in addition to managing the navigation stack, provide
methods to initiate navigation actions from within app code.
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49. An Introduction to MotionLayout

The MotionLayout class provides an easy way to add animation effects to the views of a user interface layout.
This chapter will begin by providing an overview of MotionLayout and introduce the concepts of MotionScenes,
Transitions, and Keyframes. Once these basics have been covered, the next two chapters (entitled “An Android
MotionLayout Editor Tutorial” and “A MotionLayout KeyCycle Tutorial”) will provide additional detail and
examples of MotionLayout animation in action through the creation of example projects.

49.1 An Overview of MotionLayout

MotionLayout is a layout container, the primary purpose of which is to animate the transition of views within
a layout from one state to another. MotionLayout could, for example, animate the motion of an ImageView
instance from the top left-hand corner of the screen to the bottom right-hand corner over a specified time.
In addition to the position of a view, other attribute changes may also be animated, such as the color, size, or
rotation angle. These state changes can also be interpolated (such that a view moves, rotates, and changes size
throughout the animation).

The motion of a view using MotionLayout may be performed in a straight line between two points or
implemented to follow a path comprising intermediate points at different positions between the start and end
points. MotionLayout also supports using touches and swipes to initiate and control animation.

MotionLayout animations are declared entirely in XML and do not typically require writing code. These XML
declarations may be implemented manually in the Android Studio code editor, visually using the MotionLayout
editor, or combining both approaches.

49.2 MotionLayout

When implementing animation, the ConstraintLayout container typically used in a user interface must first be
converted to a MotionLayout instance (a task which can be achieved by right-clicking on the ConstraintLayout
in the layout editor and selecting the Convert to MotionLayout menu option). MotionLayout also requires at
least version 2.0.0 of the ConstraintLayout library.

Unsurprisingly since it is a subclass of ConstraintLayout, MotionLayout supports all of the layout features of the
ConstraintLayout. Therefore, a user interface layout can be similarly designed when using MotionLayout for
views that do not require animation.

For views that are to be animated, two ConstraintSets are declared, defining the appearance and location of the
view at the start and end of the animation. A transition declaration defines keyframes to apply additional effects
to the target view between these start and end states and click and swipe handlers used to start and control the
animation.

The start and end ConstraintSets and the transitions are declared within a MotionScene XML file.

49.3 MotionScene

As we have seen in earlier chapters, an XML layout file contains the information necessary to configure the
appearance and layout behavior of the static views presented to the user, and this is still the case when using
MotionLayout. For non-static views (in other words, the views that will be animated), those views are still
declared within the layout file, but the start, end, and transition declarations related to those views are stored
in a separate XML file referred to as the MotionScene file (so called because all of the declarations are defined
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within a MotionScene element). This file is imported into the layout XML file and contains the start and end
ConstraintSets and Transition declarations (a single file can contain multiple ConstraintSet pairs and Transition
declarations, allowing different animations to be targeted to specific views within the user interface layout).

The following listing shows a template for a MotionScene file:

<?xml version="1.0" encoding="utf-8"?>

<MotionScene
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:motion="http://schemas.android.com/apk/res-auto">

<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
</KeyFrameSet>

</Transition>

<ConstraintSet android:id="Q@+id/start">
</ConstraintSet>

<ConstraintSet android:id="@+id/end">
</ConstraintSet>

</MotionScene>

In the above XML, ConstraintSets named start and end (though any name can be used) have been declared,
which, at this point, are yet to contain any constraint elements. The Transition element defines that these
ConstraintSets represent the animation start and end points and contain an empty KeyFrameSet element ready
to be populated with additional animation keyframe entries. The Transition element also includes a millisecond
duration property to control the running time of the animation.

ConstraintSets do not have to imply the motion of a view. It is possible to have the start and end sets declare the
same location on the screen and then use the transition to animate other property changes, such as scale and
rotation angle.

ConstraintSets do not have to imply the motion of a view. It is possible, for example, to have the start and end
sets declare the same location on the screen and then use the transition to animate other property changes, such
as scale and rotation angle.

49.4 Configuring ConstraintSets

The ConstraintSets in the MotionScene file allow the full set of ConstraintLayout settings to be applied to a view
regarding positioning, sizing, and relation to the parent and other views. In addition, the following attributes
may also be included within the ConstraintSet declarations:

o alpha
« visibility
« elevation

« rotation
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e rotationX
o rotationY
« translationX

translationY

translationZ

« scaleX
o scaleY

For example, to rotate the view by 180° during the animation, the following could be declared within the start
and end constraints:
<ConstraintSet android:id="@+id/start">

<Constraint

motion:layout constraintStart toStartOf="parent"
android:rotation="0">
</Constraint>
</ConstraintSet>

<ConstraintSet android:id="Q@+id/end">

<Constraint

motion:layout constraintBottom toBottomOf="parent"
android:rotation="180">
</Constraint>
</ConstraintSet>

The above changes tell MotionLayout that the view is to start at 0° and then, during the animation, rotate a full
180° before coming to rest upside-down.

49.5 Custom Attributes

In addition to the standard attributes listed above, it is possible to specify a range of custom attributes (declared
using CustomAttribute). In fact, just about any property available on the view type can be specified as a
custom attribute for inclusion in an animation. To identify the attribute’s name, find the getter/setter name
from the documentation for the target view class, remove the get/set prefix, and lower the case of the first
remaining character. For example, to change the background color of a Button view in code, we might call the
setBackgroundColor() setter method as follows:

myButton.setBackgroundColor (Color.RED)

When setting this attribute in a constraint set or keyframe, the attribute name will be backgroundColor. In
addition to the attribute name, the value must also be declared using the appropriate type from the following
list of options:

« motion:customBoolean - Boolean attribute values.
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« motion:customColorValue - Color attribute values.

o motion:customDimension - Dimension attribute values.

« motion:customFloatValue - Floating point attribute values.
« motion:customIntegerValue - Integer attribute values.

» motion:customStringValue - String attribute values

For example, a color setting will need to be assigned using the customColorValue type :
<CustomAttribute
motion:attributeName="backgroundColor"

motion:customColorValue="#43CC76" />

The following excerpt from a MotionScene file, for example, declares start and end constraints for a view in
addition to changing the background color from green to red:

<ConstraintSet android:id="@+id/start">
<Constraint
android:layout width="wrap content"
android:layout height="wrap content"
motion:layout editor absoluteX="21dp"
android:id="@+id/button"
motion:layout constraintTop toTopOf="parent"
motion:layout constraintStart toStartOf="parent" >
<CustomAttribute
motion:attributeName="backgroundColor"
motion:customColorValue="#33CC33" />
</Constraint>
</ConstraintSet>

<ConstraintSet android:id="@+id/end">
<Constraint
android:layout width="wrap content"
android:layout height="wrap content"
motion:layout editor absolutey="21dp"
android:id="@+id/button"
motion:layout constraintEnd toEndOf="parent"
motion:layout constraintBottom toBottomOf="parent" >
<CustomAttribute
motion:attributeName="backgroundColor"
motion:customColorValue="#F80A1F" />
</Constraint>
</ConstraintSet>
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49.6 Triggering an Animation

Without some event to tell MotionLayout to start the animation, none of the settings in the MotionScene file will
affect the layout (except that the view will be positioned based on the setting in the start ConstraintSet).

The animation can be configured to start in response to either screen tap (OnClick) or swipe motion (OnSwipe)
gesture. The OnClick handler causes the animation to start and run until completion, while OnSwipe will
synchronize the animation to move back and forth along the timeline to match the touch motion. The OnSwipe
handler will also respond to “flinging” motions on the screen. The OnSwipe handler also provides options
to configure how the animation reacts to dragging in different directions and the side of the target view to
which the swipe is to be anchored. This allows, for example, left-ward dragging motions to move a view in the
corresponding direction while preventing an upward motion from causing a view to move sideways (unless, of
course, that is the required behavior).

