Android Studio
Hedgehog

Essentials

uuuuuuuuuu






Android Studio Hedgehog
Essentials

Kotlin Edition



Android Studio Hedgehog Essentials — Kotlin Edition
© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Payload
-

Find more books at https://www.payloadbooks.com.


https://www.payloadbooks.com

Contents

Table of Contents

1. INEFOAUCHION ..ceeenreieieeeiceeeereeecsneeeseeeesaeesssneesssesssssssssnssssssasssnsssssnssssssssssnssssanssssssasssnssssssessssessssnssssnsssssnanss 1
1.1 Downloading the Code SAMPIES .........cccreureeureurineiriirieirerseeneireerei et sesseseens 1
1.2 FEEADACK ...ttt sttt bttt b bbb b s s assssebebebebeb s s s ssssasansesetesas 1
1.3 B At ettt b e b et et a e e a e b ae b et et et et e b s be b et et et e s 2

2. Setting up an Android Studio Development Environment

2.1 System reqUITEMENTS........ccceuviimeriiiueiricriieeiee e sessnaes

2.2 Downloading the Android Studio package

2.3 Installing Android StUAIO........cccureerierecrircrreceee e eaene
2.3.1 Installation 0n WINAOWS ........ccueureerirrieriirieeireeneeseeenetsese e sseesesesssasesessssessesssssssesssasesens 4
2.3.2 Installation 0n MACOS ......c.cveiireceiericeiree et ese s ese s sse s sse s ansns 4
2.3.3 Installation 0N LINUX.......cccvuureemirreerierieniireeeiseeeneesesesessesessssesesssssesessessssessssssessssssesssssssens 5

2.4 The Android Studio SEtUP WIZArd ........ccceuveeurireucurinicirieieireeicireciereetet ettt seesesseneaes 5

2.5 Installing additional Android SDK packages ..........ccceeueueecriermnerrieenemneeeeeneeesenseeenersesessessenenne 6

2.6 Installing the Android SDK Command-line TOOLS........c.cceeuiuemreriueencrnieenerneenrerneceeneeenersenenne 9
2.6.1 WINAOWS 8.1 .ttt sttt et seses ettt sese ettt s seaesesens 10
2.6.2 WINAOWS 10 ...ttt sse s sse s s sse s sse s sse s sse s ssssesessssesscsens
2.6.3 WINAOWS 11 oot sse s ese s s sse s sse s sessessesesens
2.0.4 LINUX oottt sttt
2.6.5 MACOS.......c it

2.7 Android Studio memory management
2.8 Updating Android Studio and the SDK

2.9 SUINIMATY ottt st b s
3. Creating an Example Android App in Android Studio.........cocevevieviienenriniiniisininenniniiniisenenensenninenne 15
3.1 ADOUL the PIOJECL c.ceuveeuicicicireieecireiseetneieeeirei sttt sttt sttt 15
3.2 Creating a New AnNdroid ProjJecCt.......ocveurirnciniurencineineeineineeinesseesessesessessesessessesessessesessesscsenns 15
3.3 Creating an ACHVILY ..ccccuiuiiiiiiciic e 16
3.4 Defining the Project and SDK Settings .........cecveureurereureurereireinereerersenessessesessessesessessesessessescssesscsenns 16
3.5 Enabling the New Android Studio Ul ......cccocevenrcineinincininieneineeneiseeneisesessessesessessesessesscsenns 17
3.6 Modifying the Example APPIICAtion......c.ccoeueurereureurecineeneeineiseeeserseessesseseasessesessessesessessescssesscsenns 18
3.7 Modifying the User INtErface ......c..cevcureerereuriirineiniinieireinectneiseeressee et tsessese s ssessesesesscsenns 19
3.8 Reviewing the Layout and Resource Files........cocvnncniinincinenencineinecneiseeeneiseensesseessessesenne 25
3.9 AddIng INEIACTION ..c.vuieerecireeeectreteeetret ettt sttt bttt bbb nae 28
3,10 SUMMATY .o 29
4. Creating an Android Virtual Device (AVD) in Android Studio
4.1 About Android Virtual Devices ...
4.2 Starting the Emulator.........cccecveueee.
4.3 Running the Application in the AVD....
4.4 Running on Multiple DEVICES ........c.cewerreuemrerreeeeneireneeerrerenetnesensesseseesessesessessesessessesessessesensessesenses
4.5 Stopping a RUNNING APPICAtION ......cevuevieeeerireieireecierreeeeeeeeeeneseeesseseesensese s s ssesensessesennes
4.6 Supporting Dark TREMIE..........c.veverieeieirereeeirereeeieee et nsensese s eses s sesensessesensessesenaes
4.7 Running the Emulator in a Separate WindoW..........ccccveeeeireeenerneeenerneeeeenneeeneneeeensesenensesennes



Table of Contents

5. Using and Configuring the Android Studio AVD Emulator

4.8 Removing the Device Frame........cccvcueevcirieenerreeierreeeeieeeietseseeesseseesessesessessesensessesensessessesessenes
4.9 SUMMATY ..ottt bbb bbb bbb bbbt

5.1 The Emulator Environment
5.2 Emulator Toolbar Options .........c.ececvevreeererrenen.

5.3 Working in Zoom MOGE ...........cucueuucuiciniiiiiiieiseisessese e s sse s ssssss s ssenas
5.4 Resizing the EMulator WIndOW.......c.cc.ccciiiiiniiccceeeese e senas
5.5 Extended COntrol OPLIONS ......c.cuecureurecirevrecireineeiresseetsesseessessesessessesessessesessessessssessesssessesesesscas

5.5.1 LOCALION ...ttt

5.5.2 DISPLAYS...triuiriiririniirieeieireeeieiseseseisese st sese i sese ettt

5.5.3 CIULAT ...ttt s

5.5.4 BAtOIY..ocuiiiiiiiiicicc s

5.5.5 CIMEI A ..ottt

5.5.6 PRONE ... s

5.5.7 Directional Pad.........cccciuiiiiniiniicicicicicceieciiiccsie s

5.5.8 MICTOPRONE. ......ceeieiieinireecieireietisee ettt st eaes

5.5.9 FINGEIPIINT ..ottt

5.5.10 Virtual Sensors

5.5.11 SNAPSHOLS...cucveecerieriecieirieieirecireeseecieaeeaens

5.5.12 Record and Playback .......cccccoecureerecuneunnces

5.5.13 Google Play

5.5.14 Settings ..............

5.5.15 HEIP vttt st
5.6 Working with SNapshots...........cceiiiiiniciiiicc e
5.7 Configuring Fingerprint EMUlation ..o
5.8 The Emulator in Tool Window Mode...........cccuiiniiniiniiiinernincicicie e senas
5.9 Creating a Resizable EMUIAtOT.........c.ccccuiiiiiiriiiricirccccc e
5.10 SUIMIMATY ..ottt

6. A Tour of the Android Studio USer INTEITACE ....cccecueeeeeerrveneeerirereesisrneeesessneessssssneesssssssessssssssssssssasssssssns

7. Testing Android Studio Apps on a Physical Android Device

ii

6.1 The WEICOME SCIEI.....cuvreverrirercieeenciereesetsessese et aessese e seese e seesasessesaseseessseseas
6.2 The Menu Bar ................

6.3 The Main Window ....
6.4 The Tool WIndows .........ccvceeeerrerrecenernecerernencnne
6.5 The Tool Window Menus........c..ceceeuveuvecererrennnne
6.6 Android Studio Keyboard Shortcuts..................
6.7 Switcher and Recent Files Navigation
6.8 Changing the Android Studio Theme
0.9 SUITIMATY ..ottt bbb bbb bbb bbbt

7.1 An Overview of the Android Debug Bridge (ADB).........cccvcuviuveincincincieiieerineneesesese s
7.2 Enabling USB Debugging ADB on Android Devices...........cocvcuvcucecicirimeenimnennenneesesseseneeenns
7.2.1 macOS ADB COnfIGUration .........c.ccccuceeiuriuriuniuniuniinerieseesesessessessessssesssssssssssssssesssssesssssenas
7.2.2 Windows ADB CONfIgUIAtioN. ........c.cucuiuiuiuniunimniineiieseie e ssessessessssesssssssssesssssesssssesssssenas
7.2.3 Linux adb Configuration ... ssssenas
7.3 Resolving USB CoNNection ISSUES ........c.cccuuuiuiuiuniiniineiiiseeesesscne e ssessessessesssssssse e ssssenas
7.4 Enabling Wireless Debugging on Android Devices
7.5 Testing the adb Connection
7.6 DeVICE MIITOTINEG. ...ucvivititeieiiiiiitctte ettt



Table of Contents

7.7 SUINIMIATY .ottt bbb bbb bbb bbb bbb bbb bbb bbb as 69
8. The Basics of the Android Studio Code Editor..........cuuiviivininninriniisiisinininiiniiinininnenniiiniesneneneiens 71
8.1 The Android StUdio EdItOr......ccceuieiriierieieieirisieiseeieiseete ettt sttt enanans
8.2 Splitting the Editor Window
8.3 Code Completion........cccveueeecererenene
8.4 Statement COMPLETION .....c.ueueueeirerrieireieeeirei ettt b sttt sttt eae
8.5 Parameter INfOrMAation .......c.ceceuriieiriieeieieets ettt sttt sttt seasteeanans
8.6 Parameter Name HINts .....c.cooiviiiiiiiiiiicecnecetettee ettt
8.7 COAE GENETALION ....vereieieieieeeteece ettt a ettt sttt s bt s s s bt st et eass e s st essnantenanans
8.8 COAE FOLAING.......couieiieiieicciccit et
8.9 Quick Documentation LOOKUP ......c.eccureveeeuriureneiriinicireiseetneiseetsessee s ssessesessessesessessesesesecsesns 79
8.10 Code REfOrMAtNg.........cuuvuiuiuiiiiriiiireitiscieie s sae s 79
8.11 Finding SAmMPle COde ..o e 80
8.12 LiVe TEIMIPLALES ..euvvreveeurerrencereeeeaeiretseet sttt sttt seb st b sttt et sttt bttt 80
813 SUMMATY ..ottt e bbb 81
9. An Overview of the Android Architecture ........ccccovirvuieiiniricisiininiiitnecntsesesteees st sas e 83
9.1 The Android SOfEWAre STACK ...c.c.euveuevrirceeirieieiricieirecie ettt ssese et 83
9.2 The LinUx Kernel.....c.occuiiiiiiriciieiciricecnccietnect ettt sttt 84
9.3 Android RUNtME — ART..c.c.oiiiiiiiiciriceiriiieireei ettt sttt sese et sssesebeeneaes 84
9.4 ANAIOIA LIDTATIES c.c.uvueuviiecerircecieieict ettt ettt sese ettt bttt ettt sssesebeeneae 84
9.4.1 C/Cr+ LIDIATIES weuvreueeercieireecieieeisieeeisecie sttt sttt sasese ettt sttt seaeseen 85
9.5 APPLICation FIrameWOTIK......c.cvcueuririuciriieeireeietricieisecistseecieteae sttt sttt seae et ssseaeseeneaes 85
9.6 APPLICALIONS .cevvvreueiiucieineeieiseie et tese ettt bbbt sese ettt seae ettt eta et essesebetneaes 86
9.7 SUIMIMATY ..ottt bbb bbb bbb 86
10. The Anatomy of an ANdroid APP.....ccccevuercerernecninninnucniniininiienninieeesestsssesstsesssssstsesssssesssssssssesses 87
10.1 ANAIOIA ACHVITIES ..vvvrierteerieeteieeeteteiete et tsae sttt ettt ss bt se bt ssassseas s s easssssensses 87
10.2 Android Fragments........cccciiuiuniuiincinceneieicieieieisecsiseessssesssessss s s s s ssessssssssssssns 87
10.3 ANATOIA INEENES ..vuvuvirieieiieteieeete ettt sttt s ettt asa st sea e s b eassnssensses 88
10.4 BroadCast INTENLS .....c.euiurueeieteieeeteieieis st tsie sttt sttt ess bt se et asassseasseseassessensses 88
10.5 Broadcast RECEIVETS ......c.euieuriieeirieieirieieis ettt ettt ettt as st sessenssees 88
10.6 ANATOIA SEIVICES ...uveeriuteirieetrieieteeeieie ettt sttt sttt s bttt s et as st st s b eseassnssenssees 88
10.7 CONENE PrOVIAETS ......euceeeeieiricieieieieis sttt sttt se st sas s seas st essessensses 89
10.8 The APpPlication MAanifest ........ccveureueueureeeieerereieireseieeseseeessesesessesetessesessessesessessesessessesesessesesns 89
10.9 APPLICAtION RESOUICES ...ucuuvuereeircievineireeeieiresetsetsesetet st sesetsetseseeae st sesessessesessessesesssssesesacs 89
10.10 APPLICALION CONLEXL..uvuevruerrereineerereenetreretseesesetsetsesetetsesesessesessessesessessesesaessesessessesesscssesessessesesas 89
1011 SUIMIMATY ¢ttt s et b bbbt 89
11. An Introduction t0 KON ..ottt ssssas st sssese st sas e sssssnsssesnes 91
11.1 What 18 KOTHN? ...ttt sttt sttt s ettt et been 91
11.2 KOtHN QNA JAVA ..ttt ettt es st se et sns et esessesensesensssssssensnsssenseren 91
11.3 Converting from Java to KON «.....c.cccureeriirieeineirieeneeenceeeneeceeneeeenseseesesseseesessesessessesennes 91
11.4 Kotlin and Android StUAIO «......c.cueeeueirinieeinincieirceireeetree ettt tseese st esseseessseseseen 92
11.5 Experimenting With KOt .......ccocveeeirieiirieeineceeceeeeeneecie s esessesensessesensensesenses 92
11.6 Semi-colons in KOTHN ..c..eueciriceciriciciricicirccietre ettt seen 93
11,7 SUIMMATY oottt bbb bbbt 93
12. Kotlin Data Types, Variables, and Nullability .........ccccocevvuiruinrirrinininncnininncnininnncninennneseneesenennes 95
12.1 KOtHN Data TYPES.....cueuieriveieiereieireieieireseieisesetsetsesetaessesesessesessessesessessesessessesessessesessessesessessesesas 95

iii



Table of Contents

12.1.1 Integer Data TYPES ......ccceuvieriniciriiciiiiricisiitie st ssassse e ssssessssssenes
12.1.2 Floating-Point Data Types

12.1.3 Boolean Data Type.......ccocveuvercurerrecurerrennnne

12.1.4 Character Data Type.....cccoocveeeunerrercurernennn.

12.1.5 String Data Type.....c.ccoueevvecrvinicnrincncneinnns

12.1.6 Escape Sequences....

12.2 Mutable Variables...........

12.3 Immutable Variables ...

12.4 Declaring Mutable and Immutable Variables............cccovveniurrcrnierecrnienecnninecneeeeeeeeeeneees 98

12.5 Data TYPes re ODJECES ...vuvvreuermiereeerrirriecrirreeereireiesseesesesseesesesssasssesssssesesssasesesssasssesssasssesssssssesseaes 98

12.6 Type Annotations and Type INEIeNCe ........ccvurveuiureeriireerirrecniereeneeseseseaeesessseeseseseesenseees 99

12.7 NUIADLE TYPE .ecuvrrernieiecrrririeeiireeitieee e et sse s s ssesessesssssseneens 100

12.8 The Safe Call OPErator .......cccveveueerecieireeieireecietneeistsere ettt s ese et aseseseesesessesesesseaees 100

12.9 NOt-NUIl ASSEITION. ... 101

12.10 Nullable Types and the let FUNCHON .....c.cceuiurecrrieecrcceeeeceeee e seneees 101

12.11 Late Initialization (Jateinit) ........ccccevieverireeriereeiereeeeerceeetee et ere e s rese s s s seneenenes 102

12.12 The EIVIS OPEIatOr ....cceucuriueeeireeieirincieieeietseacisteaetsaesesseese s sessesessssesesesseaesssessseenssesssncsesscnees 103

12.13 Type Casting and Type Checking ..........cccceeverieeecrnieemnernienenneeeenneeeeenseseesessesessessesessenens 103

12.14 SUIMIMATY ..ottt as

13. Kotlin Operators and Expressions..........cceeveunee

13.1 Expression Syntax in Kotlin........cccccoeeevereuennee

13.2 The Basic Assignment Operator

13.3 Kotlin Arithmetic OPerators .......cocveeueereueueereueenierieciessesesseisesessessesessssesessessssesssssssessessssesssses

13.4 Augmented AsSignment OPErators ..........cccueuiuiuririuneiseesereesesessessessessssssssssssasesssssessssesaes 106

13.5 Increment and Decrement OPErators .........ocweueereecueeremeuieneeesneesesesessesessessesessessssessessssesseses 106

13.6 EQUALILY OPEIALOLS ...c.ucvevuereeineereecieeseeetetsesesseeseseseesese s ssese e st ss s ss s ssss s sseassaessssssesassnes 107

13.7 Boolean Logical OPErators ...........cccueuirimiuriuniiseiieseseesessssessessesssssssssssssssssssssssessssesaces 107

13.8 RANEE OPEIALOL ..ottt s

13.9 BitWise OPEIators.......ccccciuiuiuiiiiiiiiiiicieieeiir ettt ennna
13.9.1 BitwiSe INVETSION .....cucviiiiiiiiiiititctetett bbb sas
13.9.2 Bitwise AND ..ot s
13.9.3 BItwise OR...cuiiiiiiiiiiicic et
13.9.4 Bitwise XOR ...t
13.9.5 Bitwise Left SHift.......c.cccuiiciiciiciii s saes
13.9.6 Bitwise Right Shift...