The OnSwipe and OnClick declarations are contained within the Transition element of a MotionScene file.
In both cases, the view id must be specified. For example, to implement an OnSwipe handler responding to
downward drag motions anchored to the bottom edge of a view named button, the following XML would be
placed in the Transition element:

<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
</KeyFrameSet>
<OnSwipe
motion: touchAnchorId="@+id/button"
motion:dragDirection="dragDown"
motion:touchAnchorSide="bottom" />
</Transition>

Alternatively, to add an OnClick handler to the same button:
<OnClick motion:targetId="@id/button"
motion:clickAction="toggle" />

In the above example, the action has been set to foggle mode. This mode and the other available options can be
summarized as follows:

o toggle - Animates to the opposite state. For example, if the view is currently at the transition start point, it will
transition to the end point, and vice versa.

o jumpToStart - Changes immediately to the start state without animation.
« jumpToEnd - Changes immediately to the end state without animation.
« transitionToStart - Transitions with animation to the start state.

« transitionToEnd - Transitions with animation to the end state.
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49.7 Arc Motion

By default, a movement of view position will travel in a straight line between the start and end points. To change
the motion to an arc path, use the pathMotionArc attribute as follows within the start constraint, configured with
either a startHorizontal or startVertical setting to define whether the arc is to be concave or convex:
<ConstraintSet android:id="@+id/start">
<Constraint

android:layout width="wrap content"

android:layout height="wrap content"

motion:layout editor absoluteX="21ldp"

android:id="@+id/button"

motion:layout constraintTop toTopOf="parent"

motion:layout constraintStart toStartOf="parent"

motion:pathMotionArc="startVertical" >

Figure 49-1 illustrates startVertical and startHorizontal arcs in comparison to the default straight line motion:

Figure 49-1
49.8 Keyframes

All of the ConstraintSet attributes outlined so far only apply to the start and end points of the animation. In other
words, if the rotation property were set to 180° on the end point, the rotation would begin when the animation
starts and complete when the end point is reached. It is not, therefore, possible to configure the rotation to reach
the full 180° at a point 50% of the way through the animation and then rotate back to the original orientation by
the end. Fortunately, this type of effect is available using Keyframes.

Keyframes are used to define intermediate points during the animation at which state changes are to occur.
Keyframes could, for example, be declared such that the background color of a view is to have transitioned to
blue at a point 50% of the way through the animation, green at the 75% point, and then back to the original color
by the end of the animation. Keyframes are implemented within the Transition element of the MotionScene file
embedded into the KeyFrameSet element.

MotionLayout supports several types of Keyframe which can be summarized as follows:

49.8.1 Attribute Keyframes

Attribute Keyframes (declared using KeyAttribute) allow view attributes to be changed at intermediate points
in the animation timeline. KeyAttribute supports the attributes listed above for ConstraintSets combined with
the ability to specify where the change will take effect in the animation timeline. For example, the following
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Keyframe declaration will gradually cause the button view to double in size horizontally (scaleX) and vertically
(scaleY), reaching full size at 50% through the timeline. For the remainder of the timeline, the view will decrease
in size to its original dimensions:
<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
<KeyAttribute
motion:motionTarget="@+id/button"
motion: framePosition="50"
android:scaleX="2.0" />
<KeyAttribute
motion:motionTarget="@+id/button"
motion: framePosition="50"
android:scaley="2.0" />
</KeyFrameSet>

49.8.2 Position Keyframes

Position keyframes (KeyPosition) modify the path followed by a view as it moves between the start and
end locations. By placing key positions at different points on the timeline, a path of just about any level of
complexity can be applied to an animation. Positions are declared using x and y coordinates combined with
the corresponding points in the transition timeline. These coordinates must be declared relative to one of the
following coordinate systems:

o parentRelative - The x and y coordinates are relative to the parent container where the coordinates are
specified as a percentage (represented as a value between 0.0 and 1.0):

Figure 49-2

o deltaRelative - Instead of relative to the parent, the x and y coordinates are relative to the start and end
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positions. For example, the start point is (0, 0) the end point (1, 1). Keep in mind that the x and y coordinates
can be negative values):

Figure 49-3

« pathRelative - The x and y coordinates are relative to the path, where the straight line between the start and
end points serves as the graph’s X-axis. Once again, coordinates are represented as a percentage (0.0 to 1.0).
This is similar to the deltaRelative coordinate space but takes into consideration the angle of the path. Once
again coordinates may be negative:

Figure 49-4
As an example, the following ConstraintSets declare start and end points on either side of a device screen. By
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default, a view transition using these points would move in a straight line across the screen, as illustrated in
Figure 49-5:

Figure 49-5

Suppose, however, that the view is required to follow a path similar to that shown in Figure 49-6 below:

Figure 49-6
To achieve this, keyframe position points could be declared within the transition as follows:
<KeyPosition
motion:motionTarget="@+id/button”
motion:framePosition="25"
motion:keyPositionType="pathRelative"
motion:percentY="0.3"

motion:percentX="0.25"/>

<KeyPosition
motion:motionTarget="@+id/button"
motion:framePosition="75"
motion:keyPositionType="pathRelative"
motion:percentY="-0.3"

motion:percentX="0.75"/>

The above elements create keyframe position points 25% and 75% through the path using the pathRelative
coordinate system. The first position is placed at coordinates (0.25, 0.3) and the second at (0.75, -0.3). These
position keyframes can be visualized as illustrated in Figure 49-7 below:
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Figure 49-7
49.9 Time Linearity

Without additional settings, the animations outlined above will be performed at a constant speed. To vary
the animation speed (for example, so that it accelerates and then decelerates), the transition easing attribute
(transitionEasing) can be used within a ConstraintSet or Keyframe.

For complex easing requirements, the linearity can be defined by plotting points on a cubic Bézier curve, for
example:

motion:layout constraintBottom toBottomOf="parent"
motion:transitionEasing="cubic(0.2, 0.7, 0.3, 1)"
android:rotation="360">

If you are unfamiliar with Bézier curves, consider using the curve generator online at the following URL:
https://cubic-bezier.com/

For most requirements, however, easing can be specified using the built-in standard, accelerate and decelerate
values:

motion:layout constraintBottom toBottomOf="parent"
motion:transitionEasing="decelerate"

android:rotation="360">

49.10 KeyTrigger

The trigger keyframe (KeyTrigger) allows a method on a view to be called when the animation reaches a
specified frame position within the animation timeline. This also takes into consideration the direction of the
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animations. For example, different methods can be called depending on whether the animation runs forward or
backward. Consider a button that is to be made visible when the animation moves beyond 20% of the timeline.
The KeyTrigger would be implemented within the KeyFrameSet of the Transition element as follows using the
onPositiveCross property:

<KeyFrameSet>
<KeyTrigger
motion: framePosition="20"
motion:onPositiveCross="show"

motion:motionTarget="@id/button"/>

Similarly, if the same button is to be hidden when the animation is reversed and drops below 10%, a second key
trigger could be added using the onNegativeCross property:
<KeyTrigger

motion:framePosition="10"

motion:onNegativeCross="show"

motion:motionTarget="Q@id/button2"/>

If the animation is using toggle action, use the onCross property:
<KeyTrigger
motion:framePosition="10"
motion:onCross="show"

motion:motionTarget="@id/button2"/>

49.11 Cycle and Time Cycle Keyframes

While position keyframes can be used to add intermediate state changes into the animation, this would
quickly become cumbersome if large numbers of repetitive positions and changes needed to be implemented.
For situations where state changes need to be performed repetitively with predictable changes, MotionLayout
includes the Cycle and Time Cycle keyframes. The chapter entitled “A MotionLayout KeyCycle Tutorial” will
cover this topic in detail.

49.12 Starting an Animation from Code

So far in this chapter, we have only looked at controlling an animation using the OnSwipe and OnClick handlers.
It is also possible to start an animation from within code by calling methods on the MotionLayout instance. The
following code, for example, runs the transition from start to end with a duration of 2000ms for a layout named
motionLayout:

motionLayout.setTransitionDuration (2000)
motionLayout.transitionToEnd ()
In the absence of additional settings, the start and end states used for the animation will be those declared in the

Transition declaration of the MotionScene file. To use specific start and end constraint sets, reference them by id
in a call to the setTransition() method of the MotionLayout instance:

motionLayout.setTransition (R.id.myStart, R.id.myEnd)

motionLayout.transitionToEnd ()
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To monitor the state of an animation while it is running, add a transition listener to the MotionLayout instance
as follows:
motionLayout.setTransitionListener (

object: MotionLayout.TransitionListener {

override fun onTransitionTrigger (motionLayout: MotionLayout?,
triggerId: Int, positive: Boolean, progress: Float) {
// Called when a trigger keyframe threshold is crossed

override fun onTransitionStarted (motionLayout: MotionLayout?,
startId: Int, endId: Int) {
// Called when the transition starts

override fun onTransitionChange (motionLayout: MotionLayout?,
startId: Int, endId: Int, progress: Float) ({
// Called each time a property changes. Track progress value to find

// current position

override fun onTransitionCompleted(motionLayout: MotionLayout?,
currentId: Int) {

// Called when the transition is complete

1)
49.13 Summary

MotionLayout is a subclass of ConstraintLayout designed specifically to add animation effects to the views in
user interface layouts. MotionLayout works by animating the transition of a view between two states defined
by start and end constraint sets. Additional animation effects may be added between these start and end points
using keyframes.

Animations may be triggered via OnClick or OnSwipe handlers or programmatically via method calls on the
MotionLayout instance.
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Chapter 61

61. An Introduction to Kotlin
Coroutines

When an Android application is first started, the runtime system creates a single thread in which all components
will run by default. This thread is generally referred to as the main thread. The primary role of the main thread
is to handle the user interface in terms of event handling and interaction with views in the user interface. Any
additional components started within the application will, by default, also run on the main thread.

Any code within an application that performs a time-consuming task using the main thread will cause the
entire application to appear to lock up until the task is completed. This typically results in the operating system
displaying an “Application is not responding” warning to the user. This is far from the desired behavior for
any application. Fortunately, Kotlin provides a lightweight alternative in the form of Coroutines. This chapter
will introduce Coroutines, including terminology such as dispatchers, coroutine scope, suspend functions,
coroutine builders, and structured concurrency. The chapter will also explore channel-based communication
between coroutines.

61.1 What are Coroutines?

Coroutines are blocks of code that execute asynchronously without blocking the thread from which they
are launched. Coroutines can be implemented without worrying about building complex AsyncTask
implementations or directly managing multiple threads. Because of the way they are implemented, coroutines
are much more efficient and less resource intensive than using traditional multi-threading options. Coroutines
also make for code that is much easier to write, understand and maintain since it allows code to be written
sequentially without having to write callbacks to handle thread-related events and results.

Although a relatively recent addition to Kotlin, there is nothing new or innovative about coroutines. Coroutines,
in one form or another, have existed in programming languages since the 1960s and are based on a model
known as Communicating Sequential Processes (CSP). Though it does so efficiently, Kotlin still uses multi-
threading behind the scenes.

61.2 Threads vs. Coroutines

A problem with threads is that they are a finite resource and expensive in terms of CPU capabilities and system
overhead. In the background, much work is involved in creating, scheduling, and destroying a thread. Although
modern CPUs can run large numbers of threads, the actual number of threads that can be run in parallel at
any one time is limited by the number of CPU cores (though newer CPUs have 8 cores, most Android devices
contain CPUs with 4 cores). When more threads are required than there are CPU cores, the system has to
perform thread scheduling to decide how the execution of these threads is to be shared between the available
cores.

To avoid these overheads, instead of starting a new thread for each coroutine and destroying it when the
coroutine exits, Kotlin maintains a pool of active threads and manages how coroutines are assigned to those
threads. When an active coroutine is suspended, the Kotlin runtime saves it, and another coroutine resumes to
take its place. When the coroutine is resumed, it is restored to an existing unoccupied thread within the pool to
continue executing until it either completes or is suspended. Using this approach, a limited number of threads
are used efficiently to execute asynchronous tasks with the potential to perform large numbers of concurrent
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tasks without the inherent performance degeneration that would occur using standard multi-threading.

61.3 Coroutine Scope

All coroutines must run within a specific scope, allowing them to be managed as groups instead of as individual
ones. This is particularly important when canceling and cleaning up coroutines, for example, when a Fragment
or Activity is destroyed, and ensuring that coroutines do not “leak” (in other words, continue running in the
background when the app no longer needs them). By assigning coroutines to a scope, they can, for example, all
be canceled in bulk when they are no longer needed.

Kotlin and Android provide built-in scopes and the option to create custom scopes using the CoroutineScope
class. The built-in scopes can be summarized as follows:

+ GlobalScope - GlobalScope is used to launch top-level coroutines tied to the entire application lifecycle.
Since this has the potential for coroutines in this scope to continue running when not needed (for example,
when an Activity exits), use of this scope is not recommended for Android applications. Coroutines running
in GlobalScope are considered to be using unstructured concurrency.

» ViewModelScope - Provided specifically for ViewModel instances when using the Jetpack architecture
ViewModel component. Coroutines launched in this scope from within a ViewModel instance are automatically
canceled by the Kotlin runtime system when the corresponding ViewModel instance is destroyed.

LifecycleScope - Every lifecycle owner has associated with it a LifecycleScope. This scope is canceled when
the corresponding lifecycle owner is destroyed, making it particularly useful for launching coroutines from
within activities and fragments.

For all other requirements, a custom scope will likely be used. The following code, for example, creates a custom
scope named myCoroutineScope:

private val myCoroutineScope = CoroutineScope (Dispatchers.Main)

The coroutineScope declares the dispatcher that will be used to run coroutines (though this can be overridden)

and must be referenced each time a coroutine is started if it is to be included within the scope. All of the running
coroutines in a scope can be canceled via a call to the cancel() method of the scope instance:

myCoroutineScope.cancel ()

61.4 Suspend Functions
A suspend function is a special type of Kotlin function that contains the code of a coroutine. It is declared
using the Kotlin suspend keyword, which indicates to Kotlin that the function can be paused and resumed later,
allowing long-running computations to execute without blocking the main thread.
The following is an example suspend function:
suspend fun mySlowTask() {
// Perform long-running tasks here
}
61.5 Coroutine Dispatchers
Kotlin maintains threads for different types of asynchronous activity, and when launching a coroutine, it will be
necessary to select the appropriate dispatcher from the following options:

« Dispatchers.Main - Runs the coroutine on the main thread and is suitable for coroutines that need to make
changes to the UT and as a general-purpose option for performing lightweight tasks.

« Dispatchers.IO - Recommended for coroutines that perform network, disk, or database operations.
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o Dispatchers.Default - Intended for CPU-intensive tasks such as sorting data or performing complex
calculations.

The dispatcher is responsible for assigning coroutines to appropriate threads and suspending and resuming the
coroutine during its lifecycle. In addition to the predefined dispatchers, it is also possible to create dispatchers
for your own custom thread pools.