13.10 Summary................

14. Kotlin Control Flow .............

14.1 LoOPIng COontrol fLOW .....c.cuvvecuiurecuiiriciiiereneeeeeneeenseneie e ssesesssessesessessessssessens
14.1.1 The Kotlin for-in Statement.........cocuveeeecrreeeereireeeererreeenerrereeersesensessesessesseseesessesessessesesessenes 113
14.1.2 THE WHILE LOOP .eeuereeucirieeeineeieisecieiseces ettt sttt seseb et sttt sseaenee 114
14.1.3 The do ... WHIIE LOOD ..cueriieeiriieeiricicisecierecetee ettt sttt ettt sttt sseaenae 115
14.1.4 Breaking from LOOPS ......c.vveeeueeeeerreeeeerreeeeetreeeeensenenessesensessesessessesessessessssessesssessesssessenes 115
14.1.5 The continue StAtEMENL .........ccocuimiuienieiic s saees 116
14.1.6 Break and Continue Labels.........ccc.oeecinieiiniccriceneeeeeienreeeeenseseeensesenenenes 116

14.2 Conditional Control FLOW ..o ssesesessessesessessesssesens 117
14.2.1 Using the if EXPIESSIONS .....ccocueueeereeeeerrieenetreneeessesemessesemsessesessessesessessessssessesessessesesessenes 117
14.2.2 Using if ... €lse ... EXPIESSIONS ....cccueuverreuemerrieeeetreaenerseseesessesessesseseasessesensessessssessesesessenes 118
14.2.3 Using if ... else if ... EXPIESSIONS ....cceueverreueeerrieeeetrenenetreneesetseseesesseseesessesensessesensessesensessenes 118

iv



Table of Contents

14.2.4 Using the when Statement ........cocueeeerreeeeerreeeeerrerenerrerensenseseeessesessessesensessesessessesessessesenses
14.3 SUIIMATY ottt bbb bbb bbbt

15. An Overview of Kotlin Functions and Lambdas .............

15.1 What is a FUNCtion? ........ccccceeniunininenienerncisenncnnas
15.2 How to Declare a Kotlin Function.........c.cccccecuceece
15.3 Calling @ KOtlin FUNCHON........c.oiiiiiriiicicciciciciicicieicciseee s sse s sasaens
15.4 Single EXPression FUNCHONS .........c.ciuiuiiciciciiciciiecieieeicisiseiet s ssesessssaens
15.5 LOCAL FUNCHONS ..ottt sa s s s s
15.6 Handling Return VAlUeS ..o s ss s
15.7 Declaring Default FUunction Parameters...........cccccueeeeriuniuniuneiniesereeseneeese e ssesssssesssssssens
15.8 Variable Number of Function Parameters ............ccoeeerinininiincrncescrseesesseeenensessessesssssseens
15.9 Lambda EXPIeSSIONS ....c.eucueueeeemierieciniirieeieeseseseeseseseesesesssasesesssesesesssssssesssssssesssssssesnsssssesnssssaens
15.10 Higher-order FUNCHONS .......c.ocviuiiriiiicieicieieiciieciiiciciseseisss s ss s ssssssssssens
1511 SUIMNIMATY «.cuiiiiiiiiiiitee ettt et s bbb

16. The Basics of Object Oriented Programming in Kotlin........cccecveeinininnninininnnnenincninnenennees 127

16.1 What 18 a0 ODJEC? .....vuvieeicieceireceereceneeeneiseee e ese s s sssas s sssasssesssssnscsssaseaces 127
16.2 What is a Class?.......cccccovuvurvrurinncen.
16.3 Declaring a Kotlin Class.................
16.4 Adding Properties to a Class..........
16.5 Defining Methods .........cccccveeecrnecencrnecnncrnecnnennne
16.6 Declaring and Initializing a Class Instance
16.7 Primary and Secondary CONSTIUCLOLS......c..c.veuirreeeriureersiereeenesereenseesesenseasesessssesesessssessessssens
16.8 Initializer BIOCKS.........ccviiiiiiiicici s
16.9 Calling Methods and Accessing Properties
16.10 CUSLOM ACCESSOLS ...oucvreirirrirctesirete sttt ae s en st st nntees
16.11 Nested and Inner Classes ... ssssssssssssssssens
16.12 COmMPANION ODJECES......vuevmereeernrreeenniereeerseereeesetseeeseasesesstasesesssssssesssssesesssasesessasesesssssssesssssssens
16.13 SUIMIMATY «.cuiiiiiiiiiicrst bbb bbb st

17. An Introduction to Kotlin Inheritance and Subclassing

17.1 Inheritance, Classes and Subclasses...........cou........
17.2 Subclassing SYNtax .........cccceeeeerenererneenerseesenneenes
17.3 A Kotlin Inheritance Example........cccoocoeuverrecencnnee.
17.4 Extending the Functionality of a Subclass
17.5 Overriding Inherited Methods...........coccuiiciiciiiiiiiicc e esesessasaens
17.6 Adding a Custom Secondary CONStIUCTOL..........c.cuiiiuriniurieieseeiese e s sseseseaseens
17.7 Using the SavingSACCOUNt ClaSs ........c.ccucueicmiciciieiiniiiiisiseissi e sa s ssesassssaens
17.8 SUIMIMATY «.eeiiiiiiii ettt

18. An Overview of Android View Binding.........cccceevnrnsnisrisisnsininininniinininsniiiiinisesss

18.1 FINA VIEW DY I .ttt ese s sse s sse s s sssasnscsnsassaces
18.2 VIEW BINAING ...evuiieciriiecicirectreeenteieeet et seesese s ese s see s sse s ese s s sssassscsnssssaces
18.3 Converting the AndroidSample Project........ccurevceniurecernirneerniereenieeeerseseesessessesesessesens
18.4 Enabling View BInding.......c.ceccuveureeuiureeeirrieriinieneineeseeseseneseseensessssesssssssesssssesesessssesssssssens
18.5 USINg VIEW BINAING ....vuvrrvrririecriiriecitireecieieeeeiseeeseisesesssssesesssssese s s sssssssessssesesssssssesnsssssns
18.6 Choosing an Option ..........ccccveuvecurenncee
18.7 View Binding in the Book Examples
18.8 Migrating a Project to View Binding...
18.9 SUMMATY ...



Table of Contents

19. Understanding Android Application and Activity Lifecycles

19.1 Android Applications and Resource Management.............c.cccecuveueercmneeeencrnememserseenserseensenens
19.2 Android Process States.........ccccoeveecureurecrriurenees
19.2.1 Foreground Process
19.2.2 Visible Process
19.2.3 Service Process
19.2.4 Background ProCess...........ccocueucecurieceniiriieeneiriceeiseie et sssssesesssssesesssssesessesenes
19.2.5 EMPLY PIOCESS «.ovvviiiiiicctctttt s
19.3 Inter-Process DePEndencies ........cocceereurirecrnenecrrineeerneneuetrecietseeseeseseseeseaessasesessessaessesesessences
19.4 The ACHVILY LIfECYCLe.. .. vttt nssaesseasessesse s ssenas
19.5 The ACHVIY StACK.......cuiciiicirct e eae
19.6 ACHIVILY STALES ...t
19.7 Configuration CRANGES .......c.ccoeuerreerreeiininiineieiseeise e ssessessesssssessssssssesssasessssessessense
19.8 Handling State Change ..o ssssessesessessennas
19.9 SUIMMIATY .ottt

20. Handling Android Activity State Changes............ccoeevuevirrerreirinsinneininneinininiinscnennessesesssssesessene

20.1 New vs. Old Lifecycle TeChNIQUES.......covueeeurureeerirrieciiineeeieeseeseeeeeeseasesesssseesesssessessessesesneses
20.2 The Activity and Fragment Classes
20.3 Dynamic State vs. Persistent State....................
20.4 The Android Lifecycle Methods..........ccoccreuene.
20.5 Lifetimes .......ccvvviuvrerernrincineiciciciciececesiscnens
20.6 Foldable Devices and Multi-ReSume............ccceuriiiniiniinciiinciciccicccissessescssse s 158
20.7 Disabling Configuration Change ReStarts .........coceeeereeeniureerniuneeerneuneesneseeesseseesessessesessesees 158
20.8 Lifecycle Method LImitatiOns......ccoceeeeeeeereeeeeureeernernesereeneeeetesesensessesesssssesessessssessessssessesssseseses 158
20.9 SUMMIATY ..o b b 159

21. Android Activity State Changes by EXample.........cocvvurvininnerninsinnenncnninncneninnscncssesscsisssssscssesseene

21.1 Creating the State Change EXample Project ........oovcuviremeenereeerereeeneeeeneeneesensessensensenesensens
21.2 Designing the USer INTErface ........c.cueveeeeeereenieneurerniinerinsereeesessensensessessssssssessesssssessessesessessens
21.3 Overriding the Activity Lifecycle Methods .........coovcuiuremeenernerereneienieeeneeneenenneesenensesenensens
21.4 Filtering the Logcat Panel
21.5 Running the Application.........c.cccceeureeeneurerennce
21.6 Experimenting with the Activity

21.7 SUIMMATLY c.coviiniiiniiiiiisenesisss s sssesssssssssssssessssssssssses

22. Saving and Restoring the State of an Android ACtiVity.......cocvevrrirnrinisnsnnnnninnnnnnenessen
22.1 Saving Dynamic STate ... 169
22.2 Default Saving of User INterface State .........ocveeureeeneereeceniereeeiereeeneeeeesneseesesseseeseseseeseseses 169
22.3 The BUNALE ClaSS ....cuvruiiireeeieiriieieireecieireeeteiseeeteesesesessesesseseae s sesesssas s ssssssesssssssessssssscsnssnes 170
22.4 SAVING The SEALE.....c.cvereeeeerrieeicirieetet ettt ese s sese st eae s ese st ese st b ese s ese s sasssesassees 171
22.5 RESTOTING the SLALE ....vuevueieeeieiriecieerecieirectet ettt sa e sss st ss s sas s sasaees 172
22.6 Testing the APPLICAION. .....cccueuieiirreeitirieietseetei ettt stas e ssasese s s s essesesnsses 172
22.7 SUIMIMATY ¢ttt bbb b bbb bbb 172

23. Understanding Android Views, View Groups and Layouts .........ccccevcererruceersinsecssessensscssessessscssessenne
23.1 Designing for Different Android Devices
23.2 Views and View Groups ........cocccoveeeeeerercererencnnes
23.3 Android Layout Managers ...........ccccveeeveurenennee
23.4 The View Hierarchy .......c.coccoceeveeenerieencniennes
23.5 Creating USer INEITACES .......cveuueuerucruereeeeeieieeeeneesenease e ssense s ssesssessssssssesssssesssssesessessens

vi




Table of Contents

23,6 SUMMATY ..o bbb bbb 176
24. A Guide to the Android Studio Layout Editor TOOL........ccccocvrurvuininrenncnsennuininnensucnensensscsesseessesennee 177

24.1 Basic vs. Empty Views Activity TemMPIates..........eveureveereureeeineerereencireeeietresesseesesesseesesessessesesne 177
24.2 The Android Studio Layout Editor
24.3 Design Mode.........ccoeueueuerrencuninnnnn.
24,4 The Palette ...t
24.5 Design Mode and Layout VIEWS..........c.ccucuvcucunceeueecmiinieneicssisesssese s ssesssssessssssssssns
24.6 NIGHt MO ...t
24.7 €O MOUE......ccoiiiinieiiiiciticie ettt
24.8 SPLE IMOAE ..ttt ettt sttt sttt et
24.9 Setting ALFIDULES.........ucouieieiiiiiiirc et
24,10 TLANSOIINS ..ottt
24.11 Tools ViSibility TOZEIES.......ccevuimiuriiiiriiiireicieiciieicia et sae s sssassaes
24.12 ConVerting VIEWS.......ccouiuiiiiimiiiiiiis s ssss e sssssssssssssens
24.13 Displaying SAmple Data ..o ssesssssesssssesssssns
24.14 Creating a Custom Device Definition .......c.ccccucucicicinieniininiineseiseeiseeeesse e 191
24.15 Changing the Current Device
24.16 Layout Validation ...........cecveuenee.

24.17 SUMMATY ...oviiiiiiiceeeietese e eseseseneas

25. A Guide to the Android ConstraintLayout

25.1 How ConstraintLayout WOTKS........c.ccveeueureeeeerreeeecrrieeerneeeeeisesenessesensessesensessesessessesensessesenses
25.1.1 CONSLIAINTS....ocviiiiiiiic bbbt
25.1.2 MATEINS ..ottt
25.1.3 Opposing CONSTIAINES. ...
25.1.4 Constraint Bias ...
25.1.5 CR@INS ..ttt et et e
25.1.6 Chainl SLYIES.....cevieecireeicireieeieieeetersee e tes e es e sesaens

25.2 Baseline ALGNIMENT .....c.ceeueererrieererreeeeerrereeenseeeesesseseesessesessessesessessesessessesessessesessessesessessesenses

25.3 Configuring Widget DImenSions.........cccveueeeeerreeeeerreuemerrerenersesemsessesensessesessessesessessesessessesense

25.4 GUIENE HEPET .....uvueiiniiricicireceet sttt sttt bbbttt et been

25.5 Group Helper.......cccoveceuvnecrnencnnnes

25.6 Barrier Helper.......ccoovcecuvvccerencnnnes

25.7 Flow Helper

25.8 Ratios ...,

25.9 ConstraintLayout Advantages .......

25.10 ConstraintLayout Availability

25.11 SUIMIMATY c.oviiiiiiiii bbb bbb bbb bbb

26. A Guide to Using ConstraintLayout in Android Studio

26.1 Design and Layout VIEWS........cc.cciriiunciiencicieneiseiesie st ssessssssssssssssns
26.2 AULOCONNECE MOME ..ot
26.3 INference MOdE........cuuiuieiiiiiiiiiiie e
26.4 Manipulating Constraints Manually...........c.ccccoeiinininininieccseeese e
26.5 Adding Constraints in the INSPECOr ........cccucueuucirieiriirircciseese e
26.6 Viewing Constraints in the Attributes Window...........cccceuviiinnincncncincncincccececeenennns
26.7 Deleting CONSLIAINES ..........cveuuiuieieriiieseieesese e sssss s s sse s ssesassses
26.8 Adjusting Constraint Bias.........ccccccoeeveneniercrncunn.
26.9 Understanding ConstraintLayout Margins
26.10 The Importance of Opposing Constraints and Bias
vii



Table of Contents

26.11 Configuring Widget DIMeNSIONS.........cvveuerreererreemirreeenieseeeneesesesessesesssssssessessssesessssesseses
26.12 Design Time ToOlS POSItIONING .......cciuieerirrieriiriecriireeenieseeneeseeessasesessasesesssssssessesssseseses
26.13 Adding Guidelines.........c..cceverreeevrerreeeererrenennee

26.14 Adding Barriers
26.15 Adding a Group
26.16 Working with the Flow Helper.....
26.17 Widget Group Alignment and Distribution........
26.18 Converting other Layouts to ConstraintLayout
26.19 SUIMIMATY oottt bbbt bbb

27. Working with ConstraintLayout Chains and Ratios in Android Studio ..........ccecevevvevviveivenienncnennnne
27.1 Creating @ CRaiN........c.ccuiuiiicicicciciceceeiesi s aes 225
27.2 Changing the Chain StYle ... saes 227
27.3 Spread Inside Chain StYle.......c.oueiureeeiiirieiiinicieisecieiseectees ettt sssa et ss s ss e seses 228
27.4 Packed Chainl StYLe.....ccuiireeiiricieirecire ettt siees 228
27.5 Packed Chain Style With Bias.......ccoceeeuiurieeinienieieinicieineecineiseeeesesesseesesesssssesessessesessssssessses 228
27.6 Weighted CRaiN ..o saes 228
27.7 Working With RAtIOS .......c.cueuiuciiciieiiiniiicicsise st sse s saes 229
27.8 SUIMMATY ..ttt ettt b s s 231

28. An Android Studio Layout Editor ConstraintLayout Tutorial.........cceceeevcruirrsenresisncsensensessesscseesennes
28.1 An Android Studio Layout Editor Tool EXample ..........ccccvureeeuiurecrniunecmnieneeneeeneneneeeneees 233
28.2 Preparing the Layout Editor ENVIronment ........c..ceccveveeeeniurecrierecrniuneennieseeneeeesesessesessesns 233
28.3 Adding the Widgets to the User INterface..........couvveeeureceiurecrierecrnienecrnieeeenseeeneneseeenseeens 234
28.4 Adding the CONSIIAINES ......cevueveeererrieeriireereereeeseeseeeseeeeeesseeeesenseasese s s sssessesssssssesssssssessses 237
28.5 TeSting the LAYOUL .......ccueureeereerecierreectirieieteeesessesesessesesseas e sssss s esessasssesssssssesssssssesnssnes 239
28.6 Using the Layout INSPECLOT ........vuevueueeceriereeerierieeneiresesessesesseesesessessesesssasesessssssssssssssessesssseseses 239
28.7 SUIMIMATY «.viiiiiiiiii bbb bbb bbb bbbt 240

29. Manual XML Layout Design in Android Studio .........cceceveereenuinrernucninnenncsinninnncninniencninecseseneene
29.1 Manually Creating an XIML Layout .........cccceueiuriuiunimniiremcineieienesesseisesssssesssesssssesssssesssesses
29.2 Manual XML vs. Visual Layout Design...........

29.3 SUMMATY ..o

30. Managing Constraints using Constraint Sets
30.1 Kotlin Code vs. XML Layout Files..........ccccveureeeirrieeneiriemeireieerrereeennesenenseseeessesessessesensensenes
30.2 Creating VIEWS... ..o
30.3 VIEW ALIIDULES......oveiieiiicic e
30.4 CONSLIAINT SELS....ecvvriecreiiteteiit et en

30.4.1 Establishing CONNECtiONS........c.cocueuecurerrenemrerreenrerneenereesessessesesessesessessesessessesessessesesenens
30.4.2 Applying Constraints t0 @ LayOUL .......c..ceeecureurercunerrerernernecnneineenersesersessesensessesessessesenenens
30.4.3 Parent Constraint CONNECIONS.........coovvverevrieteiieeieee s
30.4.4 Sizing CONSLIAINTS ....cciuiiiiiiiiiiic s
30.4.5 Constraint Bias ......ccccevierieiictcictttct s
30.4.6 Alignment CONSLIAINTS.......cccveuererrerrercrrerrerenrereeetrereeenseseesessessesessessesessessesessessesessessescsesens
30.4.7 Copying and Applying Constraint Sets........eveururererrerrererrerrerernerrererrerseeesessesensessesesseneens 247
30.4.8 ConstraintLayout ChaiNs ........c.ccccveeeecrrerrencinerneceieeeeee s ssesseseasessesesessesessenens 247
30.4.9 Guidelines .........cocvcuvriveiciiiiinciiiicenes

viii

30.4.10 Removing Constraints
30.4.11 Scaling.....cceumevercreremcrreemerneeeereenersesenne
30.4.12 Rotation




Table of Contents

30.5 SUMMATY ..ot bbb 249

31. An Android ConstraintSet Tutorial...........cccoeeueerieeniniininiiinienienccteee et aeseses
31.1 Creating the Example Project in Android Studio ........cccceeueiuiuneiniincincincincinciciciciecrceenennes 251
31.2 Adding Views to an Activity
31.3 Setting View Attributes...................
31.4 Creating VIeW IDS.....ccviiiiiiis s
31.5 Configuring the CONStraint Set........ovuiureuncurcrcueieieieieeeirisise e saesassnes 254
31.6 Adding the EdItText VIEW ......ccoiuiuriiiiniiiincicicieieieiieciseeesici e sse s ssssssns 255
31.7 Converting Density Independent Pixels (dp) to Pixels (PX).....c.coureuveureuvcurcrsemeieimeerinienennes 256
318 SUMMATY ..ottt 257

32. A Guide to Using Apply Changes in Android Studio.......ccecverrerveninncseisnnninineisnnnnenencsssenenenes
32.1 Introducing APpLy Changes..........cceeeurieenerneeeenerreeeennenemessesenesseseesessesessessesessessesessessesesses 259
32.2 Understanding Apply Changes OPLiONS .........cvceeeerreeeeerrevemerreremerreneesensesemessesensessesessessesenses 259
32.3 USING APPLY CRANGES.....c.ccereeecirieieireeeeeireeeneteeeeetseae s ssesessessesessessessssessesessessesessessesesses 260
32.4 Configuring Apply Changes Fallback Settings.........c.ccccooviviiiniiiininciniiciciiiiicnns 261
32.5 An Apply Changes Tutorial.........cccoiiiiii s 261
32.6 Using Apply Code Changes ..........ccccureeeeerreueenerreeeeerreeeeennereeessesensessesessessesessessesessessesessessesesses 261
32.7 Using Apply Changes and Restart ACIVILY .........ceveureeemrerreemrerreremetreeeeenreeenessesenesseseesessesennes 262
32.8 USING RUN APD .ottt 262
32.9 SUMMATY ..ot 262

33. An Overview and Example of Android Event Handling ..........ccoccevervurvuenersucncnsensucscnsensecscnnecsncsennee
33.1 Understanding Android EVENts.............ccocuvcucuvcinueieininieniiniinessese e ssessessessesssssssns 263
33.2 Using the android:onClick RESOUICE........c.ccucuuucicimiiriiiiicise e ssessesse s 263
33.3 Event Listeners and Callback Methods ... 264
33.4 An Event Handling EXample ..........ccoiiiiininciniiciincccciseeise e ssessesss s 264
33.5 Designing the User INTerface ..o 265
33.6 The Event Listener and Callback Method.........c.ccccuocuininininininincncscsccicciciecececneins 265
33.7 Consuming EVENLS .......couiiiiiiiiiiiiiiiiicn s 267
33.8 SUMMATY ..ottt bbb 268

34. Android Touch and Multi-touch Event Handling .........cococevueversenveninnisunsnsnininnisensenescnscsnssesesenes
34.1 Intercepting TOUCh EVENTS ......ccccuviereirieieiriceineeteeeeneeeereseesetseseese s ssesensessesensessesenses 269
34.2 The MOtIONEVENt ODJECT ....uuvueirrieercireeeeeireiceetreeeeetreeeeenseae s nsessese s ssesessessesensessesensessesense 270
34.3 Understanding TOUCh ACHONS. .....c.cceurevemerrevernerreeeeetreeeeenresenessesensesseseesessesessessesessessesessessesense 270
34.4 Handling Multiple TOUCRES .......c.ovueverrieieirieeiecetreeereeeetreeeeetrese s sseseesesseseesessesenses 270
34.5 An Example Multi-Touch AppliCation .......c.cvccueenecerineecinenieciniceeinecietseesesseeeetseaeseesesessssesesees 271
34.6 Designing the Activity User INteIface ........cceveureueercrreeeenerneeeeeireeectreeeenreeenesseneeesseseesessesennes 271
34.7 Implementing the Touch Event LISteNer ........cccveucrreueererreeemrerrerenetreeeeenrenenensesenesseseesessesenses 271
34.8 Running the Example APPLICAtiON.......c.ccoeueueererriececrrieeierreeenerrereeetseseesessesensesseseesessesessessesenses 274
34.9 SUMMATY ..o bbb 274

35. Detecting Common Gestures Using the Android Gesture Detector Class ..........occevevrerruccrersecsucsennee
35.1 Implementing Common Gesture DeteCtion. ..........cccuweiuiuriuniineinienerneisenseeescseseisesssssesesens
35.2 Creating an Example Gesture Detection Project.....
35.3 Implementing the Listener Class.........c.coecvcueunce.
35.4 Creating the GestureDetectorCompat Instance...
35.5 Implementing the onTouchEvent() Method.........
35.6 Testing the APPLICAtION. ........cciuiuiiriiiircicicice ettt

ix



Table of Contents

35.7 SUIMIMATY ..ot 279
36. Implementing Custom Gesture and Pinch Recognition on Android ..........cccceeevenrervucnennecnucnerncnnes

36.1 The Android Gesture Builder Application

36.2 The GestureOverlayView Class..........cccvevnenee.

36.3 Detecting Gestures..........cceuveeuvirecieinincerenencnnns

36.4 Identifying SPECific GESLULES .........cocueuuuurrieiiiiiireiee e ssess s

36.5 Installing and Running the Gesture Builder Application ...........cccccuceeuneninininiencrnenerncenes 281

36.6 Creating @ Gestures File ... 282

36.7 Creating the EXample PrOJECT........ccccuuiiiiiiiiriiircseisctecse s ssenes 282

36.8 Extracting the Gestures File from the SD Card .........cocoocvcivincinivcincicicinncncsscceeenes 282

36.9 Adding the Gestures File to the Project ... 283

36.10 Designing the User INterface .........ccocuuiiininiiniiniireiscccie e ssesesesssesessesesseaes 283

36.11 Loading the Gestures File ...t ssecsssesssssssesssesessesessenes 284

36.12 Registering the Event LISteNer ... esessesesssssesssesssesesssssesssnes 285

36.13 Implementing the onGesturePerformed Method...........ccocvcuivciiicioninininininincscrcenes 285

36.14 Testing the APPLICAtION........cocuiiciciciciciciiiciene et

36.15 Configuring the GestureOverlayView

36.16 Intercepting Gestures...........cocceveeveivicererennnes

36.17 Detecting Pinch Gestures

36.18 A Pinch Gesture Example Project..................

36.19 SUMMATY ..o

37. An Introduction to Android Fragments.........ccvcvernsnenisisinnsenisisisnseseseninsssesesssssssees
37.1 What is @ FTagment? .........cceeuvecirieenerneeeeineeeeetneeeeessesenessesessessesessessesessessessssessesessessesessessenes 291
37.2 Creating @ Fragment ... s 291
37.3 Adding a Fragment to an Activity using the Layout XML File........ccoceceereernerreeencrrererrennenee 292
37.4 Adding and Managing Fragments in Code ........coceveureuernerreeenerreeeenenneeenennenenenseseesensesensensenes 294
37.5 Handling Fragment EVENLS ........ccocvveuerreeecrneeecireeeietneeeeeneeeeesseseesessesensesseseesessesessessesensessenes 295
37.6 Implementing Fragment COmMMUNICAION.......c.cueuererreeemrerreeenerreeeeerserensersesensessesensessesenensenes 295
37.7 SUIMIMATY ..ot st 297

38. Using Fragments in Android Studio - An EXample........cccceeevininruinvinrinncninenncnennenncscneesscseseenes
38.1 About the Example Fragment Application
38.2 Creating the Example Project..........ccccoeuueunce.
38.3 Creating the First Fragment Layout.................
38.4 Migrating a Fragment t0 View Binding .........ccccoeeviniininiincincincinccieiccciecsceeisessesesssesenseenes
38.5 Adding the Second Fragment ... esessessesssssesssesssesessesesssnes
38.6 Adding the Fragments t0 the ACHIVILY .....c.ccoeuriiniiiiriniincccic e
38.7 Making the Toolbar Fragment Talk to the ACtiVIty .......ccocveuvcuniivcicicirinirisincssescreeenes 304
38.8 Making the Activity Talk to the Text Fragment ..........c.cocvcuvencuneuvcincicininenieinessesesssesenennes 307
38.9 Testing the APPLICAtION.......c.ccuiuiicicicicicicieceiciesi et 308
38.10 SUMMATY ...oneiiiiiii e 308

39. Modern Android App Architecture with JetpacK.......ccceceevrviniiieiiiniinniiiiinnccneneccnenecee e
39.1 What is Android JEtPacK? .....c.cvueueurereieiricerecerccserccstee ettt eees 309
39.2 The “Old” ArchiteCture.........ccvcuiiiiiiiiiii s
39.3 Modern Android Architecture
39.4 The ViewModel Component ...........ccoccerurenecnes
39.5 The LiveData Component..........c.cccoeeveucererenennes

39.6 ViewModel Saved State..........coovverererverenenenee.



Table of Contents

39.7 LiveData and Data BIding........cocevveureeeeiineeineinecicireeienneeenenenetseseesessesensessesensessesessessesenses
39.8 ANAIOId LIfECYCLES ....ucvreeerreeecircececireeceeireeeeetreeeiset st sese et sese s sese s s s ssessesensessesennes
39.9 Repository Modules...........cocuuee..
39.10 Summary ...,
40. An Android ViewModel Tutorial
40.1 ADOUL The PIOJECT cueueeeuiiecieiriecieireecteireieteiseee ettt ese sttt esseen
40.2 Creating the ViewModel Example PrOjJect.........cccciiuriniuniineniincineineicieieeieiseceeeseessesseeens 315
40.3 Removing Unwanted Project EIements.........c.ccccueuriuriuniniuniiniiniincneiseieeneensessecenssesssesesaens 315
40.4 Designing the Fragment Layoul...........ccocvcucuuciicinininininesse e ssesssssessssssaens 316
40.5 Implementing the VIiew MoOdel..........ccocuiuiiiiiiiiciiiiiscsc e sseciessesasesesaens 317
40.6 Associating the Fragment with the View Model.........cccoocviniiiniinincincncnccciecneences 318
40.7 Modifying the Fragment .........cccocviuuiiniincicicicicieciriesieciseise e ssssssssssssssens
40.8 Accessing the VieWMOodel Data..........ccccuicicicicieiiieiiseisesise e ssesssssesssssesaens
40.9 TeSting the PrOJECT.......cccvuiuiuiiiirciiiecicic et
40.10 SUIMNIMATY «.cuiiiiiiieiiicee ettt s st b bbb benna
41. An Android Jetpack LiveData Tutorial...........ccceeueeuennen.
41.1 LiveData - A Recap .....ccccevevevverercccnnne.
41.2 Adding LiveData to the ViewModel....
41.3 Implementing the Observer..................
414 SUINIMATY oo bbb bbb bbb bbb bbbt
42. An Overview of Android Jetpack Data Binding........cccoeevucerernurninsinscninninscninsinncnensecscsessecsscseens
42.1 An Overview of Data BINAING ..o ssesasssesaens 325
42.2 The Key Components of Data BiNding .........cccccucuciririninincninceeieeneesessecsesseessesesaens 325
42.2.1 The Project Build Configuration...........ccccuccucueeuciniuniuniuniniiseeiseseiescesesessessessesasssesesesns 325
42.2.2 The Data Binding Layout File..........cccococueioiiiriniiiniinccscceie e 326
42.2.3 The Layout File Data EIemMent ........cccvcureveureurerceneeneneereineeinenneeisesseseesessesessessesessessesessesscsenns 327
42.2.4 The Binding ClLasses ..........cceuuiurimiureuneieicieieieiieimeeisssesesessssse s ssessessesssssssssssens 328
42.2.5 Data Binding Variable Configuration...........cccccueuriuniuniniinenieneneiseieeieiecenaessssesesenns 328
42.2.6 Binding EXpressions (ONe-Way)........cccccucuruiemmniunimniunimnieseseesesssessessessessesssssesssssesssssns 329
42.2.7 Binding EXpressions (TWO-Way)........ccccccucuruirmnimnimnienisiiseissesee e ssessessssessesssssssssssns 330
42.2.8 Event and Listener BIndings...........ccocvcuueicinicininininiesecse e ssessessesasssesesssns 330
42.3 SUINIMATY .ottt b bbb bebna 331
43. An Android Jetpack Data Binding Tutorial.........ccccecevvreninuisisnsninisininnincninineeninieenens
43.1 Removing the Redundant Code...........ocuueriurecriireceiinicniecieeseeneeeesesssseesesesensesessesens 333
43.2 Enabling Data BINdINg ......ccccveueureeriiricieeieeeieeenieeenseseeesessesessesessessssessessssssessessssens 334
43.3 Adding the Layout EIEMENt .........coveuiureemiereeereireeneireeetesesenseeeessessesensessesesssessesesessesessesens 335
43.4 Adding the Data Element to Layout File.......cccovoeuurcniirecinircinecneeceeeeeeseeeeneeenaens 336
43.5 Working with the BInding Class ...........ccccvuureerniurecrirrecriirecrnieeeeneeneeneseesessseesessesessessessesens 336
43.6 Assigning the ViewModel Instance to the Data Binding Variable .........cccccovvvccnirnccrniunnnce 337
43.7 Adding Binding EXPIeSSIONS .........eceeiureeemmirreeemirreenirreeensisseeessasrsesssssssessessssessssssesesessesessssens 338
43.8 Adding the Conversion Method ... seaeesens 338
43.9 Adding a Listener BINAING .......ccocvueeirrieriireeriirieireeetieeeeeeeeeseseesesesessesssessessssssesessssens 339
43.10 TESHING the APP..ecueereirecieirieeireetiee sttt sse s ese st sasasaesscns 339
43,11 SUIMNIMATY ottt b bbb bbb bbbt 339
44. An Android ViewModel Saved State Tutorial...........coceueerinerinernnieneniienineineintenseeseesesnssesnesenenens
44.1 Understanding ViewModel State SavINg..........cccccueiriuriuniuniunimniercrneiseieeesesenseesesesssesasesssaens 341

xi



Table of Contents

442 Implementing ViewModel State SAVING .....c..c.oveueureeemirreerirreenereeneeseseseeeeesessesesesseseseenes 341
44.3 Saving and ReStOIINgG StALe.........cccueureeeiureeriirientireseeeeeeeseesee e ssssessesssssesesssasesesnsses 342
44.4 Adding Saved State Support to the ViewModelDemo Project........cocevcuneuvecuneerecrneerecnennee 343
44.5 SUMMATY ..ot

45. Working with Android Lifecycle-Aware Components........c..cc.ecue..

45.1 LIECYCIE AWATEIIESS ...eovueeeinereeeineireeeeneiseeetees e teisese e sese sttt s s snsiees
45.2 LIECYCIE OWIIELS ...ceuvreeiaireeinireieteeseeeieiseeetee sttt ese bbbttt snsees
45.3 LIECYCLE ODSEIVETS ...ucvueuirieinierieeieireieitiseeeteeseaeteisese ettt sa s sssees
45.4 Lifecycle States and EVENLS......c.oeeureeeeriuriecineinieeineiseietseisesetseesesesessese s sssssesessssssessssssessses
45.5 SUIMMATY ..ttt ettt et s s st

46. An Android Jetpack Lifecycle Awareness Tutorial ...........cocevevuiruirersnnninisnsnnnininisnnnenenncnsenes

47. An Overview of the Navigation Architecture Component

48. An Android Jetpack Navigation Component Tutorial

46.1 Creating the Example Lifecycle PrOJect.........coeueurecunierecriereeniireeeieecnneeeeeeneeeesesesseseneenes
46.2 Creating a Lifecycle ODSEIVET......ccieiricrirriciirecieieeenteeeneeeesessasese e esesssssssesssssssesnsees
46.3 Adding the Observer

46.4 Testing the Observer

46.5 Creating a Lifecycle Owner..........ccocovceeverrencnnce
46.6 Testing the Custom Lifecycle Owner...............
46.7 SUIMIMATY «.oouiiiiiiii bbb bbb bbb bbb bbb bbb

47.1 Understanding NaviGation........cc.ccucucueeeumriniuniuimiesesieseseeessessesse s ssessssssssssssssssesssssessssessees
47.2 Declaring a Navigation HOSt........cc.ccucuiririniniiiiciscicsce e saes
47.3 The Navigation GIraph ... sse s s saes
47.4 Accessing the Navigation Controller...........ooiniiincinieicieieieeeseessesssssessese s
47.5 Triggering a Navigation ACtiON ...
47.6 Passing ATZUMENLS.........ccocuiuiiiiiniiiiii st ssss s sssas
47.7 SUIMIMATY ..ottt et b s s s

48.1 Creating the NavigationDemo Project................
48.2 Adding Navigation to the Build Configuration..
48.3 Creating the Navigation Graph Resource File....
48.4 Declaring a Navigation Host........ccecceuerrecmrerrenccn.
48.5 Adding Navigation DestiNations.........cccveeuerreerirreecenimneeerieneeneeeeseseesesesessesesessssesessssenesees
48.6 Designing the Destination Fragment Layouts...........ccceveeeureceuirrecrniunecnnieeeenneeseensessneneeens
48.7 Adding an Action to the Navigation Graph..........ecccveeeeeeniurecrirrecrniunecrnieeeenseeenenesenensesens
48.8 Implement the OnFragmentInteractionLiStENner ..........oceeureerirrecrniurecrnieeeeneeeneneeeeeneees
48.9 Adding View Binding Support to the Destination Fragments..........cocceveureerreurevcrnereecnnenn 370
48.10 Triggering the ACHON ......oceueureeeeereceireeriree et ese s ese s s s s s sasnaesssaes 370
48.11 Passing Data Using Safeargs .........eceeureerirreemnirreerirreenieseentesesesessesessessssesssssssesessssesesees 371
48.12 SUIMIMATY «.viiiiiiii bbb bbbt bbb 374

49. An Introduction to MOtionLayouUL..........ececivirrinininneininsinncniniinucnesessscsesiesseeessessesssssssssesssssesne 375

xii

49.1 An Overview of MotionLayout
49.2 MotionLayout ...
49.3 MotionScene
49.4 Configuring ConstraintSets............ccccecreureunn.
49.5 Custom Atributes..........ocecuvcuecucecmeccriureureuenn.
49.6 Triggering an ANIMAtiON.......coocuiiimiiiiiiiici s




Table of Contents

49.7 ATC MOION ...ttt sttt
49.8 KEYITAIMES.....cuvreeerrieeeeneieeenseteee ettt eee s ese s ese st ese st sa st sese s escsasaenscsnsaescns

49.8.1 Attribute Keyframes.................

49.8.2 Position Keyframes...................
49.9 Time Linearity .......ccccoeeevveveururennees
49.10 KeyTrigger......cccccovveuriverevvicncurencnens
49.11 Cycle and Time Cycle Keyframes
49.12 Starting an Animation from Code........ccueerecriereceiirecnieceeeeeneseee e sseseaensens 385
49.13 SUIMNIMATY w.cuiiiiiiiiiiics s a bbb bbb bbbt 386

50. An Android MotionLayout Editor Tutorial..........cccccevvvevinrinnerninninncncnninneninennncnenesscsesnessesennee 387

50.1 Creating the MotionLayoutDemo Project ... 387
50.2 ConstraintLayout to MotionLayout CONVersion ... 387
50.3 Configuring Start and End CONStraints ..........cceueeeiuiunemniinernienesseeseseieneesessessessessesssssssssens 389
50.4 Previewing the MotionLayout ANimation.........cccceeueeuiuriuniurernienerseeseseieneesesseiaessessesssssesesenns 392
50.5 Adding an ONCHCK GESLULE ........cucuuiieieiiiriiiisiisise e sse s s s s ssesaseaes 392
50.6 Adding an Attribute Keyframe to the Transition..........cocecveueiencuncincencincineecieieeeieeseeeenenns 394
50.7 Adding a CustomAttribute to @ Transition........cceeeeuiuriuniurerniinerseirerscicieieseiseseesseeassaesesens 396
50.8 Adding Position Keyframes........ccccoocveuviurirncuncnncee

50.9 SUMMATY ...coviiicieieirircccenens

51. A MotionLayout KeyCycle Tutorial ....

51.1 An Overview of Cycle KeYIrames .........cccvuveecureurereireirenceneineeineineensenseenesseensessesessessesensessesenne
51.2 Using the Cycle EItOr ... ssesessessesessessesessessesnns
51.3 Creating the KeyCycleDemo Project..........ccccrurercurerreeenirrecinerneennerneenesseenesseseasessesesessesenne
51.4 Configuring the Start and End Constraints.........cocveeeeeereerereererreremnereesennereeensesseseesessesensessesenne
51.5 Creating the CYCLes ..o ssessesessessesessessessasessesessessesenns
51.6 Previewing the ANIMAation .......c.cevcuneeeercineerencinenneeeeereeeese e sseseasessesessessesnns
51.7 Adding the KeyFrameSet to the MOtiONSCENE ......c.cueeuivecinerrecrreirecirereeeeeeaeseeenereeaenne
51.8 SUMIMATY ..ottt bbb bbb

52. Working with the Floating Action Button and Snackbar

52.1 The Material Design.........ccccecou.n.e.
52.2 The Design Library .......ccccccoeeveuneunee.
52.3 The Floating Action Button (FAB) ...
52.4 The Snackbar........cccccovivineiviinciniinns
52.5 Creating the EXample PIOJECT.......ccciuciiiciiiniiriisceicsse e sse s sssssssssssesenens
52.6 ReVIEWING the PrOJEct ......coiuiiiiiciciciciciciciciciccse st
52.7 Removing Navigation FEatUures..........ccovviiicieieiiiiiict s
52.8 Changing the Floating Action BUttOn .........cccoeuiiiriiiininiincninceecicceeceeeeciesaecssssesescnnn
52.9 Adding an Action to the SNackbar ...t
52.10 SUMMATY c..ouiiiiiiiiiii ettt

53. Creating a Tabbed Interface using the TabLayout Component ..........cccceeeverrersisucsensessesessesnssessesseses 419

53.1 An Introduction to the VIEWPAGEI2 .......c..ceveururciriineneineirecirereerereeenesecenessesesessesessessesenne 419
53.2 An Overview of the TabLayout COMPONENt .........coceeeueurecererrecmrerreenrerseensersesensessesensessesenne 419
53.3 Creating the TabLayoutDemo Project..........cccrercrniinencinerneneeneineenesneenesseensessesensessesenne

53.4 Creating the First Fragment
53.5 Duplicating the Fragments..........ccccocveueurerreerrennenee
53.6 Adding the TabLayout and ViewPager2
53.7 Performing the Initialization Tasks.......c..c.ccceeunee

xiii



Table of Contents

53.8 Testing the APPLICAtION.....cccvvueueecirieeerreieeetreeeeetreeeeetrere et sese e sese e ssesessessesessessesensessenes 427
53.9 Customizing the TaDLayOUL.......cccvveerreeecrrieeetreicetreeeeneeeee s s sesessessesensessenes 427
53.10 SUMMATY ..o bbb s 428
54. Working with the RecyclerView and CardView Widgets.........cocererrinrersucrsenrensucnensensncssensecsscsesnees
54.1 An Overview Of the ReCYCIEIVIEW ......c.vvueuiuriueiniirieeieireieieireteeetseeetetsesetetsese e tsesesetsesessenenes 429
54.2 An Overview Of the CardVIEW ........ccceuveiueiririririciereeiereeie ettt sesen 431
54.3 SUIMIMATY ..ottt bbbttt bbb 432
55. An Android RecyclerView and CardView Tutorial.........coccevvvvrinrininrinisnsnsesinininensenesessesneseenens
55.1 Creating the CardDemo ProJect........cocveeureeeeerreeeeneinieenerreieeenreseeessesenessesensessesessessesesessenes 433
55.2 Modifying the Basic ViewWs ACtiVIty PrOJECt .......cvvevveureeernerreeeenerreecieirercneineneeenseeeeensesenennenes 433
55.3 Designing the CardVIEW LayOUL .......ccc.vecureeencrreeceneineeenenreeeeeneseeenseseeenseseesessesessessesessessenes
55.4 AddIng the ReCYCIEIVIEW......c..cucviiieeieiriiecireecteeeieieieeteieesessesessesseseesessesessessesessessesessessenes
55.5 Adding the IMage Files.......cocviiieirreecinieeieeeeetereeeneieeessesessessesessessesessessesessessesessessenes
55.6 Creating the RecyclerView Adapter.................
55.7 Initializing the RecyclerView Component
55.8 Testing the Application........cccvcveeeurervecurerrenen.
55.9 Responding to Card Selections...........cccveuneeee.
55.10 SUMMATY ..t
56. Working with the AppBar and Collapsing Toolbar Layouts ...........ccceverrucrenrersucsensecsncssensecsscssesnees
56.1 The Anatomy Of AN APPBAT .....c.cviuieeiiireieiireecireieerei ettt sese ettt sese et sesesaeaseaes 441
56.2 The EXAMPLE PIOJECT ....cuvivirciiecicireieicireieictseeeteisesetet st seb et sesetse s ssetsese st sesessetsesesassnenes 442
56.3 Coordinating the RecyclerView and Toolbar ...........ccocvinuviincincivcincicicinirienscsesessseeenes 442
56.4 Introducing the Collapsing Toolbar Layout ............ccceceiercueincenceneeeecinieenenesesessesesssesenseenes 444
56.5 Changing the Title and Scrim CoOlOT ........cccociiininiininincecie e 447
56.6 SUIMIMATY ....oooeieieiciieiiiiiti ettt et b et es 448

57. An Overview of Android Intents

58. Android Explicit Intents - A Worked Example

Xiv

57.1 AN OVErVIEW Of INTENLS ...ucuurerieincieecectreecictreeeeetreee st sesesses s ssese s ssesessessesensesenes
57.2 Explicit Intents
57.3 Returning Data from an Activity
57.4 ImPlicit INtENLS ..cucvvueucerrreecreereeieireeeieeeseeeeeneens
57.5 Using Intent Filters
57.6 Automatic Link VerifiCation .......c.cveveureeecrreeeneineeeeeirieenenreeeeesseseesessesensessesessessesessessesessessenes
57.7 Manually Enabling LINKS .........cccceeureemerreeeeernieeeirieeeernerenenseeeeessesessessesensessesessessesessessesessessenes
57.8 Checking Intent AVailability .......c.coceverreeciriemniireeieireeeneieeeereeensese e ssesessessesensessenes
57.9 SUMMATY ..ot bbb bbb

58.1 Creating the Explicit Intent Example Application...........cecueeucuvcuvcucicinineninsinessiserssesenseenes 459
58.2 Designing the User Interface Layout for MainACHVItY ......c.ccocucuccucicinineniieinensisesceseneenes 459
58.3 Creating the Second ACtiVIty Class........cccccuuiriuriuriuniiriiniireieiseie e esesieiseeesssesesesssesesssesesesnes 460
58.4 Designing the User Interface Layout for SeCONdACHVILY ....c.cocucuuciuciriniiniicinisircicircieenes 461
58.5 Reviewing the Application Manifest File........ccccoviiininiinciniincinccciceeececncsessseeenes
58.6 Creating the Intent..........cccccueeeerircrercurennenn.