61.6 Coroutine Builders

The coroutine builders bring together all of the components covered so far and launch the coroutines so that
they start executing. For this purpose, Kotlin provides the following six builders:

« launch - Starts a coroutine without blocking the current thread and does not return a result to the caller. Use
this builder when calling a suspend function from within a traditional function and when the results of the
coroutine do not need to be handled (sometimes referred to as “fire and forget” coroutines).

o async - Starts a coroutine and allows the caller to wait for a result using the await() function without blocking
the current thread. Use async when you have multiple coroutines that need to run in parallel. The async
builder can only be used from within another suspend function.

withContext — Allows a coroutine to be launched in a different context from that used by the parent coroutine.
Using this builder, a coroutine running using the Main context could launch a child coroutine in the Default
context. The withContext builder also provides a useful alternative to async when returning results from a
coroutine.

coroutineScope — The coroutineScope builder is ideal for situations where a suspend function launches
multiple coroutines that will run in parallel and where some action must occur only when all the coroutines
reach completion. If those coroutines are launched using the coroutineScope builder, the calling function will
not return until all child coroutines have completed. When using coroutineScope, a failure in any coroutine
will cancel all other coroutines.

supervisorScope — Similar to the coroutineScope outlined above, except that a failure in one child does not
result in the cancellation of the other coroutines.

runBlocking - Starts a coroutine and blocks the current thread until the coroutine reaches completion. This
is typically the exact opposite of what is wanted from coroutines but is useful for testing code and when
integrating legacy code and libraries. Otherwise to be avoided.

61.7 Jobs

Each call to a coroutine builder, such as launch or async, returns a Job instance which can, in turn, be used
to track and manage the lifecycle of the corresponding coroutine. Subsequent builder calls from within the
coroutine create new Job instances, which will become children of the immediate parent Job, forming a parent-
child relationship tree where canceling a parent Job will recursively cancel all its children. Canceling a child does
not, however, cancel the parent, though an uncaught exception within a child created using the launch builder
may result in the cancellation of the parent (this is not the case for children created using the async builder,
which encapsulates the exception in the result returned to the parent).

The status of a coroutine can be identified by accessing the isActive, isCompleted, and isCancelled properties of
the associated Job object. In addition to these properties, several methods are also available on a Job instance.
For example, a Job and all of its children may be canceled by calling the cancel() method of the Job object, while
a call to the cancelChildren() method will cancel all child coroutines.

The join() method can be called to suspend the coroutine associated with the job until all of its child jobs have
completed. To perform this task and cancel the Job once all child jobs have completed, call the cancelAndjoin()
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method.

This hierarchical Job structure, together with coroutine scopes, form the foundation of structured concurrency,
which aims to ensure that coroutines do not run longer than required without manually keeping references to
each coroutine.

61.8 Coroutines — Suspending and Resuming

It helps to see some coroutine examples in action to understand coroutine suspension better. To start with, let’s
assume a simple Android app containing a button that, when clicked, calls a function named startTask(). This
function calls a suspend function named performSlowTask() using the Main coroutine dispatcher. The code for
this might read as follows:

private val myCoroutineScope = CoroutineScope (Dispatchers.Main)

fun startTask (view: View) {
myCoroutineScope.launch (Dispatchers.Main) {

performSlowTask ()

}

In the above code, a custom scope is declared and referenced in the call to the launch builder, which, in turn,
calls the performSlowTask() suspend function. Since startTask() is not a suspend function, the coroutine must be
started using the launch builder instead of the async builder.

Next, we can declare the performSlowTask() suspend function as follows:
suspend fun performSlowTask () {
Log.1i(TAG, "performSlowTask before")
delay (5 000) // simulates long-running task
Log.1(TAG, "performSlowTask after")
}

As implemented, all the function does is output diagnostic messages before and after performing a 5-second
delay, simulating a long-running task. While the 5-second delay is in effect, the user interface will continue
to be responsive because the main thread is not being blocked. To understand why it helps to explore what is
happening behind the scenes.

First, the startTask() function is executed and launches the performSlowTask() suspend function as a coroutine.
This function then calls the Kotlin delay() function passing through a time value. The built-in Kotlin delay()
function is implemented as a suspend function, so it is also launched as a coroutine by the Kotlin runtime
environment. The code execution has now reached what is referred to as a suspend point which will cause the
performSlowTask() coroutine to be suspended while the delay coroutine is running. This frees up the thread on
which performSlowTask() was running and returns control to the main thread so that the Ul is unaffected.

Once the delay() function reaches completion, the suspended coroutine will be resumed and restored to a thread
from the pool where it can display the Log message and return to the startTask() function.

When working with coroutines in Android Studio suspend points within the code editor are marked as shown
in the figure below:
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Figure 61-1
61.9 Returning Results from a Coroutine
The above example ran a suspend function as a coroutine but did not demonstrate how to return results.

However, suppose the performSlowTask() function is required to return a string value to be displayed to the user
via a TextView object.

To do this, we must rewrite the suspend function to return a Deferred object. A Deferred object is a commitment
to provide a value at some point in the future. By calling the await() function on the Deferred object, the Kotlin
runtime will deliver the value when the coroutine returns it. The code in our startTask() function might,
therefore, be rewritten as follows:

fun startTask(view: View) {

coroutineScope.launch (Dispatchers.Main) {

statusText.text = performSlowTask () .await ()

}

The problem now is that we are having to use the launch builder to start the coroutine since startTask() is not a
suspend function. As outlined earlier in this chapter, it is only possible to return results when using the async
builder. To get around this, we have to adapt the suspend function to use the async builder to start another
coroutine that returns a Deferred result:
suspend fun performSlowTask(): Deferred<String> =
coroutineScope.async (Dispatchers.Default) {
Log.1(TAG, "performSlowTask before")
delay (5 000)
Log.1(TAG, "performSlowTask after")
return@async "Finished"

}

When the app runs, the “Finished” result string will be displayed on the TextView object when the
performSlowTask() coroutine completes. Once again, the wait for the result will occur in the background without
blocking the main thread.

61.10 Using withContext

As we have seen, coroutines are launched within a specified scope and using a specific dispatcher. By default,
any child coroutines will inherit the same dispatcher as that used by the parent. Consider the following code
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designed to call multiple functions from within a suspend function:

fun startTask(view: View) {

coroutineScope.launch (Dispatchers.Main) {

performTasks ()

suspend fun performTasks () {
performTaskl ()
performTask?2 ()
performTask3 ()

suspend fun performTaskl () {
Log.i(TAG, "Task 1 ${Thread.currentThread() .name}")

suspend fun performTask2 () {
Log.i(TAG, "Task 2 ${Thread.currentThread() .name}")

suspend fun performTask3 () {
Log.i(TAG, "Task 3 ${Thread.currentThread() .name}")
}

Since the performTasks() function was launched using the Main dispatcher, all three functions will default to the
main thread. To prove this, the functions have been written to output the name of the thread in which they are

running. On execution, the Logcat panel will contain the following output:
Task 1 main
Task 2 main

Task 3 main

However, imagine that the performTask2() function performs network-intensive operations more suited to
the IO dispatcher. This can easily be achieved using the withContext launcher, which allows the context of a
coroutine to be changed while still staying in the same coroutine scope. The following change switches the

performTask2() coroutine to an IO thread:

suspend fun performTasks () {
performTaskl ()
withContext (Dispatchers.IO) { performTask2() }
performTask3 ()

}

When executed, the output will read as follows, indicating that the Task 2 coroutine is no longer on the main

thread:

Task 1 main

Task 2 DefaultDispatcher-worker-1
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Task 3 main

The withContext builder also provides an interesting alternative to using the async builder and the Deferred
object await() call when returning a result. Using withContext, the code from the previous section can be
rewritten as follows:

fun startTask(view: View) {

coroutineScope.launch (Dispatchers.Main) {

statusText.text = performSlowTask ()

suspend fun performSlowTask(): String =
withContext (Dispatchers.Main) {
Log.1(TAG, "performSlowTask before")
delay (5 000)
Log.1(TAG, "performSlowTask after")

return@withContext "Finished"

}
61.11 Coroutine Channel Communication

Channels provide a simple way to implement communication between coroutines, including streams of data.
In the simplest form, this involves the creation of a Channel instance and calling the send() method to send the
data. Once sent, transmitted data can be received in another coroutine via a call to the receive() method of the
same Channel instance.