58.7 Extracting Intent Data
58.8 Launching SecondActivity as a Sub-Activity..
58.9 Returning Data from a Sub-Activity...............
58.10 Testing the APPLICAtION.......ccvcuiuciciciciciciicicieni e

.................................................................................



Table of Contents

58.11 SUMMATY c.ouiiiiiiiii bbb 465
59. Android Implicit Intents — A Worked EXample .......ccccoeeverrinrerninsinncncnsennncncnsennncsessessscsesssessesesses 467
59.1 Creating the Android Studio Implicit Intent Example Project ..........cccccoeueucueivinerincencnnes 467
59.2 Designing the User Interface
59.3 Creating the Implicit Intent...................
59.4 Adding a Second Matching Activity
59.5 Adding the Web View to the Ul.......ccccciiiiinininiinenircciseeeseiesessessessessessesssssesesenns
59.6 Obtaining the Intent URL..........ccccoiuiiiriiiinincisessise e sse s ssessessesssssssscsns
59.7 Modifying the MyWebView Project Manifest File ...........ccocvinineinerncincineiciciecniccseeenennns 471
59.8 Installing the MyWebView Package on a Device..........ccocuviureuniineincincrncicieeeneieeesinesisinesenens 472
59.9 Testing the APPLICAtION.........ocuiucuciciiciciieiieicieies e 473
59.10 Manually Enabling the LinkK ..o 473
59.11 Automatic Link VerifiCation ... sse s ssessessesssssesennns 475
59.12 SUMMATY c..ouiiiiiiiiiiii ettt bbbt 477
60. Android Broadcast Intents and Broadcast RECEIiVers...........ouvuiievirrcinicnniieniiciitcnicesceseseneseans 479
60.1 An Overview of Broadcast INENTS.........cccueueveureeeencrreeemernenenerresenessesensessesensessesensessesensessesenses 479
60.2 An Overview of Broadcast RECEIVETS .......c.ouueueureueecrriueeerrereneirerenetseeeeesseaensessesensessesessessesenses 480
60.3 Obtaining Results from @ Broadcast.........c..ceeureeencrreeenerneeencrnerenerneneeenseneeessesenesseseesessesenses 481
60.4 Sticky Broadcast INTENLS ........cceureeerrcrreeeeerreeeeerreeeeetseeensensesensessesessessesessessesessessesessessesessessesenses 481
60.5 The Broadcast Intent EXaMPIe.......c.cveeueurereurirecininecinineecineeiciseeeeseese e sseessssesesessesessssesesees 481
60.6 Creating the Example APPliCation.......cccoeureueeerriucererreeemerneeenenrerenetsesensessesensesseseesessesensessesenses 482
60.7 Creating and Sending the Broadcast INtent..........ccocuveueeerreernerreemnerneenenreeenenseneesersesensensenennes 482
60.8 Creating the Broadcast RECEIVET .......c.ouevueeercrreeeecrrieeeenneeeneireneeetseneesessesensessesensessesensessesenses 483
60.9 Registering the Broadcast RECEIVET ........couieviireeeencirieeeeireecireeenctreeeeeneeeeessesensessesessessesennes 484
60.10 Testing the Broadcast EXAMPLE .......c.occueueueenerrieeencrnieeneenereeenetseneeenseseesessesensessesessessesenses 485
60.11 Listening for System Broadcasts..........ccoeeeeeereeererreeeerneeemenrerenersenensessesesessesensessesensessesenses 485
60.12 SUIMMATY ..ottt bbbt 485
61. An Introduction to Kotlin Coroutines.............ccceeuererunrereniireniiienineninennniesnntsesieessssessssessssesessssesssenes 487
61.1 What are COTOULINES? .......ucuiuiiiiiiiiiire ettt sae s 487
61.2 Threads vs. Coroutines
61.3 Coroutine Scope......ccccevurrincucucce
61.4 Suspend Functions.........c.ececevevenee.
61.5 Coroutine Dispatchers
61.6 Coroutine BUuilders.........cccccuiiiiiiiiniiscciccieie e
61,7 JODS vttt ettt ettt ettt et a ettt ettt ae ettt et et et s asab st et etenene et st enene
61.8 Coroutines — Suspending and RESUMING.........cc.ccueurmuirimniuriniiniiniiseesesesenessessessesssssesessnns
61.9 Returning Results from a COrOULINe ........cocucueuucicieiniieiicisceese e
61.10 USING WItNCONLEXL .....couveeeieriiiiiiiiciitseictscie st
61.11 Coroutine Channel COMMUNICAtION .....c.cuuuucuuueeiucieiiriereiiiieseissese et ssessessessesssasssens
61,12 SUIMMATY ..ottt
62. An Android Kotlin Coroutines Tutorial..........cccoceeiiniiiniieniieniieinicinicntseicenessesseeseseseseans 495

62.1 Creating the Coroutine Example Application
62.2 Adding Coroutine SUppOIt to the Project.......occureeeerneeeneireereirienerreeenerseseeesseseeensenennes
62.3 Designing the User Interface ........ccccocoeeeeureuvecrnennee

62.4 Implementing the SeekBar.............

62.5 Adding the Suspend Function
62.6 Implementing the launchCoroutines Method

XV



Table of Contents

62.7 TeStING the APP..cevuceieeeeireeeieireecieireieee et sese et sese e se s sese s sesessessesessessesessesenes
62.8 SUIMIMATY ..ot

63. An Overview of Android Services

63.1 Intent Service ...
63.2 Bound Service
63.3 The ANAtOMY Of @ SEIVICE c..vuvvrrviiirieeieireieieireeetct et ses ettt sese bbbt sese st sebe st s saetnenes
63.4 Controlling Destroyed Service Restart OPtions...........cceiureucucencueeceseieimeeuresssesesssesesssesesseenes
63.5 Declaring a Service in the Manifest File..........cccocviiinininiiniincincicicceieeceeseseesessseseneenes
63.6 Starting a Service Running on System Startup.........ccccovivciniiciccc
63.7 SUIMIMATY ...ttt b bt

64. Android Local Bound Services - A Worked EXample.........ccceccevirvericiniricnscnninnensncnnennscsscssensscsssesenns

64.1 Understanding Bound SEIVICES........ccvuurueuerreueenierieeeeirieeeeneeeeesseseeenseseesesseseesessesessessesensessenes
64.2 Bound Service Interaction OPHIONS ........ccuevreeerureucrrenecerireecirereaetseesesseesessesesesseseesssesesessesesesnes
64.3 A Local Bound Service Example..........c.c.c......
64.4 Adding a Bound Service to the Project
64.5 Implementing the Binder .........cccccveuvevcrrerncnce.
64.6 Binding the Client to the Service......................
64.7 Completing the Example.......coccoeeunervevcrrerrenecn.
64.8 Testing the Application........cccoveveeeurervercererrenen.
64.9 SUMMATY ..ot bbb

65. Android Remote Bound Services - A Worked Example

65.1 Client to Remote Service CommuUNICatioN.........ccuuruuiveimiiimiiiciissessssssasssssssenns
65.2 Creating the Example APPLICAtion .........cccocuuiiuiiniiiiiniiniincicicieieseceecieiseeiecsesesesssesessesessenes
65.3 Designing the User INterface ..o secieeseisssesesesssesesssesessenes
65.4 Implementing the Remote Bound Service.........ccvuiuriuniinciniincincincieicinieesieeisessesesssesenseenes
65.5 Configuring a Remote Service in the Manifest File..........ccccocvcuniuvcincicioninininincnincncncinenes
65.6 Launching and Binding to the Remote Service........coouniincencincieicinieeirinsisessisesssesenseenes
65.7 Sending a Message to the Remote Service .........cviiriuiirciniincincieieicinieescesesessesesssesenseenes
65.8 SUIMIMATY ...ttt bbbt

66. AN INtroduction t0 KOtLn FLOW .......ccuuueeeeeiieeeeeisrreeeisssneesessssseesssssssesssssssssssssssssessssssssesssssasssssssssssssss

66.1 Understanding FIOWS........c.cocueueeirieencrnieeecinieenetereeetsesenesseseesessesessessesessessesessessesessessesessessenes 519
66.2 Creating the SAMPLe PIOJECT ......cvcueueeerreeeicireeceeireicieireeeeteeeeenseseesensese s ssesessessesensesenes 519
66.3 Adding the Kotlin Lifecycle LiDrary .......cccceenenenerneeenerneeeeneeeenseseesenseseesessesensensenes 520
66.4 Declaring @ FLOW........c.ccuceciieineinieetneieetneeeeteee s ssesseseesessesessessesessessesessessesessessesessessenes 520
66.5 EMItting FLOW Data.....c.ccvceeeieeeieirieerneieeineeeeesreeenetseseeessesessessesessessesessessessssessesessessesesesseses 521
66.6 Collecting FIOW Data ........ccveureueencerieeeerreieeeireeeeesrereeessesenessesessessesessessesessessessssessesessessesessessenes 521
66.7 AddIng @ FIOW BUFTT .......vueviicicicccrccctcccccceeeteeeee e sesessessesensenenes 522
66.8 Transforming Data with Intermediaries .........ccocveeveureeeenerreeenernercinenneeeeneeeenseeesensesenensenes 524
66.9 Terminal FIOW OPErators......ccceuvcueurereurureucueinereiniseaerseneetstsesetseesesseesessessessesesessessssssesesessencsssnes
66.10 FLOW FIAttENINEG .....cvrevivereeicieecictreeeeetseicesetseee et sese s s s s s ssesessessesessessesessessesessesenes
66.11 Combining MUltiple FIOWS ......c.cvveeerrieeecrreeeeeirieeeeireeeeeteeeeesseseeessesessenseseesessesessessesessessenes
66.12 Hot and Cold FIOWS ... sssssessssnes
66.13 SLAtEFLOW ...t
66.14 SharedFlow
66.15 SUMMATY ...

67. An Android SharedFlow Tutorial

Xvi



Table of Contents

67.1 ADOUL the PIOJECL ....ecvuveeicicecectrcicctreecceieeteeeee ettt sese s st sesensessesenncs 533
67.2 Creating the SharedFIoWDemO ProOject........ccocvueeerreeeeerreeemerreeeneineeeeensenenesseseesessesensensesennes 533
67.3 Designing the User Interface Layout ...........ccveureeeererreeeererneeemerrereeetnenenersenenesseseesessesesessesenses 533

67.4 Adding the List ROW LaAYOUL ......ccvueverrieeeeirieeeeireeictreeeeenreeenessesensessese s ssesensessesessessesensessesenses 533
67.5 Adding the RecyclerVIew Adapter.......coueeirneeeencrreemerneneneirerenetseseesesseseesessesensessesessessesenses 534
67.6 Adding the VIEWMOEL ......c..couivieeiiiriciiriceinecictreeeeneee et netsese s ssessesessessesensessesenses 535
67.7 Configuring the VieWMOdeIPTOVIEr ..........ccviuriueererreeeeerneeeeeireeenctreeeeenseneeensesensessesessessesennes 536
67.8 Collecting the FLOW ValUes.........c.occcureieirieincineccineeeneeeeneneeetseseesessesensessesensessesensessesenses 537
67.9 Testing the SharedFIOWDEMO APP ...c.vuevereeererreeeeerrieeeerreneeesseseesessesensesseseesessesessessesessessesenses 538
67.10 Handling Flows in the Background..........cccocveneirireiniencineccreeeneeeenseeeeesseseeensenennes 538
67.11 SUIMMATY ..ttt 541

68. An Overview of Android SQLite DatabDases .........ccceeerrreeereeirreeeeeessseeeeessssseeecsssssseeesssssesessssssssessssssssesns 543

68.1 Understanding Database Tables.............cccvcuuvcinueiciininiiiiisesse e ssessessessesssesssns
68.2 Introducing Database SChema ..o
68.3 Columns and Datad TYPES ..c.c.eeeereveereerereeeirereieireseeetsesesetsesessessesessessesessessesessessesessessesessessesesns
68.4 Database ROWS ..ot
68.5 Introducing Primary Keys .........cccviuriniincincineieieieieisieseicissise e ssessssssssssssssns
68.6 What is SQLIte? ...c.ocvvvevreeireeerecieenene
68.7 Structured Query Language (SQL).......ccocriuiuremniineineuncrncieienenieeneeseseeeseneens
68.8 Trying SQLite on an Android Virtual Device (AVD)
68.9 The Android Room Persistence Library
68.10 SUIMMATY ...ttt ettt

69. The Android Room Persistence LiDrary .......ccccvcvivivnininiinnnninininnnnensneenes 549
69.1 Revisiting Modern App ArChiteCtUre .......c.veveueeeecrreeeeerneeenerreeenetreeeeessesenesseseesessesensessesenses 549
69.2 Key Elements of Room Database PersisteniCe........ocvuueurreuemerreremrerreeemerrenemersesensessesensessesennes 549
69.2.1 REPOSIOTY ...ttt 550
69.2.2 ROOM Database .........cccuiuimiiiiiiiiiis s 550
69.2.3 Data Access Object (DAQ) .....cuvcurrecriereerieererieenereeeese e ssesessessesessessesessessessasessescens 550
09.2.4 BNEIEIES oottt s
69.2.5 SQLILE DALADASE ...voeveereeeteeteeerete ettt ettt et r s et neereneans

69.3 Understanding Entities

69.4 Data Access Objects.......c.ceeurereneen.

69.5 The Room Database...........cccceucce.

69.6 The Repository........ccceeerereecurerrennne

69.7 In-Memory Databases....................

69.8 Database Inspector..........cococevuveueenes

69.9 SUMMATY ..ot

70. An Android TableLayout and TableROW TUtorial ........ccccevcverrerrrinrinseiscnsennueninsensucsensessscsesseessessesnes 559
70.1 The TableLayout and TableROW Layout VIEWS.........coeeeureureveueerereenceremeeeereneeeeseseeessesessessesenne 559
70.2 Creating the Room Database PrOJECt ..........cccuvcuueicicininiiriiiseineise e ssessessesasssesescsns 560
70.3 Converting to a LIN€arLayoul...........cococvviiiiiiniiiiniicc s 560
70.4 Adding the TableLayout to the User Interface..........cccccvuueiurininiiniineincinciscecicieicieeeieenenns 561
70.5 Configuring the TabIEROWS ........c.ccriuiiniiiiniicicicieeci e sae s 562
70.6 Adding the Button Bar to the LayOout ..........c.ccccuueieicininiriniineeise e 563
70.7 Adding the ReCyClerVIEW........cc.cuiiiiiiriiiincicicicicieieceeeeeicsise et sa s sssassses

70.8 Adjusting the Layout Margins
70.9 SUIMMATY ..ottt

xvii



Table of Contents

71. An Android Room Database and Repository Tutorial

71.1 About the ROOMDEMO PrOJECt........coviuivieiiieciiiriicieiriceeiceeeeeeseseeeesene e sseeenes
71.2 Modifying the Build Configuration
71.3 Building the Entity.......ccccocoeecnivcnincncenn.

71.4 Creating the Data Access Object..........c...........

71.5 Adding the Room Database........ccccocovuureuremnecn.

71.6 Adding the REPOSILOLY ......cuueuevmieererrerenicrieraeaeieesesseasessesessessessessessessesssssssssssssessssessssesense
71.7 Adding the VIEWMOMEL ........cvemiiirciciicecieeieieiseieirestese s ssessssesssssssesssasensssensenses
71.8 Creating the Product Item Layout ..........ccccocuveeeiirieeeneirieeericeeeneeeeeseeeeseseeesseseeseesesensenenes
71.9 Adding the RecyclerVIew Adapter.........ccvueerereeneeneerernierenenererensensessenseessssssssesssesessessesenses
71.10 Preparing the Main ACHVILY .....ccoceveurieiierieierieieeeeeteeeseseeeseseese s ssessesensenenes
71.11 Adding the BUtton LISENETS.......ccecuueremeeruereeaieeenerneiseriesessessessessersessessensssssssssessssesessenenses
71.12 Adding LiveData ODSEIVELS ........cccuevuereruerueaieeineaneiesseesessessessessessessessessssssssssesssssesessesenses
71.13 Initializing the RECYCLEIVIEW.......c.cvucvueecrreeeeeeinenneireieesesessesse s ssessnassssssssessasenssssesenses
71.14 Testing the ROOMDEIMO APP ....ccuiuiiririeiiririeiriecieiineeeeereee e ssese e ssesessessesenssesenes
71.15 Using the Database INSPECtOr .........cccuiuiucuriueiniirieeieirieereieeeeseeeseseeeesese s ssessesensessenes
71.16 SUIMIMATY ..ot a bbbt s

72. Video Playback on Android using the VideoView and MediaController Classes..........ccecceueereruncenes 583

72.1 Introducing the Android VideoVIeW Class ......c.coceuveureeeenerrereenerrereincenereeeeseseesenseseesesseseesessenes
72.2 Introducing the Android MediaController Class
72.3 Creating the Video Playback Example ........ccocoeunvurvceneurecuncnnee

72.4 Designing the VideoPlayer Layout ..........ccocveeeererreeeeneurereenerreeeeeeseseeesseresesseseesessesessessesessessenes
72.5 Downloading the VIdeo File.........veiecireeincinicieineeeenneieeeeseeeeeeseseeesseseesessesessessesessessenes
72.6 Configuring the VIdEOVIEW .......ccocueueecrreueercireeeicireieietrereeeeseieeetseseeessesessessesessessesessessesessesseses
72.7 Adding the MediaController to the Video VIEW......cccveuneureeeenerreeeeneereeeeneineneeseesereeseeseseesennenes
72.8 Setting up the onPreparedLiStENET .........cccureueercereeeereirereeerreieeerseseeesseseeesseseesessesessessesessessenes
72.9 SUIMIMATY ..ot

73. Android Picture-in-PiCture MOdE.......ccceeerereerrerrereeeerrrereeesssneeessssssesessssassssssssssssssssssssssssssasesssssssssesssse

73.1 Picture-in-Picture FEatUIes........cooevviiueiiiteiecte ettt
73.2 Enabling Picture-in-Picture Mode...................
73.3 Configuring Picture-in-Picture Parameters ...
73.4 Entering Picture-in-Picture Mode.............c.........
73.5 Detecting Picture-in-Picture Mode Changes.....
73.6 Adding Picture-in-Picture Actions...........ccceceu....
73.7 SUMMATY ...ovniiiniriiciicniecsesesssesenes

74. An Android Picture-in-Picture TULOFIal.........ccceeeeeiiiiiiirieeeeeeeeieeicecrssssnnneeeeeeeeesssssssssssssseseesssssssssssssans

74.1 Adding Picture-in-Picture Support to the Manifest........cocvweverreveererreeeereenereeserreveeseeseveesennenee
74.2 Adding a Picture-in-Picture BUON .......cccocureueencireeeineireeeeerreieeetseeetesseseeessesessessesessessesessessenes
74.3 Entering Picture-in-Picture MOde........c.ocevcureueencireeeineireeceneireeeietneeeieeseseesessesessessesessessesessessenes
74.4 Detecting Picture-in-Picture Mode Changes ..........ccocveeeveureeeererreueenerrereeseeseseesesseveesessesensesnenee
74.5 Adding a Broadcast RECEIVET ........c.oceuveureueecireeeeneireieieirereeenseeeeesseseeessesessessesessessesessessesessessenes
74.6 AdIng the PiP ACHOMN. ..c..ceueieeeieireeceetreieictneeeeet et sese et seseesetseseesetsesessessesessessesessessesesseseses
74.7 Testing the Picture-in-Picture ACHION ......ccocveueereureeeereerereeneireeeeeeseseesessereeesseseeessesessessesessessenes
74.8 SUIMIMATY ...t

75. Making Runtime Permission Requests in Android..........ccccceuueuueeee

75.1 Understanding Normal and Dangerous Permissions
75.2 Creating the Permissions Example Project..........cccoeencrieincirercincineceneneeeneseneeseesenenensenes

Xviii



Table of Contents

75.3 ChecKing for @ PErmiSSION .....cc.euecueeeecrreurecireieetereesesseseesessessesessessesesseseeseaessesessesesensessesenns
75.4 Requesting Permission at RUNTIME.........ccoiiiiiiiiiiii s
75.5 Providing a Rationale for the Permission ReQUESt .......c..c.ececurerrecunerrencmnerrecnnernecnreneenneneeeenne
75.6 Testing the PermiSsions APP.......ccccceeererrerreremreuneeererneensesseessessesessessesessessesessessessssessesesessesenns
75.7 SUIMIMATY ..ottt bbb bbb bbb bbb bbb bbb

76. Android Audio Recording and Playback using MediaPlayer and MediaRecorder ......................

76.1 Playing AUAIO ...ttt
76.2 Recording Audio and Video using the MediaRecorder Class
76.3 About the EXample PrOJECT .....ccueueicireeeiiirieeieireeeictreieiciseeeteisese et sesessetsesessetsesesaessesessessesesnes
76.4 Creating the AUdIOAPD PTOJECL.......cciuiuiiiiciciciciciecseieei st
76.5 Designing the User INTerface ..o
76.6 Checking for Microphone Availability...........cccocueioiiiinininininicccccceceececciei
76.7 Initializing the ACHVILY ......ccoiiiiriiccrccc e
76.8 Implementing the record Audio() Method........c.ccccuocuininininininincncrccceeceie e
76.9 Implementing the stopAudio() Method.........cccocuiiirinininininirecccceieeeieeeeeeeiees
76.10 Implementing the playAudio() method.........ccccciiiiininiiinicccccceceececees
76.11 Configuring and Requesting PErmiSSIONS .........c.ccccuiueiuriurimnieneinieserseiseneeessessessesaesssssssenens
76.12 Testing the Application..........ccccoeeveuveurerniercrncenenn.
76.13 SUMMATY ...

77. An Android Notifications Tutorial

77.1 An Overview of Notiflcations.........ccociiiiii e
77.2 Creating the NotifyDemo Project ........cccvururrercirenenceniireeinerneenerseeseseeensessesessessesensessesenne
77.3 Designing the USer INTErface ........cocuvueevcrreerencireinecireineeneseeeseseeessessesesessesessessesessessesesessesenns
77.4 Creating the SECONA ACHVILY ...c..c.overireererrerrecireirecirereeeresee e ssesessesesessessesnns
77.5 Creating a Notification Channel ...........cccvevcunurercininenenenenenenecneeeeseeensesesensessesessessesenne
77.6 Requesting Notification PermiSsion ..........c.ccccueecereurecrneineernerneennerneenesseensessesessessesensessesenne
77.7 Creating and Issuing @ NOTHICAtION ....cocueuecureureciereicieeeereeeeenee e nseseesenne
77.8 Launching an Activity from a NOtiflcation.........ccccveueeeeuneurencinernencnnerneennerneennenseensessesenseseesenne
77.9 Adding Actions t0 @ NOtHfICAtION ....cuueuecriericirrecierccrereereee et seesenne
77.10 Bundled NOtIICAtiONS. ..o sssasssas
77.11 SUMMATY oottt

78. An Android Direct Reply Notification Tutorial ..........ceceevcvverrerninsinscncnsenncncnsenncnensecncsesseenes

78.1 Creating the DirectReply Project ...
78.2 Designing the User INterface ..o ssesssssnns
78.3 Requesting Notification PermiSSion ............cccuccucucicminimniuniniineisieseseisesessessessessesssssssssssssns
78.4 Creating the Notification Channel............cccocvciinirinininininccecee e
78.5 Building the RemoteInput ODJect ...
78.6 Creating the PendingIntent. ..ot sse s
78.7 Creating the Reply ACHON........cc.cuiiiiiiicircicieie et ss e
78.8 Receiving Direct Reply INPUL.........cocuiuiiiincinciciciciciiieiccise et sse e
78.9 Updating the NOtHICAON .......cuvuiiriiiicicirciccic et sae s s
78.10 SUIMIMATY ..ottt bbbt

79. Working with the Google Maps Android API in Android Studio ..........ecevevvevrcrucsisersenesncsncennes

79.1 The Elements of the Google Maps Android API
79.2 Creating the Google Maps Project........c.ccocceuveunee
79.3 Creating a Google Cloud Billing Account.............
79.4 Creating a New Google Cloud Project..................

Xix



Table of Contents

79.5 Enabling the Google Maps SDK.......ccccveireeirrieeneinieenrereeesseseeessesenesseseesessesessessesessessenes
79.6 Generating a Google Maps API KeY.........ccocvuerreeeneineeemnenreieeerrereeenneseeenseseesessesessessesesessenes
79.7 Adding the API Key to the Android Studio Project...............
79.8 Testing the AppliCation.......cccvveeeureeceierecriereenneeeeeneeeneeneeens
79.9 Understanding Geocoding and Reverse Geocoding
79.10 Adding a Map to an Application..........cccveeeecereerecrrevencrnenens
79.11 Requesting Current Location Permission
79.12 Displaying the User’s Current LOCAtION .........cocureueererreeeeerreeeeerrereeenrerenennesenensesessessesensensenes
79.13 Changing the Map TYPE......cvccureeererreeeeerreeeeetreeeeesseseeesseseesessesessessesessessessssessesesessesesessenes
79.14 Displaying Map Controls t0 the USeT ...........ccveureeeeerreeemnerreeeenerrereeenseremenseseeessesensessesenessenes
79.15 Handling Map Gesture INteraction........ccocveeecureeeererreeemerneeemsersereeensesenenseseesessesessesseseressenes
79.15.1 Map Z00MmiNgG GESTUIES.........cccevriiueiriireiiciiiiesiiesese st sssssesssssaessssssesssaes
79.15.2 Map Scrolling/Panning GeSTUIES .........c.cewcueermemeuemmereremeresemeresensesesessessesesessescssenens
79.15.3 Map Tilt GESLUIES. .....cueuiiuiricieireceeiricietreeie ettt ettt neaeas
79.15.4 Map Rotation GESLULES........cccvururueueuiinirinrerereecntntneetereetetsse et sse s sestatsseseseseseseseans
79.16 Creating Map MATKETIS......c..c.vceverreueeerreeeeeineeeeeneeeeetseseeessesessessesessessesensessessssessesessessesessesseses
79.17 Controlling the Map CamMera ........ccccveureueeerreeemrerrereeerrerenenseseeessesessessesessessesessessesessessesersessenes
79.18 SUMMATY ..ottt bbb bbb

80. Printing with the Android Printing Framework .........ccccevuvrueiinrennucnrinnenncsinninnncninnicscninsecsesesseene

80.1 The Android Printing ATrChIteCtULE ..........c.ccuuiuiuiuriuiiirciiiseecie e 659
80.2 The Print Service Plugins
80.3 Google Cloud Print.........cccccuceueevinerencenennenn.
80.4 Printing to GOOGle DIIVe........ccuiuiiiiiiciciiiicicsises e ss s
80.58aVE S PDF ...ttt
80.6 Printing from Android DEVICES ... ssesessenes 661
80.7 Options for Building Print Support into Android APps........ccececceececirinenirinenieseseeserseenes 662
80.7.1 Image PIiNting.......ccooviriiieinieiiiiiicicte b 662
80.7.2 Creating and Printing HTML CONteNLt .........ccvcuiuriuiererneecrciencieecieimeesseassisesssesesssesesseeses 663
80.7.3 Printing @ Web Page........c.ccocuiiiiiiiiicccce e 664
80.7.4 Printing a Custom DOCUMENt ........ccceviiiriiiiiiii s 665
80.8 SUMMATY ..ottt e 665

81. An Android HTML and Web Content Printing EXample .........cccevvrvninirnsnsninisncsnsnsesesscssssennes

81.1 Creating the HTML Printing Example Application ..........c..ceveureueererreeeenerneeeeserreveesenrerensensenee 667
81.2 Printing Dynamic HTML Content..................

81.3 Creating the Web Page Printing Example
81.4 Removing the Floating Action Button ............

81.5 Removing Navigation Features.............ccccc......

81.6 Designing the User Interface LaYOUL ........cocvveveureueererreeeeerrereeerrereeenresensensesensessesessessesenessenes
81.7 Accessing the WebView from the Main ACHVILY ....c.ccveeevverreeeenerreecenerreeeeireneeenseneesensenenennenes 672
81.8 Loading the Web Page into the WebVIeW........ccccvveveirieeineeeenerneecieneeceineeeenreseeennesenennenes 672
81.9 Adding the Print Menu OPtioN.......ccccureeeecrreeeeerreeeeerreeeeeneeeeenseseesesseseesesseseesessesessessesessessenes 673
8110 SUMMATY ..ttt bbb s 675

82. A Guide to Android Custom Document Printing........cccocevevcrrernucnsensenncsinsinnncnsinnecscsissessesessecne

82.1 An Overview of Android Custom Document Printing .........c.ccccceceeceruneneeenesineseserneenes 677
82.1.1 Custom Print AdApPters.......cocveeecereerercireineeireineeineiseetsessese s sses s tsessesessessesessessessscseens
82.2 Preparing the Custom Document Printing Project
82.3 Creating the Custom Print Adapter..........ccccoecunee
82.4 Implementing the onLayout() Callback Method




Table of Contents

82.5 Implementing the onWrite() Callback Method .........ccoeueeecireemcineceeireceireceeneeeeenreeennes 683
82.6 Checking a Page is In RANGE ......c.vuevcrrieeieiriceireetreeereee et nsese e sesensessesensessesenses 685
82.7 Drawing the Content on the Page Canvas ..........cccecveeererreeernerneeemnernereeerseemsessesemsessesessesseseene 686

82.8 Starting the Print JOD ..ot sesenaes 688
82.9 Testing the APPLICAtION. .....cceuevcrreeeeeireeecireecereeeet ettt sese st sese s s s nsessesenaes 689
82.10 SUMMATY ..ottt bbb 689

83. An Introduction to Android APpP LinKS.......cccccvevveruinvinreininsinnecninninnicncninnenisesscsesesscsesseseseses 691

83.1 An Overview of Android APP Links .....cccveeeeveureeeineirieineineeicneeeecineeeieiseseeeesesesessesessessesesne 691
83.2 AP Link INent FIIETS ....cueuueviiiriecicireecicireictcincietct ettt sese et sesesse st sesessessesessessesennes 691
83.3 Handling App Link INTENES .....ccucuiuiiiiiiciseicicicieiciee et sasss s sssssssens 692
83.4 Associating the App with @ Website.........ccocuocuviiiiiiiiciiniccc e 692
83.5 SUMMATY ..ottt bbb 693

84. An Android Studio App Links Tutorial ........ccccccevirviiviiniriinsiininiininincetnencse et seeeessessessesnes 695

84.1 About the EXaMPLe APD ..cecvriieeirecieiricieireeietneieieteetsiseseiseeae e ssesese st sseesssseae s sessesesees
84.2 The Database Schema...........cccconuueece.
84.3 Loading and Running the Project.....
84.4 Adding the URL Mapping..............
84.5 Adding the Intent Filter..................
84.6 Adding Intent Handling Code.......
84.7 Testing the APp.....cccvcveeeerrecererrecrnennene
84.8 Creating the Digital Asset Links File
84.9 Testing the APP LiNK......ccciieiiiiecirecereectneieeetreieeensene s ssessesessessesessessesessessesessessesense
84.10 SUIMMATY ..ottt bbb bbb

85. An Android Biometric Authentication TUtOrial.........cccceeeerrveeeeeiirreerecerssereessrseeeeessssseeesessssseessssssesesns 705

85.1 An Overview of Biometric Authentication............ccceeirniviinicinesnns 705
85.2 Creating the Biometric Authentication Project ... 705
85.3 Configuring Device Fingerprint Authentication ..........cceeeeeneniincrncincincencineieicieneeeenen 706
85.4 Adding the Biometric Permission to the Manifest File.........cccccocveniuniiniincncinincioninininincns 706
85.5 Designing the User INterface .........ccoeuvivininineinincincincinciceecceeeseeeeseeens

85.6 Adding a Toast Convenience Method...................

85.7 Checking the Security Settings............cocoeeurcuveunec.

85.8 Configuring the Authentication Callbacks
85.9 Adding the CancellationSignal..........cccocoeeurcuncunce.

85.10 Starting the Biometric PrOMPL .......c.ccvcuiuvcicincicieiciiriciiecisesese e ssessessessssesassnes
85.11 TeSting the PrOJECt. ...t
85.12 SUIMIMATY ..ottt

86. Creating, Testing, and Uploading an Android App Bundle...........cocevuevurrurrneninuisensnnencncsncsensensennes 713

86.1 The Release Preparation PrOCeSS........coceevcururecueineucirineeeinitieiseeseiseesetsesesesseessssesesessesessssesesees
86.2 ANAroid APP BUNAIEs.....c.c.cuiiueinicieireeieiecieirccsectsreeceeie ettt et een
86.3 Register for a Google Play Developer Console ACCOUNL.......c.ceeevreeeeerreeemrerrereerersereesensenennes
86.4 Configuring the App in the COonsole ...........ccreercrreeenerreeereeenereeeeseeeeesseseeesseseesessesenses
86.5 Enabling Google Play APpP SIgNINg........ccocreeueureeeererrieemerninenerrerenetsesensessesessessesessessesessessesenses
86.6 Creating a Keystore File ........cceiirieiiirieeeeieteeeenneeeeessese et ssessesessessesensessesensessesenses
86.7 Creating the Android App Bundle....
86.8 Generating Test APK Files......couvveuiurecrniineceiineceireeeieeeneeeeseneeeeeeneeenaens
86.9 Uploading the App Bundle to the Google Play Developer Console
86.10 Exploring the App Bundle ...

XXi



Table of Contents

86.11 Managing TESTELS ........cccccuviiiiriiieiiiiiiciieie ettt sssss
86.12 Rolling the App Out fOr TeSHING......cccvreueeerrereeerrereieirereeerreeeeerereeessesensesseseesessesessessesensessenes
86.13 Uploading New App Bundle Revisions
86.14 Analyzing the App Bundle File ......................

86.15 SUMMATY ..ottt bbb

87. An Overview of Android In-App Billing ........cccccevevirruinininnininsnneinininncniniiscncniensesisesseseseene 727

87.1 Preparing a Project for In-App PUrchasing ..........c.ecvcveuveuneincenciveineieinineniessessesesssesenseenes 727
87.2 Creating In-App Products and SUDSCIIPHONS .........c.cvueviureuiicencieieicieieeerinesesesseseseseseneenes 727
87.3 Billing Client InitialiZation..........c.ccccucueieiririiiriniircsse e sesesseaes 728
87.4 Connecting to the Google Play Billing Library..........ccccocvcvevcincivcineicioninenieinesiseseiscnneenes 729
87.5 Querying Available ProdUCtS.........c.ccocuiciiiniiiniirciscicce e
87.6 Starting the PUrchase PrOCESS........coccuuiiuiriuiiiiiinessise s ssessssesssssssasesssasessssessenes
87.7 Completing the PUIChAse..........c.ccucuiiciciciciiiccirce et
87.8 Querying Previous PUIChases..........ccccuiiiiiiiniiniinisiscccie e
87.9 SUIMMATY ..ottt

88. An Android In-App Purchasing Tutorial

88.1 About the In-App Purchasing Example Project....
88.2 Creating the InAppPurchase Project............c........
88.3 Adding Libraries to the Project.........ccccveuuece.
88.4 Designing the User Interface.........ccocceceeurerenee.
88.5 Adding the App to the Google Play StOre........cccvveverrieeenerreeeenerreeeierreeeeeireseeenseaeeensesenennenes
88.6 Creating an IN-APP PrOAUCT......cccvevcrreeicireeeireecetreeeeneeeeesseseesensese s ssessesessessesessessenes
88.7 ENabling LiCense TESTELS .......cvuueurirreuererrereeerrieeeetreeeesetsesemesseseesessesessessesensessesessessesessessesersessenes
88.8 Initializing the Billing CHENL ....ccccureuererrieeeeireeeetreeeieteeeenereeenseseeensese s esessesessessesensessenes
88.9 QUErying the PrOQUCL.......cccoeueeeicireeirecctreectreceteeeet et ssese e ssese e sesessessesenseaenes
88.10 Launching the PUIrchase FIOW ..ot nesseseesensesessessesensensenes
88.11 Handling Purchase UPAates ..........ccveureueeerreueenerreeeeneineeeenreeenenseseesenseseeensesessessesessessesessessenes
88.12 Consuming the PrOAUCL .........ccvcuiueierreeecirecetrecetreee et neseesessese s ssesessessesensessenes
88.13 Restoring a Previous PUIChAse ........cccueeeecureeeecireecieinicetreieeeneneeensese s esessesessessesensensenes
88.14 TeStING the APP..ccrieererreeeierreeeieireeeerreeeeetseee e sseseeses st sese et se s ssese s ssesessessesessessesessesenes
88.15 Troubleshooting ....
88.16 SUMMATY ..o

89. Working with Material Design 3 Theming

89.1 Material Design 2 vs. Material DeSigI 3 .......ccouiuriuiiiniiniincieinciieieiecseieeicsesisesssesessseseseenes 745
89.2 Understanding Material Design Theming .........cccecveureuniurcrneinceneeeeeiecnimeeeisesesesssesesssesesseenes 745
89.3 Material Design 3 TREMUNG .....c..cocuiuiiicicimiiiiiesies e 745
89.4 Building @ Custom TREMme. ..o 747
89.5 SUIMMATY ..ottt 748

90. A Material Design 3 Theming and Dynamic Color Tutorial...........cccoevevuirurrnsnriniscsnsnsesesscsnesennes 749

90.1 Creating the ThemeDemo Project
90.2 Designing the USer INTEIface ........cvueverreeeecrriremerrieeieineeeeeteeeeesseseesessesensesseseesessesessessesessessenes
90.3 Building @ NeW THEIIE .....c.cvereueeeireeeeerreeeietreeeeetresenessese s sesesses s ssessesessessesessessesessessesessessenes
90.4 Adding the Theme t0 the PIOJECt ..ot nsesessensesensensenes
90.5 Enabling Dynamic Color Support
90.6 Previewing Dynamic Colors.........ccocveeeurereneen.

90.7 SUIMIMATY ..ottt

91. Accessing Cloud Storage using the Android Storage Access Framework...........cccocevevviveivenenncnennnne 757

xxii



Table of Contents

91.1 The Storage Access FTameWOIK .........c.occueureueieinieeencrreeeeeneeeneeeeetneeeeessenensessesensessesessessesennes 757
91.2 Working with the Storage Access Framework...........ccocuveeueineerncineeenerneenneneeeneeesennenennes 758
91.3 Filtering Picker File Listings..........ccccoecveuvririunnunnc.