The following code, for example, passes six integers from one coroutine to another:

import kotlinx.coroutines.channels.*

val channel = Channel<Int> ()

suspend fun channelDemo () {
coroutineScope.launch (Dispatchers.Main) { performTaskl () }
coroutineScope.launch (Dispatchers.Main) { performTask2() }
}
suspend fun performTaskl () {

(1..6).forEach {

channel.send (it)
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suspend fun performTask2 () {
repeat (6) |

Log.d(TAG, "Received: ${channel.receive()}")

}

When executed, the following logcat output will be generated:
Received: 1

Received:

Received:

2
3
Received: 4
Received: 5
6

Received:

61.12 Summary

Kotlin coroutines provide a simpler and more efficient approach to performing asynchronous tasks than
traditional multi-threading. Coroutines allow asynchronous tasks to be implemented in a structured way
without implementing the callbacks associated with typical thread-based tasks. This chapter has introduced the
basic concepts of coroutines, including jobs, scope, builders, suspend functions, structured concurrency, and
channel-based communication.

494



Chapter 68

68. An Overview of Android SQLite
Databases

Mobile applications that do not need to store at least some persistent data are few and far between. The use of
databases is an essential aspect of most applications, ranging from almost entirely data-driven applications to
those that need to store small amounts of data, such as the prevailing game score.

The importance of persistent data storage becomes even more evident when considering the transient lifecycle
of the typical Android application. With the ever-present risk that the Android runtime system will terminate
an application component to free up resources, a comprehensive data storage strategy to avoid data loss is a key
factor in designing and implementing any application development strategy.

This chapter will cover the SQLite database management system bundled with the Android operating system
and outline the Android SDK classes that facilitate persistent SQLite-based database storage within an Android
application. Before delving into the specifics of SQLite in the context of Android development, however, a brief
overview of databases and SQL will be covered.

68.1 Understanding Database Tables

Database Tables provide the most basic level of data structure in a database. Each database can contain multiple
tables, each designed to hold information of a specific type. For example, a database may contain a customer
table that contains the name, address, and telephone number of each of the customers of a particular business.
The same database may also include a products table used to store the product descriptions with associated
product codes for the items sold by the business.

Each table in a database is assigned a name that must be unique within that particular database. A table name,
once assigned to a table in one database, may not be used for another table except within the context of another
database.

68.2 Introducing Database Schema

Database Schemas define the characteristics of the data stored in a database table. For example, the table schema
for a customer database table might define the customer name as a string of no more than 20 characters long and
the customer phone number is a numerical data field of a certain format.

Schemas are also used to define the structure of entire databases and the relationship between the various tables
in each database.

68.3 Columns and Data Types

It is helpful at this stage to begin viewing a database table as similar to a spreadsheet where data is stored in rows
and columns.

Each column represents a data field in the corresponding table. For example, a table’s name, address, and
telephone data fields are all columns.

Each column, in turn, is defined to contain a certain type of data. Therefore, a column designed to store numbers
would be defined as containing numerical data.
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68.4 Database Rows

Each new record saved to a table is stored in a row. Each row, in turn, consists of the columns of data associated
with the saved record.

Once again, consider the spreadsheet analogy described earlier in this chapter. Each entry in a customer table
is equivalent to a row in a spreadsheet, and each column contains the data for each customer (name, address,
telephone, etc.). When a new customer is added to the table, a new row is created, and the data for that customer
is stored in the corresponding columns of the new row.

Rows are also sometimes referred to as records or entries, and these terms can generally be used interchangeably.

68.5 Introducing Primary Keys

Each database table should contain one or more columns that can be used to identify each row in the table
uniquely. This is known in database terminology as the Primary Key. For example, a table may use a bank
account number column as the primary key. Alternatively, a customer table may use the customer’s social
security number as the primary key.

Primary keys allow the database management system to uniquely identify a specific row in a table. Without
a primary key, retrieving or deleting a specific row in a table would not be possible because there can be no
certainty that the correct row has been selected. For example, suppose a table existed where the customer’s last
name had been defined as the primary key. Imagine the problem if more than one customer named “Smith” were
recorded in the database. Without some guaranteed way to identify a specific row uniquely, ensuring the correct
data was being accessed at any given time would be impossible.

Primary keys can comprise a single column or multiple columns in a table. To qualify as a single column primary
key, no two rows can contain matching primary key values. When using multiple columns to construct a primary
key, individual column values do not need to be unique, but all the columns’ values combined must be unique.

68.6 What is SQLite?

SQLite is an embedded, relational database management system (RDBMS). Most relational databases (Oracle,
SQL Server, and MySQL being prime examples) are standalone server processes that run independently and
cooperate with applications requiring database access. SQLite is referred to as embedded because it is provided in
the form of a library that is linked into applications. As such, there is no standalone database server running in
the background. All database operations are handled internally within the application through calls to functions
in the SQLite library.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

SQLite is written in the C programming language, so the Android SDK provides a Java-based “wrapper” around
the underlying database interface. This consists of classes that may be utilized within an application’s Java or
Kotlin code to create and manage SQLite-based databases.

For additional information about SQLite, refer to https://www.sqlite.org.

68.7 Structured Query Language (SQL)

Data is accessed in SQLite databases using a high-level language known as Structured Query Language. This is
usually abbreviated to SQL and pronounced sequel. SQL is a standard language used by most relational database
management systems. SQLite conforms mostly to the SQL-92 standard.
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SQL is a straightforward and easy-to-use language designed specifically to enable the reading and writing of
database data. Because SQL contains a small set of keywords, it can be learned quickly. In addition, SQL syntax is
more or less identical between most DBMS implementations, so having learned SQL for one system, your skills
will likely transfer to other database management systems.

While some basic SQL statements will be used within this chapter, a detailed overview of SQL is beyond the
scope of this book. However, many other resources provide a far better overview of SQL than we could ever hope
to provide in a single chapter here.

68.8 Trying SQLite on an Android Virtual Device (AVD)

For readers unfamiliar with databases and SQLite, diving right into creating an Android application that
uses SQLite may seem intimidating. Fortunately, Android is shipped with SQLite pre-installed, including an
interactive environment for issuing SQL commands from within an adb shell session connected to a running
Android AVD emulator instance. This is a useful way to learn about SQLite and SQL and an invaluable tool for
identifying problems with databases created by applications running in an emulator.

To launch an interactive SQLite session, begin by running an AVD session. This can be achieved within Android
Studio by launching the Android Virtual Device Manager (Tools -> AVD Manager), selecting a previously
configured AVD, and clicking on the start button.

Once the AVD is up and running, open a Terminal or Command-Prompt window and connect to the emulator
using the adb command-line tool as follows (note that the —e flag directs the tool to look for an emulator with
which to connect, rather than a physical device):

adb —-e shell

Once connected, the shell environment will provide a command prompt at which commands may be entered.
Begin by obtaining superuser privileges using the su command:

Generic x86:/ su

root@android:/ #

If a message indicates that superuser privileges are not allowed, the AVD instance likely includes Google Play

support. To resolve this, create a new AVD and, on the “Choose a device definition” screen, select a device that
does not have a marker in the “Play Store” column.