91.4 Handling Intent Results..................
91.5 Reading the Content of a File.........
91.6 Writing Content to a File ...............
91.7 Deleting a File.......occcvvurecrniereccrnernnnce
91.8 Gaining Persistent Access to a File
91,9 SUMMATY ..ttt

92. An Android Storage Access Framework EXample.........c.ccoccevrnueninsinncninninncninninncninecscnensecscseens 763

92.1 About the Storage Access Framework EXample..........ccccocverininiininciniincincenciicieieseceenens 763
92.2 Creating the Storage Access Framework Example..........ccoceevinnincincinciscincineicceiecscsenens 763
92.3 Designing the User INterface ..o
92.4 Adding the Activity LaUNCRers.........cooniuiiniicincicicicicceiccse e sssessnes
92.5 Creating a New Storage Fle..........ccoiiiiinciieiciecniecsise e ssessssessssses
92.6 Saving t0 @ StOrage File........ccooiiiiiiiiciiciccic e
92.7 Opening and Reading a Storage File ...........cccocioiinininininiccicccicieceieciesiesinein
92.8 Testing the Storage Access Application.................
92.9 SUMMATY ..ot

93. An Android Studio Primary/Detail Flow Tutorial

93.1 The Primary/Detail FIOW.......ccccocveeirieieiriieeneeeietreeeeenseeenessesessesseseesessesessessesessessesessessesense
93.2 Creating a Primary/Detail FLoW ACHIVILY ......ccoeveueeerreeeeerreeneireeeeireeeeenrenenesseseesesseseesensesennes
93.3 Adding the Primary/Detail FIoW ACHVItY .....ccccovuevrerreuemrerreeenerrenenetreneeenrenenesseseesesseseesessesenses
93.4 Modifying the Primary/Detail Flow Template............cccceeureemerreemnerreeeerenreemenrerensensereesensesennes
93.5 Changing the Content MOdel.........cccveueureueeneirieeenerrieierreeeneireseeesseseesessesessessesensessesensessesenses
93.6 Changing the Detail Pane .......cccocevcureeeeerreeeeeineeeetreeeenneeeetseseesetsesessessesessessesessessesensessesenses
93.7 Modifying the ItemDetailFragment Class ..........cceeureueererreeemrerreremrerrenenerrenenensesensessesensensesennes
93.8 Modifying the ItemListFragment Class.........ccocvueureureueererreeemserreremerrenenenseaenesseseesessesenessesenses
93.9 Adding Manifest PErmiSSIONS.........ccocueueuerreueererreeeeerreeenensenensessesemsessesensessesessessesensesseseesessesense
93.10 RUNning the ApPliCation........cccueuercueeeecrreeemerreeeeetreeeeensenenessesensessesensessesensessesensessesessessesense
93,11 SUIMMATY ..ttt bbb bbb bbb bbb

94. An Overview of Gradle in ANdroid StUAIO.......cccvveeeeeirieeeeiirreeeerirreeeeeisseeeessssseeeesssssasessssssssessssssssesns

94.1 An OVerview of Gradle .........coiiiinciniincinicieieie st
94.2 Gradle and Android StUAIO ...
94.2.1 Sensible Defaults ..o
94.2.2 DEPENAEIICIES. ....ervuerereeireiriecitereaeiteseae bttt st bttt
94.2.3 BUIld VATANTS ...
94.2.4 Manifest ENIIES ......cucuuiuieiiiiiirciciceiesc e saisess s ss s sssans
94.2.5 APK SIZNING.....imiiiiiriiiiiii s
94.2.6 PrOGUATA SUPPOIL....eueuerieieeiiiriecitireieieieieisesetsessessee s s bsese e ese b se e sseaens
94.3 The Property and Settings Gradle Build File.........cccccooiiiiiiininincninciscceiccciececenenns
94.4 The Top-level Gradle Build File.......ccociuiureueiniinieincirieeicreeereeeecineeeicseeeseesesesetsesesessesesnes
94.5 Module Level Gradle Build Files...........ococvuiiiniieiiiiniiiiseseseccceie e
94.6 Configuring Signing Settings in the Build File........ccccccoouiiiiinininniiicccciciececeenenns
94.7 Running Gradle Tasks from the Command LiNe .........cccoocviviunniinerncincincencineicecieneceenens 785
94.8 SUMMIATY ...ttt bbb 786







Chapter 1

1. Introduction

Fully updated for Android Studio Hedgehog (2023.1.1) and the new UI, this book teaches you how to develop
Android-based applications using the Kotlin programming language.

This book begins with the basics and outlines how to set up an Android development and testing environment,
followed by an introduction to programming in Kotlin, including data types, control flow, functions, lambdas,
and object-oriented programming. Asynchronous programming using Kotlin coroutines and flow is also
covered in detail.

Chapters also cover the Android Architecture Components, including view models, lifecycle management,
Room database access, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the
ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers,
and direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App Links, Gradle build configuration, in-app
billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.payloadbooks.com/product/hedgehogkotlin/
The steps to load a project from the code samples into Android Studio are as follows:
1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at info@payloadbooks.com.


https://www.payloadbooks.com/product/hedgehogkotlin/

Introduction

1.3 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.payloadbooks.com/hedgehogkotlin

If you find an error not listed in the errata, please let us know by emailing our technical support team at info@
payloadbooks.com. They are there to help you and will work to resolve any problems you may encounter.


https://www.payloadbooks.com/hedgehogkotlin

Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have explained how to configure an environment suitable for developing
Android applications using the Android Studio IDE. Before moving on to slightly more advanced topics, now
is a good time to validate that all required development packages are installed and functioning correctly. The
best way to achieve this goal is to create an Android application and compile and run it. This chapter will cover
creating an Android application project using Android Studio. Once the project has been created, a later chapter
will explore using the Android emulator environment to perform a test run of the application.

3.1 About the Project

The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also use one of the most basic Android Studio project templates. This simplicity allows us to introduce some key
aspects of Android app development without overwhelming the beginner by introducing too many concepts,
such as the recommended app architecture and Android architecture components, at once. When following
the tutorial in this chapter, rest assured that the techniques and code used in this initial example project will be
covered in much greater detail later.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

15



Creating an Example Android App in Android Studio

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity

The next step is to define the type of initial activity to be created for the application. Options are available to
create projects for Phone and Tablet, Wear OS, Television, or Automotive. A range of different activity types is
available when developing Android applications, many of which will be covered extensively in later chapters.
For this example, however, select the Phone and Tablet option from the Templates panel, followed by the option
to create an Empty Views Activity. The Empty Views Activity option creates a template user interface consisting
of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name uniquely identifies the application within the Android application ecosystem. Although this
can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your
domain name followed by the application’s name. For example, if your domain is www.mycompany.com, and the
application has been named AndroidSample, then the package name might be specified as follows:

com.mycompany.androidsample

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your

home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This minimum SDK will be used in most projects
created in this book unless a necessary feature is only available in a more recent version. The objective here is to

16



Creating an Example Android App in Android Studio

build an app using the latest Android SDK while retaining compatibility with devices running older versions of
Android (in this case, as far back as Android 8.0). The text beneath the Minimum SDXK setting will outline the
percentage of Android devices currently in use on which the app will run. Click on the Help me choose button
(highlighted in Figure 3-3) to see a full breakdown of the various Android versions still in use:

Figure 3-3

Finally, change the Language menu to Kotlin and select Kotlin DSL (build.gradle.kts) as the build configuration
language before clicking Finish to create the project.

3.5 Enabling the New Android Studio Ul

Android Studio is transitioning to a new, modern user interface that is not enabled by default in the Hedgehog
version. If your installation of Android Studio resembles Figure 3-4 below, then you will need to enable the new
UI before proceeding:

Figure 3-4

17



Creating an Example Android App in Android Studio

Enable the new Ul by selecting the File -> Settings... menu option (Android Studio -> Settings... on macOS) and
selecting the New UI option under Appearance and Behavior in the left-hand panel. From the main panel, turn
on the Enable new UI checkbox before clicking Apply, followed by OK to commit the change:

Figure 3-5

When prompted, restart Android Studio to activate the new user interface.

3.6 Moditying the Example Application

Once Android Studio has restarted, the main window will reappear using the new UI and containing our
AndroidSample project as illustrated in Figure 3-6 below:

Figure 3-6

The newly created project and references to associated files are listed in the Project tool window on the left side
of the main project window. The Project tool window has several modes in which information can be displayed.
By default, this panel should be in Android mode. This setting is controlled by the menu at the top of the panel
as highlighted in Figure 3-7. If the panel is not currently in Android mode, use the menu to switch mode:

18



Creating an Example Android App in Android Studio

Figure 3-7
3.7 Moditying the User Interface

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the Project tool window file hierarchy. Once located in the Project tool window,
double-click on the file to load it into the user interface Layout Editor tool, which will appear in the center panel
of the Android Studio main window:

Figure 3-8
In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A range of other
19



Creating an Example Android App in Android Studio

device options are available by clicking on this menu.

Use the System UI Mode button () to turn Night mode on and off for the device screen layout. To change
the orientation of the device representation between landscape and portrait, use the drop-down menu showing

the icon.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user
interface components that may be used to construct a user interface, such as buttons, labels, and text fields.
However, it should be noted that not all user interface components are visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel, which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-9:

Figure 3-9

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to ensure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a
U-shaped icon. When disabled, the icon appears with a diagonal line through it (Figure 3-10). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-10

The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns, with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-11, for example, the Button view is currently selected within the Buttons category:

20



Creating an Example Android App in Android Studio

Figure 3-11

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-12

The next step is to change the text currently displayed by the Button component. The panel located to the right
of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected
component in the layout. Within this panel, locate the text property in the Common Attributes section and
change the current value from “Button” to “Convert’, as shown in Figure 3-13:

21



Creating an Example Android App in Android Studio

Figure 3-13

The second text property with a wrench next to it allows a text property to be set, which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing how a visual component and the layout
will behave with different settings without running the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer Constraints
button (Figure 3-14) to add any missing constraints to the layout:

Figure 3-14

It is important to explain the warning button in the top right-hand corner of the Layout Editor tool, as indicated
in Figure 3-15. This warning indicates potential problems with the layout. For details on any problems, click on
the button:

Figure 3-15
When clicked, the Problems tool window (Figure 3-16) will appear, describing the nature of the problems:

Figure 3-16
This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected

22



Creating an Example Android App in Android Studio

within the layout file. In our example, only the following problem is listed:
button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:

Hardcoded string "Convert", should use @string resource
The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This I18N message informs us that a potential issue exists concerning the future internationalization of the
project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an “N”
and has 18 letters in between). The warning reminds us that attributes and values such as text strings should be
stored as resources wherever possible when developing Android applications. Doing so enables changes to the
appearance of the application to be made by modifying resource files instead of changing the application source
code. This can be especially valuable when translating a user interface to a different spoken language. If all of the
text in a user interface is contained in a single resource file, for example, that file can be given to a translator, who
will then perform the translation work and return the translated file for inclusion in the application. This enables
multiple languages to be targeted without the necessity for any source code changes to be made. In this instance,
we are going to create a new resource named convert_string and assign to it the string “Convert”

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-17:

Figure 3-17

After selecting this option, the Extract Resource panel (Figure 3-18) will appear. Within this panel, change the
resource name field to convert_string and leave the resource value set to Convert before clicking on the OK
button:

Figure 3-18

23



Creating an Example Android App in Android Studio

The next widget to be added is an EditText widget, into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars” Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout, as shown in Figure 3-19:

Figure 3-19

Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

Figure 3-20
Repeat the steps to set the id of the TextView widget to textView, if necessary.

Add any missing layout constraints by clicking on the Infer Constraints button. At this point, the layout should
resemble that shown in Figure 3-21:

24



Creating an Example Android App in Android Studio

Figure 3-21
3.8 Reviewing the Layout and Resource Files

Before moving on to the next step, we will look at some internal aspects of user interface design and resource
handling. In the previous section, we changed the user interface by modifying the activity_main.xml file using
the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a user-friendly way to edit the
underlying XML content of the file. In practice, there is no reason why you cannot modify the XML directly to
make user interface changes, and, in some instances, this may actually be quicker than using the Layout Editor
tool. In the top right-hand corner of the Layout Editor panel are the View Modes buttons marked A through C
in Figure 3-22 below:

Figure 3-22

By default, the editor will be in Design mode (button C), whereby only the visual representation of the layout is
displayed. In Code mode (A), the editor will display the XML for the layout, while in Split mode (B), both the
layout and XML are displayed, as shown in Figure 3-23:

25



Creating an Example Android App in Android Studio

Figure 3-23

The button to the left of the View Modes button (marked B in Figure 3-22 above) is used to toggle between Code
and Split modes quickly.

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button, and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although complexity and content vary, all user
interface layouts are structured in this hierarchical, XML-based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel, with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="match parent"
tools:context=".MainActivity"
android:background="#££2438" >

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the layout color changes in real-time to match the new setting in the XML file. Note also that a small
red square appears in the XML editor’s left margin (also called the gutter) next to the line containing the color
setting. This is a visual cue to the fact that the color red has been set on a property. Clicking on the red square
will display a color chooser allowing a different color to be selected:

26



Creating an Example Android App in Android Studio

Figure 3-24

Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently, the XML should read as follows:
<resources>
<string name="app name">AndroidSample</string>
<string name="convert string">Convert</string>
<string name="dollars hint">dollars</string>
</resources>

To demonstrate resources in action, change the string value currently assigned to the convert_string resource to
“Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file in the editor
panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor
tool in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights, and
then press Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml
file and take you to the line in that file where this resource is declared. Use this opportunity to revert the string
resource to the original “Convert” text and to add the following additional entry for a string resource that will
be referenced later in the app code:
<resources>

<string name="app name">AndroidSample</string>

<string name="convert string">Convert</string>

<string name="dollars hint">dollars</string>

<string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor by clicking on the Open editor
link in the top right-hand corner of the editor window. This will display the Translation Editor in the main panel
of the Android Studio window:

27



Creating an Example Android App in Android Studio

Figure 3-25

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.9 Adding Interaction

The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button, the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can
be implemented in several ways and is covered in a later chapter entitled “An Overview and Example of Android
Event Handling”. Return the layout editor to Design mode, select the Button widget in the layout editor, refer to
the Attributes tool window, and specify a method named convertCurrency as shown below:

Figure 3-26

Next, double-click on the MainActivity.kt file in the Project tool window (app -> kotlin+java -> <package name>
-> MainActivity) to load it into the code editor and add the code for the convertCurrency method to the class file
so that it reads as follows, noting that it is also necessary to import some additional Android packages:

package com.example.androidsample

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle

import android.view.View

import android.widget.EditText

import android.widget.TextView

28



Creating an Example Android App in Android Studio

class MainActivity : AppCompatActivity() {
override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)

setContentView (R.layout.activity main)

fun convertCurrency (view: View) ({

val dollarText: EditText = findViewById(R.id.dollarText)
val textView: TextView = findViewById(R.id. textView)

if (dollarText.text.isNotEmpty()) {
val dollarValue = dollarText.text.toString().toFloat()
val euroValue = dollarValue * 0.85f

textView. text = euroValue.toString()
} else {
textView. text = getString(R.string.no_value_string)

}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewByld, passing through the id assigned within the layout file. A check is then made to ensure
that the user has entered a dollar value, and if so, that value is extracted, converted from a String to a floating
point value, and converted to euros. Finally, the result is displayed on the TextView widget.

If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters. In
particular, the topic of accessing widgets from within code using findByViewld and an introduction to an
alternative technique referred to as view binding will be covered in the chapter entitled “An Overview of Android
View Binding”.

3.10 Summary

While not excessively complex, several steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to ensure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly string values, and briefly touched on layouts. Next, we looked at the
underlying XML used to store Android application user interface designs.

Finally, an onClick event was added to a Button connected to a method implemented to extract the user input
from the EditText component, convert it from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

29






Chapter 5

5. Using and Configuring the
Android Studio AVD Emulator

Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features available to
customize the environment in both standalone and tool window modes.

5.1 The Emulator Environment

When launched in standalone mode, the emulator displays an initial splash screen during the loading process.
Once loaded, the main emulator window appears, containing a representation of the chosen device type (in the
case of Figure 5-1, this is a Pixel 4 device):

Figure 5-1

The toolbar positioned along the right-hand edge of the window provides quick access to the emulator controls
and configuration options.

5.2 Emulator Toolbar Options

The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

43



Using and Configuring the Android Studio AVD Emulator

Figure 5-2

Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

Exit / Minimize - The uppermost X’ button in the toolbar exits the emulator session when selected, while the
‘-’ option minimizes the entire window.

Power - The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power oft” request sequence.

Volume Up / Down - Two buttons that control the audio volume of playback within the simulator environment.
Rotate Left/Right — Rotates the emulated device between portrait and landscape orientations.

Take Screenshot — Takes a screenshot of the content displayed on the device screen. The captured image is
stored at the location specified in the Settings screen of the extended controls panel, as outlined later in this
chapter.

Zoom Mode - This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

Back - Performs the standard Android “Back” navigation to return to a previous screen.
Home - Displays the device’s home screen.

Overview - Simulates selection of the standard Android “Overview” navigation, which displays the currently
running apps on the device.

44



Using and Configuring the Android Studio AVD Emulator

o Fold Device - Simulates the folding and unfolding of a foldable device. This option is only available if the
emulator is running a foldable device system image.

« Extended Controls - Displays the extended controls panel, allowing for the configuration of options
such as simulated location and telephony activity, battery strength, cellular network type, and fingerprint
identification.

5.3 Working in Zoom Mode

The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active,
the toolbar button is depressed, and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button oft reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode, the screen’s visible area may be panned using the horizontal and vertical scrollbars located
within the emulator window.

5.4 Resizing the Emulator Window

The emulator window’s size (and the device’s corresponding representation) can be changed at any time by
enabling Zoom mode and clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options

The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 5-3

45



Using and Configuring the Android Studio AVD Emulator
5.5.1 Location

The location controls allow simulated location information to be sent to the emulator as decimal or sexigesimal
coordinates. Location information can take the form of a single location or a sequence of points representing
the device’s movement, the latter being provided via a file in either GPS Exchange (GPX) or Keyhole Markup
Language (KML) format. Alternatively, the integrated Google Maps panel may be used to select single points or
travel routes visually.

5.5.2 Displays

In addition to the main display shown within the emulator screen, the Displays option allows additional displays
to be added running within the same Android instance. This can be useful for testing apps for dual-screen
devices such as the Microsoft Surface Duo. These additional screens can be configured to be any required size
and appear within the same emulator window as the main screen.

5.5.3 Cellular

The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA, etc.) in addition to a range of voice and data
scenarios, such as roaming and denied access.

5.5.4 Battery

Various battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health, and whether the AC charger is currently connected.

5.5.5 Camera

The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.6 Phone

The phone extended controls provide two straightforward but helpful simulations within the emulator. The first
option simulates an incoming call from a designated phone number. This can be particularly useful when testing
how an app handles high-level interrupts.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.7 Directional Pad

A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.8 Microphone

The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.9 Fingerprint

Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on configuring fingerprint testing within the emulator will be covered later in this
chapter.

46



Using and Configuring the Android Studio AVD Emulator
5.5.10 Virtual Sensors

The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device, such as rotation, movement, and tilting through yaw, pitch, and roll settings.

5.5.11 Snapshots

Snapshots contain the state of the currently running AVD session to be saved and rapidly restored, making it
easy to return the emulator to an exact state. Snapshots are covered later in this chapter.

5.5.12 Record and Playback

Allows the emulator screen and audio to be recorded and saved in WebM or animated GIF format.

5.5.13 Google Play

If the emulator is running a version of Android with Google Play Services installed, this option displays the
current Google Play version. It also provides the option to update the emulator to the latest version.

5.5.14 Settings

The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and configure the emulator window to appear on top of other windows on
the desktop.

5.5.15 Help

The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

5.6 Working with Snapshots

When an emulator starts for the first time, it performs a cold boot, much like a physical Android device when
powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory, and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can store additional snapshots at any point during the
execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be restored
to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken using the
Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list (B) and
click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the snapshot
name and description and to delete (E) the currently selected snapshot:

47



Using and Configuring the Android Studio AVD Emulator

Figure 5-4
You can also choose whether to start an emulator using either a cold boot, the most recent quick-boot snapshot,
or a previous snapshot by making a selection from the run target menu in the main toolbar, as illustrated in
Figure 5-5:

Figure 5-5
5.7 Configuring Fingerprint Emulation
The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication

within Android apps. Configuring simulated fingerprints begins by launching the emulator, opening the Settings
app, and selecting the Security option.

Within the Security settings screen, select the fingerprint option. On the resulting information screen, click on
the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled, a backup
screen unlocking method (such as a PIN) must be configured. Enter and confirm a suitable PIN and complete
the PIN entry process by accepting the default notifications option.

48



Using and Configuring the Android Studio AVD Emulator

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point,
display the extended controls dialog, select the Fingerprint category in the left-hand panel, and make sure that
Finger 1 is selected in the main settings panel:

Figure 5-6

Click on the Touch Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will report
the successful addition of the fingerprint:

Figure 5-7

To add additional fingerprints, click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch Sensor button again.

5.8 The Emulator in Tool Window Mode

As outlined in the previous chapter (“Creating an Android Virtual Device (AVD) in Android Studio”), Android
Studio can be configured to launch the emulator in an embedded tool window so that it does not appear in a

49



Using and Configuring the Android Studio AVD Emulator

separate window. When running in this mode, the same controls available in standalone mode are provided in
the toolbar, as shown in Figure 5-8:

Figure 5-8

From left to right, these buttons perform the following tasks (details of which match those for standalone mode):
» Power

 Volume Up

+ Volume Down

« Rotate Left

Rotate Right
e Back

o Home

o Overview

Screenshot

« Snapshots
« Extended Controls

5.9 Creating a Resizable Emulator

In addition to emulators configured to match specific Android device models, Android Studio also provides a
resizable AVD that allows you to switch between phone, tablet, and foldable device sizes. To create a resizable
emulator, open the Device Manager and click the +” toolbar button. Next, select the Resizable device definition
illustrated in Figure 5-9, and follow the usual steps to create a new AVD:

Figure 5-9

When you run an app on the new emulator within a tool window, the Display mode option will appear in the
toolbar, allowing you to switch between emulator configurations as shown in Figure 5-10:

50



Using and Configuring the Android Studio AVD Emulator

Figure 5-10

If the emulator is running in standalone mode, the Display mode option can be found in the side toolbar, as
shown below:

Figure 5-11
5.10 Summary

Android Studio contains an Android Virtual Device emulator environment designed to make it easier to test
applications without running them on a physical Android device. This chapter has provided a brief tour of
the emulator and highlighted key features available to configure and customize the environment to simulate
different testing conditions.

51






Chapter 28

28. An Android Studio Layout Editor
ConstraintLayout Tutorial

The easiest and most productive way to design a user interface for an Android application is to use the Android
Studio Layout Editor tool. This chapter will provide an overview of how to create a ConstraintLayout-based user
interface using this approach. The exercise included in this chapter will also be used as an opportunity to outline
the creation of an activity starting with a “bare-bones” Android Studio project.

Having covered the use of the Android Studio Layout Editor, the chapter will also introduce the Layout Inspector
tool.

28.1 An Android Studio Layout Editor Tool Example

The first step in this phase of the example is to create a new Android Studio project. Launch Android Studio and
close any previously opened projects by selecting the File -> Close Project menu option.

Select the New Project option from the welcome screen, select the Empty Views Activity template, and click
Next. Enter LayoutSample into the Name field and specify com.ebookfrenzy.layoutsample as the package name.
Before clicking the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Kotlin.

28.2 Preparing the Layout Editor Environment

Locate and double-click on the activity_main.xml layout file in the app -> res -> layout folder to load it into
the Layout Editor tool. Since this tutorial aims to gain experience with the use of constraints, turn off the
Autoconnect feature using the button located in the Layout Editor toolbar. Once disabled, the button will appear
with a line through it, as is the case in Figure 28-1:

Figure 28-1

If the default margin value to the right of the Autoconnect button is not set to 8dp, click on it and select 8dp
from the resulting panel.

The user interface design will also use the ImageView object to display an image. Before proceeding, this image
should be added to the project, ready for use later in the chapter. This file is named GalaxyS23.webp and can be
found in the project_icons folder of the sample code download available from the following URL:

https://www.payloadbooks.com/product/hedgehogkotlin/
233


https://www.payloadbooks.com/product/hedgehogkotlin/

An Android Studio Layout Editor ConstraintLayout Tutorial

Within Android Studio, display the Resource Manager tool window (View -> Tool Windows -> Resource
Manager). Locate the GalaxyS23.webp image in the file system navigator for your operating system and drag
and drop the image onto the Resource Manager tool window. In the resulting dialog, click Next, followed by the
Import button, to add the image to the project. The image should now appear in the Resource Manager, as shown
in Figure 28-2 below:

Figure 28-2

The image will also appear in the res -> drawables section of the Project tool window:

Figure 28-3
28.3 Adding the Widgets to the User Interface

From within the Common palette category, drag an ImageView object into the center of the display view. Note
that horizontal and vertical dashed lines appear, indicating the center axes of the display. When centered, release
the mouse button to drop the view into position. Once placed within the layout, the Resources dialog will appear,
seeking the image to be displayed within the view. In the search bar at the top of the dialog, enter “galaxy” to
locate the galaxys6.png resource, as illustrated in Figure 28-4.

234



An Android Studio Layout Editor ConstraintLayout Tutorial

Figure 28-4

Select the image and click OK to assign it to the ImageView object. If necessary, adjust the size of the ImageView
using the resize handles and reposition it in the center of the layout. At this point, the layout should match
Figure 28-5:

Figure 28-5

Click and drag a TextView object from the Common section of the palette and position it to appear above the
ImageView, as illustrated in Figure 28-6.

Using the Attributes panel, unfold the textAppearance attribute entry in the Common Attributes section, change
the textSize property to 24sp, the textAlignment setting to center, and the text to “Samsung Galaxy S23”.

235



An Android Studio Layout Editor ConstraintLayout Tutorial

Figure 28-6

Next, add three Button widgets along the bottom of the layout and set the text attributes of these views to “Buy
Now”, “Pricing’, and “Details”. The completed layout should now match Figure 28-7:

Figure 28-7

236



An Android Studio Layout Editor ConstraintLayout Tutorial

At this point, the widgets are not sufficiently constrained for the layout engine to be able to position and size the
widgets at runtime. Were the app to run now, all of the widgets would be positioned in the top left-hand corner
of the display.

With the widgets added to the layout, use the device rotation menu located in the Layout Editor toolbar
(indicated by the arrow in Figure 28-8) to view the user interface in landscape orientation:

Figure 28-8

The absence of constraints results in a layout that fails to adapt to the change in device orientation, leaving the
content off-center and with part of the image and all three buttons positioned beyond the screen’s viewable area.
Some work still needs to be done to make this a responsive user interface.

28.4 Adding the Constraints

Constraints are the key to creating layouts that adapt to device orientation changes and different screen
sizes. Begin by rotating the layout back to portrait orientation and selecting the TextView widget above the
ImageView. With the widget selected, establish constraints from the left, right and top sides of the TextView
to the corresponding sides of the parent ConstraintLayout, as shown in Figure 28-9. Set the spacing on the top
constraint to 16:

Figure 28-9

With the TextView widget constrained, select the ImageView instance and establish opposing constraints on the
left and right sides, each connected to the corresponding sides of the parent layout. Next, establish a constraint
connection from the top of the ImageView to the bottom of the TextView and from the bottom of the ImageView
to the top of the center Button widget. If necessary, click and drag the ImageView to remain positioned in the
vertical center of the layout.

With the ImageView still selected, use the Inspector in the attributes panel to change the top and bottom
margins on the ImageView to 24 and 8, respectively, and to change both the widget height and width dimension
properties to match_constraint so that the widget will resize to match the constraints. These settings will allow
the layout engine to enlarge and reduce the size of the ImageView when necessary to accommodate layout
changes:

237



An Android Studio Layout Editor ConstraintLayout Tutorial

Figure 28-10

Figure 28-11 shows the currently implemented constraints for the ImageView relative to the other elements in
the layout:

Figure 28-11

The final task is to add constraints to the three Button widgets. For this example, the buttons will be placed in a
chain. Begin by turning on Autoconnect within the Layout Editor by clicking the toolbar button highlighted in
Figure 28-1.

238



An Android Studio Layout Editor ConstraintLayout Tutorial

Next, click on the Buy Now button and then shift-click on the other two buttons to select all three. Right-click
on the Buy Now button and select the Chains -> Create Horizontal Chain menu option from the resulting menu.
By default, the chain will be displayed using the spread style, which is the correct behavior for this example.

Finally, establish a constraint between the bottom of the Buy Now button and the bottom of the layout with a
margin of 8. Repeat this step for the remaining buttons.

On completion of these steps, the buttons should be constrained as outlined in Figure 28-12:

Figure 28-12
28.5 Testing the Layout
With the constraints added to the layout, rotate the screen into landscape orientation and verify that the layout

adapts to accommodate the new screen dimensions.

While the Layout Editor tool provides a good visual environment in which to design user interface layouts, when
it comes to testing, there is no substitute for testing the running app. Launch the app on a physical Android
device or emulator session and verify that the user interface reflects the layout created in the Layout Editor.
Figure 28-13, for example, shows the running app in landscape orientation:

Figure 28-13

The user interface design is now complete. Designing a more complex user interface layout is a continuation of
the steps outlined above. Drag and drop views onto the display, position, constrain and set properties as needed.

28.6 Using the Layout Inspector

The hierarchy of components comprising a user interface layout may be viewed using the Layout Inspector tool.
The app must be running on a device or emulator running Android API 29 or later to access this information.
Once the app is running, select the Tools -> Layout Inspector menu option, followed by the process to be inspected
using the menu marked A in Figure 28-14 below).

Once the inspector loads, the leftmost panel (A) shows the hierarchy of components that make up the user

239



An Android Studio Layout Editor ConstraintLayout Tutorial

interface layout. The center panel (B) visually represents the layout design. Clicking on a widget in the visual
layout will cause that item to highlight in the hierarchy list, making it easy to find where a visual component is
situated relative to the overall layout hierarchy.

The right-most panel (marked C in Figure 28-14) contains all the property settings for the currently selected
component, allowing for an in-depth analysis of the component’s internal configuration. Where appropriate, the
value cell will contain a link to the location of the property setting within the project source code.

Figure 28-14

To view the layout in 3D, click on the button labeled D. This displays an “exploded” representation of the
hierarchy so that it can be rotated and inspected. This can be useful for tasks such as identifying obscured views:

Figure 28-15

Click and drag the rendering to rotate it in three dimensions, using the slider indicated by the arrow above to
increase the spacing between the layers. Click the button marked E again to return to the 2D view.

28.7 Summary

The Layout Editor tool in Android Studio has been tightly integrated with the ConstraintLayout class. This
chapter has worked through creating an example user interface intended to outline how a ConstraintLayout-
based user interface can be implemented using the Layout Editor tool to add widgets and set constraints. This
chapter also introduced the Live Layout Inspector tool, which is useful for analyzing the structural composition
of a user interface layout.

240



Chapter 35

35. Detecting Common Gestures
Using the Android Gesture Detector
Class

The term “gesture” defines a contiguous sequence of interactions between the touch screen and the user. A
typical gesture begins at the point that the screen is first touched and ends when the last finger or pointing device
leaves the display surface. When correctly harnessed, gestures can be implemented to communicate between
the user and the application. Swiping motions to turn the pages of an eBook or a pinching movement involving
two touches to zoom in or out of an image are prime examples of how gestures can interact with an application.

The Android SDK provides mechanisms for the detection of both common and custom gestures within an
application. Common gestures involve interactions such as a tap, double tap, long press, or a swiping motion in
either a horizontal or a vertical direction (referred to in Android nomenclature as a fling).

This chapter explores using the Android GestureDetector class to detect common gestures performed on
the display of an Android device. The next chapter, “Tmplementing Custom Gesture and Pinch Recognition on
Android”, will cover detecting more complex, custom gestures such as circular motions and pinches.

35.1 Implementing Common Gesture Detection

When a user interacts with the display of an Android device, the onTouchEvent() method of the currently
active application is called by the system and passed MotionEvent objects containing data about the user’s
contact with the screen. This data can be interpreted to identify if the motion on the screen matches a common
gesture such as a tap or a swipe. This can be achieved with minimal programming effort by using the Android
GestureDetectorCompat class. This class is designed to receive motion event information from the application
and trigger method calls based on the type of common gesture, if any, detected.

The basic steps in detecting common gestures are as follows:

1. Declaration of a class which implements the GestureDetector.OnGestureListener interface including the
required onFling(), onDown(), onScroll(), onShowPress(), onSingleTapUp() and onLongPress() callback
methods. Note that this can be either an entirely new or an enclosing activity class. If double-tap gesture
detection is required, the class must also implement the GestureDetector.OnDoubleTapListener interface
and include the corresponding onDoubleTap() method.

2. Creation of an instance of the Android GestureDetectorCompat class, passing through an instance of the
class created in step 1 as an argument.

3. Anoptional call to the setOnDoubleTapListener() method of the GestureDetectorCompat instance to enable
double tap detection if required.

4. Implementation of the onTouchEvent() callback method on the enclosing activity, which, in turn, must call
the onTouchEvent() method of the GestureDetectorCompat instance, passing through the current motion
event object as an argument to the method.

275



Detecting Common Gestures Using the Android Gesture Detector Class

Once implemented, the result is a set of methods within the application code that will be called when a gesture
of a particular type is detected. The code within these methods can then be implemented to perform any tasks
that need to be performed in response to the corresponding gesture.

In the remainder of this chapter, we will work through creating an example project intended to put the above
steps into practice.

35.2 Creating an Example Gesture Detection Project

This project aims to detect the full range of common gestures currently supported by the GestureDetectorCompat
class and to display status information to the user indicating the type of gesture that has been detected.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter CommonGestures into the Name field and specify com.ebookfrenzy.commongestures as the package name.
Before clicking the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Kotlin.

Adapt the project to use view binding as outlined in section 18.8 Migrating a Project to View Binding.

Once the new project has been created, navigate to the app -> res -> layout -> activity_main.xml file in the
Project tool window and double-click on it to load it into the Layout Editor tool.

Within the Layout Editor tool, select the “Hello, World!” TextView component and, in the Attributes tool
window, enter gestureStatusText as the ID. Finally, set the textSize to 20sp and enable the bold textStyle:

Figure 35-1
35.3 Implementing the Listener Class

As previously outlined, it is necessary to create a class that implements the GestureDetector.OnGestureListener
interface and, if double tap detection is required, the GestureDetector.OnDoubleTapListener interface. While
this can be an entirely new class, it is also perfectly valid to implement this within the current activity class.
Therefore, we will modify the MainActivity class to implement these listener interfaces for this example. Edit the
MainActivity.kt file so that it reads as follows:

package com.ebookfrenzy.commongestures

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.view.GestureDetector

import android.view.MotionEvent

276



Detecting Common Gestures Using the Android Gesture Detector Class

class MainActivity : AppCompatActivity(),
GestureDetector.OnGesturelListener, GestureDetector.OnDoubleTapListener

Declaring that the class implements the listener interfaces mandates that the corresponding methods also be
implemented in the class:
class MainActivity : AppCompatActivity(),

GestureDetector.OnGesturelListener, GestureDetector.OnDoubleTaplListener

override fun onDown (event: MotionEvent): Boolean {
binding.gestureStatusText.text = "onDown"

return true

override fun onFling(eventl: MotionEvent?, event2: MotionEvent,
velocityX: Float, velocityY: Float): Boolean ({
binding.gestureStatusText.text = "onFling"
return true

override fun onLongPress (event: MotionEvent) {

binding.gestureStatusText.text = "onLongPress"

override fun onScroll (el: MotionEvent?, e2: MotionEvent,
distanceX: Float, distanceY: Float): Boolean {
binding.gestureStatusText.text = "onScroll"

return true

override fun onShowPress (event: MotionEvent) {
binding.gestureStatusText.text = "onShowPress"

override fun onSingleTapUp (event: MotionEvent): Boolean {
binding.gestureStatusText.text = "onSingleTapUp"

return true

override fun onDoubleTap (event: MotionEvent): Boolean {
binding.gestureStatusText.text = "onDoubleTap"

277



Detecting Common Gestures Using the Android Gesture Detector Class

return true

override fun onDoubleTapEvent (event: MotionEvent): Boolean {
binding.gestureStatusText.text = "onDoubleTapEvent"
return true

override fun onSingleTapConfirmed (event: MotionEvent): Boolean {
binding.gestureStatusText.text = "onSingleTapConfirmed"
return true

}

Note that many of these methods return true. This indicates to the Android Framework that the method has
consumed the event and does not need to be passed to the next event handler in the stack.

35.4 Creating the GestureDetectorCompat Instance

With the activity class now updated to implement the listener interfaces, the next step is to create an instance
of the GestureDetectorCompat class. Since this only needs to be performed once at the point that the activity
is created, the best place for this code is in the onCreate() method. Since we also want to detect double taps, the
code also needs to call the setOnDoubleTapListener() method of the GestureDetectorCompat instance:

import androidx.core.view.GestureDetectorCompat

class MainActivity : AppCompatActivity(), GestureDetector.OnGesturelistener,
GestureDetector.OnDoubleTapListener

{
private lateinit var binding: ActivityMainBinding

var gDetector: GestureDetectorCompat? = null

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
binding = ActivityMainBinding.inflate (layoutInflater)

setContentView (binding.root)

this.gDetector = GestureDetectorCompat (this, this)
gDetector?.setOnDoubleTapListener (this)

35.5 Implementing the onTouchEvent() Method

If the application were to be compiled and run at this point, nothing would happen if gestures were performed on
the device display. This is because no code has been added to intercept touch events and to pass them through to the
GestureDetectorCompat instance. To achieve this, it is necessary to override the onTouchEvent() method within

278



Detecting Common Gestures Using the Android Gesture Detector Class

the activity class and implement it such that it calls the onTouchEvent() method of the GestureDetectorCompat
instance. Remaining in the MainActivity.kt file, therefore, implement this method so that it reads as follows:
override fun onTouchEvent (event: MotionEvent): Boolean {
this.gDetector?.onTouchEvent (event)
// Be sure to call the superclass implementation

return super.onTouchEvent (event)

}
35.6 Testing the Application

Compile and run the application on either a physical Android device or an AVD emulator. Once launched,
experiment with swipes, presses, scrolling motions, and double and single taps. Note that the text view updates
to reflect the events as illustrated in Figure 35-2:

Figure 35-2
35.7 Summary

Any physical contact between the user and the touchscreen display of a device can be considered a “gesture”.
Lacking the physical keyboard and mouse pointer of a traditional computer system, gestures are widely used
as a method of interaction between the user and the application. While a gesture can comprise just about any
sequence of motions, there is a widely used set of gestures with which users of touchscreen devices have become
familiar. Some of these so-called “common gestures” can be easily detected within an application by using the
Android Gesture Detector classes. In this chapter, the use of this technique has been outlined both in theory and
through the implementation of an example project.

Having covered common gestures in this chapter, the next chapter will look at detecting a wider range of gesture
types, including the ability to design and detect your own gestures.

279






Chapter 37

37. An Introduction to Android
Fragments

As you progress through the chapters of this book, it will become increasingly evident that many of the design
concepts behind the Android system were conceived to promote the reuse of and interaction between the
different elements that make up an application. One such area that will be explored in this chapter involves
using Fragments.

This chapter will provide an overview of the basics of fragments in terms of what they are and how they can be
created and used within applications. The next chapter will work through a tutorial designed to show fragments
in action when developing applications in Android Studio, including the implementation of communication
between fragments.

37.1 What is a Fragment?

A fragment is a self-contained, modular section of an application’s user interface and corresponding behavior
that can be embedded within an activity. Fragments can be assembled to create an activity during the application
design phase and added to or removed from an activity during application runtime to create a dynamically
changing user interface.

Fragments may only be used as part of an activity and cannot be instantiated as standalone application elements.
However, a fragment can be considered a functional “sub-activity” with its own lifecycle similar to that of a full
activity.

Fragments are stored in the form of XML layout files. They may be added to an activity by placing appropriate
<fragment> elements in the activity’s layout file or through code within the activity’s class implementation.

37.2 Creating a Fragment
The two components that make up a fragment are an XML layout file and a corresponding Kotlin class. The
XML layout file for a fragment takes the same format as a layout for any other activity layout and can contain
any combination and complexity of layout managers and views. The following XML layout, for example, is for
a fragment consisting of a ConstraintLayout with a red background containing a single TextView with a white
foreground:
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/constraintLayout"
android:layout width="match parent"
android:layout height="match parent"
android:background="@android:color/holo red dark"

tools:context=".FragmentOne">

291



An Introduction to Android Fragments

<TextView
android:id="@+id/textViewl"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="My First Fragment"
android:textAppearance="@style/TextAppearance.AppCompat.Large"
android:textColor="Qcolor/white"
app:layout constraintBottom toBottomOf="parent"
app:layout constraintEnd toEndOf="parent"
app:layout constraintStart toStartOf="parent"
app:layout constraintTop toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

The corresponding class to go with the layout must be a subclass of the Android Fragment class. This class
should, at a minimum, override the onCreateView() method, which is responsible for loading the fragment
layout. For example:

package com.example.myfragmentdemo

import android.os.Bundle

import android.view.LayoutInflater
import android.view.View

import android.view.ViewGroup

import androidx.fragment.app.Fragment

class FragmentOne : Fragment () {
private var binding: FragmentTextBinding? = null
private val binding get() = binding!!

override fun onCreateView (
inflater: LayoutInflater, container: ViewGroup?,
savedInstanceState: Bundle?