The data in SQLite databases are stored in database files on the file system of the Android device on which the
application is running. By default, the file system path for these database files is as follows:

/data/data/<package name>/databases/<database filename>.db

For example, if an application with the package name com.example. MyDBApp creates a database named
mydatabase.db, the path to the file on the device would read as follows:

/data/data/com.example.MyDBApp/databases/mydatabase.db

For this exercise, therefore, change directory to /data/data within the adb shell and create a sub-directory
hierarchy suitable for some SQLite experimentation:

cd /data/data

mkdir com.example.dbexample

cd com.example.dbexample

mkdir databases

cd databases

With a suitable location created for the database file, launch the interactive SQLite tool as follows:

root@android:/data/data/databases # sglite3 ./mydatabase.db
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sqlite3 ./mydatabase.db
SQLite version 3.8.10.2 2015-05-20 18:17:19
Enter ".help" for usage hints.

sglite>

At the sqlite> prompt, commands may be entered to perform tasks such as creating tables and inserting and
retrieving data. For example, to create a new table in our database with fields to hold ID, name, address, and
phone number fields, the following statement is required:

create table contacts (_id integer primary key autoincrement, name text, address

text, phone text);

Note that each row in a table should have a primary key that is unique to that row. In the above example, we have
designated the ID field as the primary key, declared it as being of type integer, and asked SQLite to increment
the number automatically each time a row is added. This is a common way to ensure that each row has a unique
primary key. On most other platforms, the primary key’s name choice is arbitrary. In the case of Android,
however, the key must be named _id for the database to be fully accessible using all Android database-related
classes. The remaining fields are each declared as being of type text.

To list the tables in the currently selected database, use the .tables statement:
sglite> .tables

contacts

To insert records into the table:

sglite> insert into contacts (name, address, phone) wvalues ("Bill Smith", "123
Main Street, California™, "123-555-2323");

sglite> insert into contacts (name, address, phone) wvalues ("Mike Parks", "10
Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:

sglite> select * from contacts;

1|Bill Smith|123 Main Street, Californial|l23-555-2323

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:

sglite> select * from contacts where name="Mike Parks";

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:

sglite> .exit

When running an Android application in the emulator environment, any database files will be created on the
emulator’s file system using the previously discussed path convention. This has the advantage that you can

connect with adb, navigate to the location of the database file, load it into the sqlite3 interactive tool, and perform
tasks on the data to identify possible problems occurring in the application code.

It is also important to note that while connecting with an adb shell to a physical Android device is possible, the
shell is not granted sufficient privileges by default to create and manage SQLite databases. Therefore, database
problem debugging is best performed using an AVD session.

68.9 The Android Room Persistence Library

As previously mentioned, SQLite is written in the C programming language, while Android applications are
primarily developed using Java or Kotlin. To bridge this “language gap” in the past, the Android SDK included
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a set of classes that provide a layer on top of the SQLite database management system. Although available in
the SDK, use of these classes still involved writing a considerable amount of code and did not take advantage of
the new architecture guidelines and features such as LiveData and lifecycle management. The Android Jetpack
Architecture Components include the Room persistent library to address these shortcomings. This library
provides a high-level interface on top of the SQLite database system, making it easy to store data locally on
Android devices with minimal coding while also conforming to the recommendations for modern application
architecture.

The next few chapters will provide an overview and tutorial on SQLite database management using the Room
persistence library.

68.10 Summary

SQLite is a lightweight, embedded relational database management system included in the Android framework
and provides a mechanism for implementing organized persistent data storage for Android applications. When
combined with the Room persistence library, Android provides a modern way to implement data storage from
within an Android app.

This chapter provided an overview of databases in general and SQLite in particular within the context of
Android application development. The next chapters will provide an overview of the Room persistence library,
after which we will work through the creation of an example application.
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Chapter 76

76. Android Audio Recording and
Playback using MediaPlayer and
MediaRecorder

This chapter will provide an overview of the MediaRecorder class and explain how this class can be used to
record audio or video. The use of the MediaPlayer class to play back audio will also be covered. Having covered
the basics, an example application will be created to demonstrate these techniques. In addition to looking at
audio and video handling, this chapter will also touch on saving files to the SD card.

76.1 Playing Audio

In terms of audio playback, most implementations of Android support AAC LC/LTP, HE-AACv1 (AAC+), HE-
AACV2 (enhanced AAC+), AMR-NB, AMR-WB, MP3, MIDI, Ogg Vorbis, and PCM/WAVE formats.

Audio playback can be performed using either the MediaPlayer or the AudioTrack classes. AudioTrack is a more
advanced option that uses streaming audio buffers and provides greater control over the audio. The MediaPlayer
class, on the other hand, provides an easier programming interface for implementing audio playback and will
meet the needs of most audio requirements.

The MediaPlayer class has associated with it a range of methods that can be called by an application to perform
certain tasks. A subset of some of the key methods of this class is as follows:

o create() — Called to create a new instance of the class, passing through the Uri of the audio to be played.
« setDataSource() — Sets the source from which the audio is to play.

o prepare() — Instructs the player to prepare to begin playback.

o start() — Starts the playback.

o pause() — Pauses the playback. Playback may be resumed via a call to the resume() method.

o stop() - Stops playback.

o setVolume() - Takes two floating-point arguments specifying the playback volume for the left and right
channels.

o resume() — Resumes a previously paused playback session.

o reset() — Resets the state of the media player instance. Essentially sets the instance back to the uninitialized
state. At a minimum, a reset player will need to have the data source set again, and the prepare() method
called.

o release() — To be called when the player instance is no longer needed. This method ensures that any resources
held by the player are released.

In a typical implementation, an application will instantiate an instance of the MediaPlayer class, set the source
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of the audio to be played, and then call prepare() followed by start(). For example:

val mediaPlayer = MediaPlayer ()

mediaPlayer?.setDataSource ("https://www.yourcompany.com/myaudio.mp3")

mediaPlayer?.prepare ()

mediaPlayer?.start ()

76.2 Recording Audio and Video using the MediaRecorder Class

As with audio playback, recording can be performed using several different techniques. One option is to use the
MediaRecorder class, which, as with the MediaPlayer class, provides several methods that are used to record
audio:

setAudioSource() - Specifies the audio source to be recorded (typically, this will be MediaRecorder.
AudioSource. MIC for the device microphone).

setVideoSource() — Specifies the source of the video to be recorded (for example MediaRecorder.VideoSource.
CAMERA).

setOutputFormat() — Specifies the format into which the recorded audio or video is to be stored (for example
MediaRecorder.OutputFormat. AAC_ADTS).

setAudioEncoder() — Specifies the audio encoder for the recorded audio (for example MediaRecorder.
AudioEncoder.AAC).

setOutputFile() - Configures the path to the file into which the recorded audio or video will be stored.
prepare() — Prepares the MediaRecorder instance to begin recording.
start() - Begins the recording process.

stop() — Stops the recording process. Once a recorder has been stopped, it must be completely reconfigured
and prepared before restarting.

reset() — Resets the recorder. The instance will need to be completely reconfigured and prepared before being
restarted.

release() — Should be called when the recorder instance is no longer needed. This method ensures that all
resources held by the instance are released.

A typical implementation using this class will set the source, output, encoding format, and output file. Calls will
then be made to the prepare() and start() methods. The stop() method will then be called when the recording
ends, followed by the reset() method. When the application no longer needs the recorder instance, a call to the
release() method is recommended:

val mediaRecorder = MediaRecorder (context)

mediaRecorder?.setAudioSource (MediaRecorder.AudioSource.MIC)
mediaRecorder?.setOutputFormat (MediaRecorder.OutputFormat.THREE GPP)

mediaRecorder?.setAudioEncoder (MediaRecorder.AudioEncoder.AMR NB)

mediaRecorder?.setOutputFile (audioFilePath)

mediaRecorder?.prepare ()

mediaRecorder?.start ()
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mediaRecorder?.stop ()
mediaRecorder?.reset ()

mediaRecorder?.release ()

To record audio, the manifest file for the application must include the android.permission.RECORD_AUDIO
permission:

<uses-permission android:name="android.permission.RECORD AUDIO" />

As outlined in the chapter entitled “Making Runtime Permission Requests in Android”, access to the microphone
falls into the category of dangerous permissions. To support Android 6, therefore, a specific request for
microphone access must also be made when the application launches, the steps for which will be covered later
in this chapter.

76.3 About the Example Project

The remainder of this chapter will create an example application to demonstrate the use of the MediaPlayer and
MediaRecorder classes to implement the recording and playback of audio on an Android device.

When developing applications that use specific hardware features, the microphone being a case in point, it is
important to check the feature’s availability before attempting to access it in the application code. The application
created in this chapter will, therefore, also include code to detect the presence of a microphone on the device.

Once completed, this application will provide a straightforward interface allowing the user to record and play
audio. The recorded audio will be stored within an audio file on the device. That being the case, this tutorial will
also briefly explore the mechanism for using SD Card storage.

76.4 Creating the AudioApp Project

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter AudioApp into the Name field and specify com.ebookfrenzy.audioapp as the package name. Before clicking
on the Finish button, change the Minimum API level setting to API 31: Android 12.0 and the Language menu
to Kotlin. Add view binding support to the project using the steps outlined in section 18.8 Migrating a Project
to View Binding.

76.5 Designing the User Interface

Once the new project has been created, select the activity_main.xml file from the Project tool window, and with
the Layout Editor tool in Design mode, select the “Hello World!” TextView and delete it from the layout.

Drag and drop three Button views onto the layout. The positioning of the buttons is not paramount to this
example, though Figure 76-1 shows a suggested layout using a vertical chain.

Configure the buttons to display string resources that read Play, Record, and Stop and give them view IDs of
playButton, recordButton, and stopButton, respectively.

Select the Play button and, within the Attributes panel, configure the onClick property to call a method named
playAudio when selected by the user. Repeat these steps to configure the remaining buttons to call methods
named recordAudio and stopAudio, respectively.
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Figure 76-1
76.6 Checking for Microphone Availability

Attempting to record audio on a device without a microphone will cause the Android system to throw an
exception. It is vital, therefore, that the code checks for the presence of a microphone before making such an
attempt. There are several ways of doing this, including checking for the physical presence of the device. An
easier approach that is more likely to work on different Android devices is to ask the Android system if it has
a package installed for a particular feature. This involves creating an instance of the Android PackageManager
class and then calling the object’s hasSystemFeature() method. PackageManager. FEATURE_MICROPHONE is
the feature of interest in this case.

For this example, we will create a method named hasMicrophone() that may be called upon to check for the
presence of a microphone. Within the Project tool window, locate and double-click on the MainActivity.kt file
and modify it to add this method:

package com.ebookfrenzy.audioapp
import android.content.pm.PackageManager
class MainActivity : AppCompatActivity() {
private fun hasMicrophone(): Boolean {
val pmanager = this.packageManager

return pmanager.hasSystemFeature (
PackageManager . FEATURE MICROPHONE)
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76.7 Initializing the Activity

The next step is to modify the activity to perform several initialization tasks. Remaining within the MainActivity.kt
file, modify the code as follows:

import android.media.MediaRecorder
import android.os.Environment
import android.view.View

import android.media.MediaPlayer

import java.io.File

class MainActivity : AppCompatActivity() {

private lateinit var binding: ActivityMainBinding
private var mediaRecorder: MediaRecorder? = null

private var mediaPlayer: MediaPlayer? = null

private var audioFilePath: String? = null

private var isRecording = false

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
binding = ActivityMainBinding.inflate (layoutInflater)
setContentView (binding.root)

audioSetup ()

private fun audioSetup() {

if ('hasMicrophone()) {
binding.stopButton.isEnabled = false
binding.playButton.isEnabled = false
binding.recordButton.isEnabled = false

} else {
binding.playButton.isEnabled

false
binding.stopButton.isEnabled = false

val audioFile File(this.filesDir, "myaudio.3gp")

audioFilePath = audioFile.absolutePath
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}

The added code calls hasMicrophone() method to ascertain whether the device includes a microphone. If it does
not, all the buttons are disabled; otherwise, only the Stop and Play buttons are disabled.

The next line of code needs a little more explanation:

val audioFile = File(this.filesDir, "myaudio.3gp")
audioFilePath = audioFile.absolutePath

This code creates a new file named myaudio.3gp within the app’s internal storage to store the audio recording.

76.8 Implementing the record Audio() Method

The recordAudio() method will be called when the user touches the Record button. This method will need to
turn the appropriate buttons on and off and configure the MediaRecorder instance with information about the
source of the audio, the output format and encoding, and the file’s location into which the audio is to be stored.
Finally, the prepare() and start() methods of the MediaRecorder object will need to be called. Combined, these
requirements result in the following method implementation in the MainActivity.kt file:
fun recordAudio (view: View) {

isRecording = true

binding.stopButton.isEnabled = true

binding.playButton.isEnabled = false

binding.recordButton.isEnabled = false

try {
mediaRecorder = MediaRecorder (this)
mediaRecorder?.setAudioSource (MediaRecorder.AudioSource.MIC)
mediaRecorder?.setOutputFormat (

MediaRecorder.OutputFormat.THREE_GPP)

mediaRecorder?.setOutputFile (audioFilePath)
mediaRecorder?.setAudioEncoder (MediaRecorder.AudioEncoder.AMR NB)
mediaRecorder?.prepare ()

} catch (e: Exception) {
e.printStackTrace ()

}

mediaRecorder?.start ()

}
76.9 Implementing the stopAudio() Method

The stopAudio() method enables the Play button, turning oft the Stop button, and then stopping and resetting
the MediaRecorder instance. The code to achieve this reads as outlined in the following listing and should be
added to the MainActivity.kt file:

fun stopAudio (view: View) {

binding.stopButton.isEnabled = false

binding.playButton.isEnabled true

if (isRecording) {
binding.recordButton.isEnabled = false
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mediaRecorder?.stop ()
mediaRecorder?.release ()
mediaRecorder = null
isRecording = false

} else {
mediaPlayer?.release ()
mediaPlayer = null
binding.recordButton.isEnabled = true

)
76.10 Implementing the playAudio() method

The playAudio() method will create a new MediaPlayer instance, assign the audio file located on the SD card as
the data source and then prepare and start the playback:
fun playAudio (view: View) {

binding.playButton.isEnabled = false

binding.recordButton.isEnabled = false

binding.stopButton.isEnabled = true

mediaPlayer = MediaPlayer ()
mediaPlayer?.setDataSource (audioFilePath)
mediaPlayer?.prepare ()
mediaPlayer?.start ()

)
76.11 Configuring and Requesting Permissions

Before testing the application, the appropriate permissions must be requested within the manifest file for the
application. Specifically, the application will require permission to access the microphone. Within the Project
tool window, locate and double-click on the AndroidManifest.xml file to load it into the editor and modify the
XML to add the permission tags:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">
<uses-permission android:name="android.permission.RECORD_AUDIO" />

<application

The above steps will be adequate to ensure that the user enables microphone access permission when the app is
installed on devices running versions of Android predating Android 6.0. Microphone access is categorized in
Android as being a dangerous permission because it allows the app to compromise the user’s privacy. For the
example app to function on Android 6 or later devices, code needs to be added to request permission at app
runtime.

Edit the MainActivity.kt file and begin by adding some additional import directives and a constant to act as
request identification codes for the permissions being requested:
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import android.Manifest
import android.widget.Toast
import androidx.core.app.ActivityCompat

import androidx.core.content.ContextCompat

class MainActivity : AppCompatActivity() {

private val RECORD_REQUEST CODE = 101

Next, a method needs to be added to the class, the purpose of which is to take as arguments the permission to
be requested and the corresponding request identification code. Remaining with the MainActivity.kt class file,
implement this method as follows:
private fun requestPermission (permissionType: String, requestCode: Int) {

val permission = ContextCompat.checkSelfPermission (this,

permissionType)

if (permission != PackageManager.PERMISSION GRANTED) {
ActivityCompat.requestPermissions (this,

arrayOf (permissionType), requestCode

}

Using the steps outlined in the “Making Runtime Permission Requests in Android” chapter of this book, the above
method verifies that the specified permission has not already been granted before making the request, passing
through the identification code as an argument.

When the request has been handled, the onRequestPermissionsResult() method will be called on the activity,
passing through the identification code and the request results. The next step, therefore, is to implement this
method within the MainActivity.kt file as follows:
override fun onRequestPermissionsResult (requestCode: Int,

permissions: Array<String>, grantResults: IntArray) {

super.onRequestPermissionsResult (requestCode, permissions, grantResults)

when (requestCode) {
RECORD REQUEST CODE -> {
if (grantResults.isEmpty () || grantResults[0]
!= PackageManager.PERMISSION GRANTED

binding.recordButton.isEnabled = false
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Toast.makeText (
this,
"Record permission required",
Toast.LENGTH LONG

) .show ()

}

The above code checks the request identifier code to identify which permission request has returned before
checking whether or not the corresponding permission was granted. If permission is denied, a message is
displayed to the user indicating that the app will not function and the record button is disabled.

Before testing the app, all that remains is to call the newly added requestPermission() method for microphone
access when the app launches. Remaining in the MainActivity.kt file, modify the audioSetup() method as follows:

private fun audioSetup () {

audioFilePath = audioFile.absolutePath

requestPermission(Manifest.permission.RECORD_AUDIO,
RECORD_REQUEST CODE)
}

76.12 Testing the Application

Compile and run the application on an Android device containing a microphone, allow microphone access, and
tap the Record button. After recording, touch Stop followed by Play. At this point, the recorded audio should
play back through the device speakers.

76.13 Summary

The Android SDK provides several mechanisms to implement audio recording and playback. This chapter has
looked at two of these: the MediaPlayer and MediaRecorder classes. Having covered the theory of using these
techniques, this chapter worked through creating an example application designed to record and then play back
audio. While working with audio in Android, this chapter also looked at the steps involved in ensuring that the
device on which the application is running has a microphone before attempting to record audio.
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Chapter 89

89. Working with Material Design 3
Theming

The appearance of an Android app is intended to conform to a set of guidelines defined by Material Design.
Google developed Material Design to provide a level of design consistency between different apps while also
allowing app developers to include their own branding in terms of color, typography, and shape choices (a
concept referred to as Material theming). In addition to design guidelines, Material Design also includes a set
of UI components for use when designing user interface layouts, many of which we have used throughout this
book.

This chapter will provide an overview of how theming works within an Android Studio project and explore how
the default design configurations provided for newly created projects can be modified to meet your branding
requirements.

89.1 Material Design 2 vs. Material Design 3

Before beginning, it is important to note that Google is transitioning from Material Design 2 to Material Design
3 and that Android Studio Hedgehog projects default to Material Design 3. Material Design 3 provides the basis
for Material You, a feature introduced in Android 12 that allows an app to automatically adjust theme elements to
complement preferences configured by the user on the device. For example, dynamic color support provided by
Material Design 3 allows the colors used in apps to adapt automatically to match the user’s wallpaper selection.

89.2 Understanding Material Design Theming

We know that Android app user interfaces are created by assembling components such as layouts, text fields, and
buttons. These components appear using default colors unless we specifically override a color attribute in the
XML layout resource file or by writing code. The project’s theme defines these default colors. The theme consists
of a set of color slots (declared in themes.xml files) which are assigned color values (declared in the colors.xml
file). Each UI component is programmed internally to use theme color slots as the default color for specific
attributes (such as the foreground and background colors of the Text widget). It follows, therefore, that we can
change the application-wide theme of an app by changing the colors assigned to specific theme slots. When the
app runs, the new default colors will be used for all widgets when the user interface is rendered.

89.3 Material Design 3 Theming

Before exploring Material Design 3, we must consider how it is used in an Android Studio project. The theme
used by an application project is declared as a property of the application element within the AndroidManifest.
xml file, for example:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">

<application
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android:supportsRtl="true"

android: theme="Q@style/Theme .MyDemoApp"
tools:targetApi="31">

<activity

As previously discussed, all of the files associated with the project theme are contained within the colors.xml and
themes.xml files located in the res -> values folder, as shown in Figure 89-1:

Figure 89-1
The theme itself is declared in the two themes.xml files located in the themes folder. These resource files declare
different color palettes containing Material Theme color slots for use when the device is in light or dark (night)
mode. Note that the style name property in each file must match that referenced in the AndroidManifest.xml file,
for example:
<resources xmlns:tools="http://schemas.android.com/tools">
<!-- Base application theme. -->

<style name="Base.Theme.MyDemoApp" parent="Theme.Material3.DayNight.
NoActionBar">

<!-- Customize your light theme here. -->
<!-- <item name="colorPrimary">Q@color/my light primary</item> -->
</style>

<style name="Theme.MyDemoApp" parent="Base.Theme.MyDemoApp" />

</resources>

These color slots (also referred to as color attributes) are used by the Material components to set colors when
they are rendered on the screen. For example, the colorPrimary color slot is used as the background color for the
Material Button component.

Color slots in MD3 are grouped as Primary, Secondary, Tertiary, Error, Background, and Surface. These slots
are further divided into pairs consisting of a base color and an “on” base color. This generally translates to the
background and foreground colors of a Material component.
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The particular group used for coloring will differ between widgets. A Material Button widget, for example, will
use the colorPrimary base color for the background color and colorOnPrimary for its content (i.e., the text or
icon it displays). The FloatingActionButton component, on the other hand, uses colorPrimaryContainer as the
background color and colorOnPrimaryContainer for the foreground. The correct group for a specific widget type
can usually be identified quickly by changing color settings in the theme files and reviewing the rendering in
the layout editor.

Suppose that we need to change colorPrimary to red. We achieve this by adding a new entry to the colors.xml file
for the red color and then assigning it to the colorPrimary slot in the themes.xml file. The colorPrimary slot in an
MD3 theme night, therefore, read as follows:
<resources xmlns:tools="http://schemas.android.com/tools">

<!-- Base application theme. -->

<style name="Base.Theme.MyDemoApp" parent="Theme.Material3.DayNight.
NoActionBar">

<item name="colorPrimary">@color/my bright primary</item>
</style>

<style name="Theme.MyDemoApp" parent="Base.Theme.MyDemoApp" />

</resources>

This color is then declared in the colors.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<color name="my bright primary">#FC0505</color>

</resources>

89.4 Building a Custom Theme

As we have seen, the coding work in implementing a theme is relatively simple. The difficult part, however, is
often choosing complementary colors to make up the theme. Fortunately, Google has developed a tool that
makes it easy to design custom color themes for your apps. This tool is called the Material Theme Builder and
is available at:

https://m3.material.io/theme-builder#/custom

On the custom screen (Figure 89-2), make a color selection for the primary color key (A) by clicking on the
color circle to display the color selection dialog. Once a color has been selected, the preview (B) will change
to reflect the recommended colors for all MD3 color slots, along with example app interfaces and widgets. In
addition, you can override the generated colors for the Secondary, Tertiary, and Neutral slots by clicking on the
corresponding color circles to display the color selection dialog.

The area marked B displays example app interfaces, light and dark color scheme charts, and widgets that update
to preview your color selections. Since the panel is longer than the typical browser window, you must scroll
down to see all the information.

To incorporate the theme into your design, click the Export button (C) and select the Android View (XML)
option. Once downloaded, the colors.xml and themes.xml files can be used to replace the existing files in your
project. Note that the theme name in the two exported themes.xml files must be changed to match your project.
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Figure 89-2
89.5 Summary

Material Design provides guidelines and components defining how Android apps appear. Individual branding
can be applied to an app by designing themes that specify the colors, fonts, and shapes used when displaying
the app. Google recently introduced Material Design 3, which replaces Material Design 2 and supports the
new features of Material You, including dynamic colors. Google also provides the Material Theme Builder for
designing your own themes, which eases the task of choosing complementary theme colors. Once this tool has
been used to design a theme, the corresponding files can be exported and used within an Android Studio project.
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