) : View? {
_binding = FragmentTextBinding.inflate (inflater, container, false)

return binding.root

}

In addition to the onCreateView() method, the class may also override the standard lifecycle methods.

Once the fragment layout and class have been created, the fragment is ready to be used within application
activities.

37.3 Adding a Fragment to an Activity using the Layout XML File

Fragments may be incorporated into an activity by writing Kotlin code or embedding the fragment into the
activity’s XML layout file. Regardless of the approach used, a key point to be aware of is that when the support
library is being used for compatibility with older Android releases, any activities using fragments must be
implemented as a subclass of FragmentActivity instead of the AppCompatActivity class:

292



An Introduction to Android Fragments

package com.example.myFragmentDemo

import androidx.fragment.app.FragmentActivity

import android.os.Bundle

class MainActivity : FragmentActivity() {

Fragments are embedded into activity layout files using the FragmentContainerView class. The following
example layout embeds the fragment created in the previous section of this chapter into an activity layout:
<?xml version="1.0" encoding="utf-8"?2>
<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"

tools:context=".MainActivity">

<androidx.fragment.app.FragmentContainerView
android:id="@+id/fragment2"
android:name="com.ebookfrenzy.myfragmentdemo.FragmentOne"
android:layout_width="0dp"
android:layout height="wrap_ content"
android:layout marginStart="32dp"
android:layout_marginEnd="32dp"
app:layout_constraintBottom_ toBottomOf="parent"
app:layout constraintEnd_ toEndOf="parent"
app:layout_constraintStart_ toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
tools:layout="@layout/fragment one" />

</androidx.constraintlayout.widget.ConstraintLayout>

The key properties within the <fragment> element are android:name, which must reference the class associated
with the fragment, and tools:layout, which must reference the XML resource file containing the fragment’s layout.

Once added to the layout of an activity, fragments may be viewed and manipulated within the Android Studio
Layout Editor tool. Figure 37-1, for example, shows the above layout with the embedded fragment within the
Android Studio Layout Editor:

293



An Introduction to Android Fragments

Figure 37-1
37.4 Adding and Managing Fragments in Code

The ease of adding a fragment to an activity via the activity’s XML layout file comes at the cost of the activity not
being able to remove the fragment at runtime. To achieve full dynamic control of fragments during runtime,
those activities must be added via code. This has the advantage that the fragments can be added, removed, and
even made to replace one another dynamically while the application is running.

When using code to manage fragments, the fragment will still consist of an XML layout file and a corresponding
class. The difference comes when working with the fragment within the hosting activity. There is a standard
sequence of steps when adding a fragment to an activity using code:

1. Create an instance of the fragment’s class.
2. Pass any additional intent arguments through to the class instance.
3. Obtain a reference to the fragment manager instance.

4. Call the beginTransaction() method on the fragment manager instance. This returns a fragment transaction
instance.

5. Call the add() method of the fragment transaction instance, passing through as arguments the resource ID
of the view that is to contain the fragment and the fragment class instance.

6. Call the commit() method of the fragment transaction.

The following code, for example, adds a fragment defined by the FragmentOne class so that it appears in the
container view with an ID of LinearLayoutl:

val firstFragment = FragmentOne ()
firstFragment.arguments = intent.extras
val transaction = fragmentManager.beginTransaction ()

transaction.add(R.id.LinearLayoutl, firstFragment)

transaction.commit ()

294



An Introduction to Android Fragments

The above code breaks down each step into a separate statement for clarity. The last four lines can, however, be
abbreviated into a single line of code as follows:
supportFragmentManager.beginTransaction () .add (

R.id.LinearLayoutl, firstFragment) .commit ()

Once added to a container, a fragment may subsequently be removed via a call to the remove() method of the
fragment transaction instance, passing through a reference to the fragment instance that is to be removed:

transaction.remove (firstFragment)

Similarly, one fragment may be replaced with another by a call to the replace() method of the fragment
transaction instance. This takes as arguments the ID of the view containing the fragment and an instance of the
new fragment. The replaced fragment may also be placed on what is referred to as the back stack so that it can
be quickly restored if the user navigates back to it. This is achieved by making a call to the addToBackStack()
method of the fragment transaction object before making the commit() method call:

val secondFragment = FragmentTwo ()

transaction.replace (R.id.LinearLayoutl, secondFragment)
transaction.addToBackStack (null)

transaction.commit ()

37.5 Handling Fragment Events

As previously discussed, a fragment is like a sub-activity with its layout, class, and lifecycle. The view components
(such as buttons and text views) within a fragment can generate events like regular activity. This raises the
question of which class receives an event from a view in a fragment, the fragment itself, or the activity in which
the fragment is embedded. The answer to this question depends on how the event handler is declared.

In the chapter entitled “An Overview and Example of Android Event Handling”, two approaches to event handling
were discussed. The first method involved configuring an event listener and callback method within the activity’s
code. For example:

binding.button.setOnClickListener { // Code to be performed on button click }

In the case of intercepting click events, the second approach involved setting the android:onClick property
within the XML layout file:
<Button

android:id="@+id/buttonl"

android:layout width="wrap content"

android:layout height="wrap content"

android:onClick="onClick"

android:text="Click me" />

The general rule for events generated by a view in a fragment is that if the event listener were declared in the
fragment class using the event listener and callback method approach, the event would be handled first by the
fragment. However, if the android:onClick resource is used, the event will be passed directly to the activity
containing the fragment.

37.6 Implementing Fragment Communication

Once one or more fragments are embedded within an activity, the chances are good that some form of
communication will need to take place between the fragments and the activity and between one fragment
and another. Good practice dictates that fragments do not communicate directly with one another. All
communication should take place via the encapsulating activity.

295



An Introduction to Android Fragments

To communicate with a fragment, the activity must identify the fragment object via the ID assigned to it. Once
this reference has been obtained, the activity can call the public methods of the fragment object.

Communicating in the other direction (from fragment to activity) is a little more complicated. In the first
instance, the fragment must define a listener interface, which is then implemented within the activity class. For
example, the following code declares a ToolbarListener interface on a fragment named ToolbarFragment. The
code also declares a variable in which a reference to the activity will later be stored:

class ToolbarFragment : Fragment () {
var activityCallback: ToolbarFragment.ToolbarListener? = null

interface ToolbarListener {
fun onButtonClick (fontsize: Int, text: String)

}
The above code dictates that any class that implements the ToolbarListener interface must also implement a
callback method named onButtonClick which, in turn, accepts an integer and a String as arguments.

Next, the onAttach() method of the fragment class needs to be overridden and implemented. This method is
called automatically by the Android system when the fragment has been initialized and associated with an
activity. The method is passed a reference to the activity in which the fragment is contained. The method must
store a local reference to this activity and verify that it implements the ToolbarListener interface:
override fun onAttach (context: Context?) {
super.onAttach (context)
try {
activityCallback = context as ToolbarListener
} catch (e: ClassCastException) {
throw ClassCastException (context?.toString/()

+ " must implement ToolbarListener")

}

Upon execution of this example, a reference to the activity will be stored in the local activityCallback variable,
and an exception will be thrown if that activity does not implement the ToolbarListener interface.

The next step is to call the callback method of the activity from within the fragment. When and how this happens
depends entirely on the circumstances under which the activity needs to be contacted by the fragment. The
following code, for example, calls the callback method on the activity when a button is clicked:

override fun onButtonClick(argl: Int, arg2: String) {

activityCallback.onButtonClick(argl, arg2)
}

All that remains is to modify the activity class to implement the ToolbarListener interface. For example:
class MainActivity : FragmentActivity(),
ToolbarFragment.ToolbarListener {

296



An Introduction to Android Fragments

override fun onButtonClick(argl: Int, arg2: String) {
// Implement code for callback method

}
As we can see from the above code, the activity declares that it implements the ToolbarListener interface of the
ToolbarFragment class and then proceeds to implement the onButtonClick() method as required by the interface.

37.7 Summary

Fragments provide a powerful mechanism for creating reusable modules of user interface layout and application
behavior, which, once created, can be embedded in activities. A fragment consists of a user interface layout file
and a class. Fragments may be utilized in an activity by adding the fragment to the activity’s layout file or writing
code to manage the fragments at runtime. Fragments added to an activity in code can be removed and replaced
dynamically at runtime. All communication between fragments should be performed via the activity within
which the fragments are embedded.

Having covered the basics of fragments in this chapter, the next chapter will work through a tutorial designed to
reinforce the techniques outlined in this chapter.

297






Chapter 39

39. Modern Android App
Architecture with Jetpack

For many years, Google did not recommend a specific approach to building Android apps other than to provide
tools and development kits while letting developers decide what worked best for a particular project or individual
programming style. That changed in 2017 with the introduction of the Android Architecture Components,
which, in turn, became part of Android Jetpack when it was released in 2018.

This chapter provides an overview of the concepts of Jetpack, Android app architecture recommendations, and
some key architecture components. Once the basics have been covered, these topics will be covered in more
detail and demonstrated through practical examples in later chapters.

39.1 What is Android Jetpack?

Android Jetpack consists of Android Studio, the Android Architecture Components, the Android Support
Library, and a set of guidelines recommending how an Android App should be structured. The Android
Architecture Components are designed to make it quicker and easier to perform common tasks when developing
Android apps while also conforming to the key principle of the architectural guidelines.

While all Android Architecture Components will be covered in this book, this chapter will focus on the key
architectural guidelines and the ViewModel, LiveData, and Lifecycle components while introducing Data
Binding and Repositories.

Before moving on, it is important to understand that the Jetpack approach to app development is optional.
While highlighting some of the shortcomings of other techniques that have gained popularity over the years,
Google stopped short of completely condemning those approaches to app development. Google is taking the
position that while there is no right or wrong way to develop an app, there is a reccommended way.

39.2 The “Old” Architecture

In the chapter entitled “Creating an Example Android App in Android Studio”, an Android project was created
consisting of a single activity that contained all of the code for presenting and managing the user interface
together with the back-end logic of the app. Until the introduction of Jetpack, the most common architecture
followed this paradigm with apps consisting of multiple activities (one for each screen within the app), with each
activity class to some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example, an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

39.3 Modern Android Architecture

At the most basic level, Google now advocates single-activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept referred to as “separation of concerns”). One of the keys to this approach

309



Modern Android App Architecture with Jetpack

is the ViewModel component.

39.4 The ViewModel Component

The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the
code responsible for displaying and managing the user interface and interacting with the operating system.
When designed this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data those controllers need.

The ViewModel only knows about the data model and corresponding logic. It knows nothing about the user
interface and does not attempt to directly access or respond to events relating to views within the user interface.
When a Ul controller needs data to display, it asks the ViewModel to provide it. Similarly, when the user enters
data into a view within the user interface, the UI controller passes it to the ViewModel for handling.

This separation of responsibility addresses the issues relating to the lifecycle of UI controllers. Regardless of how
often the UT controller is recreated during the lifecycle of an app, the ViewModel instances remain in memory,
thereby maintaining data consistency. For example, a ViewModel used by an activity will remain in memory
until the activity finishes, which, in the single activity app, is not until the app exits.

Figure 39-1
39.5 The LiveData Component

Consider an app that displays real-time data, such as the current price of a financial stock. The app could
use a stock price web service to continuously update the data model within the ViewModel with the latest
information. This real-time data is of use only if it is displayed to the user promptly. There are only two ways that
the UI controller can ensure that the latest data is displayed in the user interface. One option is for the controller
to continuously check with the ViewModel to determine if the data has changed since it was last displayed.
However, the problem with this approach is that it could be more efficient. To maintain the real-time nature of
the data feed, the UI controller would have to run on a loop, continuously checking for the data to change.

A better solution would be for the UI controller to receive a notification when a specific data item within a
ViewModel changes. This is made possible by using the LiveData component. LiveData is a data holder that
allows a value to become observable. In basic terms, an observable object can notify other objects when changes
to its data occur, thereby solving the problem of ensuring that the user interface always matches the data within
the ViewModel.

This means, for example, that a UI controller interested in a ViewModel value can set up an observer, which will,
in turn, be notified when that value changes. In our hypothetical application, for example, the stock price would

310



Modern Android App Architecture with Jetpack

be wrapped in a LiveData object within the ViewModel, and the UI controller would assign an observer to the
value, declaring a method to be called when the value changes. When triggered by data change, this method will
read the updated value from the ViewModel and use it to update the user interface.

Figure 39-2

A LiveData instance may also be declared as mutable, allowing the observing entity to update the underlying
value held within the LiveData object. The user might, for example, enter a value in the user interface that needs
to overwrite the value stored in the ViewModel.

Another of the key advantages of using LiveData is that it is aware of the lifecycle state of its observers. If,
for example, an activity contains a LiveData observer, the corresponding LiveData object will know when the
activity’s lifecycle state changes and respond accordingly. If the activity is paused (perhaps the app is put into the
background), the LiveData object will stop sending events to the observer. Suppose the activity has just started
or resumes after being paused. In that case, the LiveData object will send a LiveData event to the observer so
that the activity has the most up-to-date value. Similarly, the LiveData instance will know when the activity is
destroyed and remove the observer to free up resources.

So far, we've only talked about UI controllers using observers. In practice, however, an observer can be used
within any object that conforms to the Jetpack approach to lifecycle management.

39.6 ViewModel Saved State

Android allows the user to place an active app in the background and return to it after performing other tasks
on the device (including running other apps). When a device runs low on resources, the operating system will
rectify this by terminating background app processes, starting with the least recently used app. However, when
the user returns to the terminated background app, it should appear in the same state as when it was placed in
the background, regardless of whether it was terminated. In terms of the data associated with a ViewModel, this
can be implemented using the ViewModel Saved State module. This module allows values to be stored in the
app’s saved state and restored in case of system-initiated process termination. This topic will be covered later in
the “An Android ViewModel Saved State Tutorial” chapter.

39.7 LiveData and Data Binding

Android Jetpack includes the Data Binding Library, which allows data in a ViewModel to be mapped directly to
specific views within the XML user interface layout file. In the AndroidSample project created earlier, code had
to be written to obtain references to the EditText and TextView views and to set and get the text properties to

311



Modern Android App Architecture with Jetpack

reflect data changes. Data binding allows the LiveData value stored in the ViewModel to be referenced directly
within the XML layout file avoiding the need to write code to keep the layout views updated.

Figure 39-3

Data binding will be covered in greater detail, starting with the chapter “An Overview of Android Jetpack Data
Binding”.

39.8 Android Lifecycles

The duration from when an Android component is created to the point that it is destroyed is called the lifecycle.
During this lifecycle, the component will change between different lifecycle states, usually under the operating
systemy’s control and in response to user actions. An activity, for example, will begin in the initialized state before
transitioning to the created state. Once the activity runs, it will switch to the started state, from which it will cycle
through various states, including created, started, resumed, and destroyed.

Many Android Framework classes and components allow other objects to access their current state. Lifecycle
observers may also be used so that an object receives a notification when the lifecycle state of another object
changes. The ViewModel component uses this technique behind the scenes to identify when an observer
has restarted or been destroyed. This functionality is not limited to Android framework and architecture
components. It may also be built into any other classes using a set of lifecycle components included with the
architecture components.

Objects that can detect and react to lifecycle state changes in other objects are said to be lifecycle-aware. In
contrast, objects that provide access to their lifecycle state are called lifecycle owners. The chapter entitled
“Working with Android Lifecycle-Aware Components” will cover Lifecycles in greater detail.

39.9 Repository Modules

If a ViewModel obtains data from one or more external sources (such as databases or web services, it is important
to separate the code involved in handling those data sources from the ViewModel class. Failure to do this would,
after all, violate the separation of concerns guidelines. To avoid mixing this functionality with the ViewModel,
Google’s architecture guidelines recommend placing this code in a separate Repository module.

A repository is not an Android architecture component but a Kotlin class created by the app developer that is
responsible for interfacing with the various data sources. The class then provides an interface to the ViewModel,
allowing that data to be stored in the model.

312



Modern Android App Architecture with Jetpack

Figure 39-4
39.10 Summary

Until recently, Google has tended not to recommend any particular approach to structuring an Android app.
That has now changed with the introduction of Android Jetpack, consisting of tools, components, libraries, and
architecture guidelines. Google now recommends that an app project be divided into separate modules, each
responsible for a particular area of functionality, otherwise known as “separation of concerns”.

In particular, the guidelines recommend separating the view data model of an app from the code responsible
for handling the user interface. In addition, the code responsible for gathering data from data sources such as
web services or databases should be built into a separate repository module instead of being bundled with the
view model.

Android Jetpack includes the Android Architecture Components, designed to make developing apps that
conform to the recommended guidelines easier. This chapter has introduced the ViewModel, LiveData, and
Lifecycle components. These will be covered in more detail, starting with the next chapter. Other architecture
components not mentioned in this chapter will be covered later in the book.

313






Chapter 47

47. An Overview of the Navigation
Architecture Component

Very few Android apps today consist of just a single screen. In reality, most apps comprise multiple screens
through which the user navigates using screen gestures, button clicks, and menu selections. Before the
introduction of Android Jetpack, implementing navigation within an app was largely a manual coding process
with no easy way to view and organize potentially complex navigation paths. However, this situation has
improved considerably with the introduction of the Android Navigation Architecture Component combined
with support for navigation graphs in Android Studio.

47.1 Understanding Navigation

Every app has a home screen that appears after the app has launched and after any splash screen has appeared
(a splash screen being the app branding screen that appears temporarily while the app loads). The user will
typically perform tasks from this home screen, resulting in other screens appearing. These screens will usually
take the form of other activities and fragments within the app. For example, a messaging app may have a home
screen listing current messages from which users can navigate to another screen to access a contact list or a
settings screen. The contacts list screen, in turn, might allow the user to navigate to other screens where new
users can be added or existing contacts updated. Graphically, the app’s navigation graph might be represented as
shown in Figure 47-1:

Figure 47-1

Each screen that makes up an app, including the home screen, is referred to as a destination and is usually a
fragment or activity. The Android navigation architecture uses a navigation stack to track the user’s path through
the destinations within the app. When the app first launches, the home screen is the first destination placed
onto the stack and becomes the current destination. When the user navigates to another destination, that screen

355



An Overview of the Navigation Architecture Component

becomes the current destination and is pushed onto the stack above the home destination. As the user navigates
to other screens, they are also pushed onto the stack. Figure 47-2, for example, shows the current state of the
navigation stack for the hypothetical messaging app after the user has launched the app and is navigating to the
“Add Contact” screen:

Figure 47-2

As the user navigates back through the screens using the system back button, each destination is popped oft the
stack until the home screen is once again the only destination on the stack. In Figure 47-3, the user has navigated
back from the Add Contact screen, popping it off the stack and making the Contacts List screen the current
destination:

Figure 47-3
All of the work involved in navigating between destinations and managing the navigation stack is handled by a

navigation controller, represented by the NavController class.

Adding navigation to an Android project using the Navigation Architecture Component is a straightforward
process involving a navigation host, navigation graph, navigation actions, and minimal code writing to obtain a
reference to, and interact with, the navigation controller instance.

47.2 Declaring a Navigation Host

A navigation host is a special fragment (NavHostFragment) embedded into the user interface layout of an
activity and serves as a placeholder for the destinations through which the user will navigate. Figure 47-4, for
example, shows a typical activity screen and highlights the area represented by the navigation host fragment:

356



An Overview of the Navigation Architecture Component

Figure 47-4
A NavHostFragment can be placed into an activity layout within the Android Studio layout editor either by
dragging and dropping an instance from the Containers section of the palette or by manually editing the XML
as follows:
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res—-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/container"
android:layout width="match parent"
android:layout height="match parent"

tools:context=".MainActivity" >

<androidx. fragment.app.FragmentContainerView

android:id="@+id/demo_nav_host_ fragment"
android:name="androidx.navigation. fragment.NavHostFragment"
android:layout width="match_parent"
android:layout_height="match_parent"
app:defaultNavHost="true"
app:navGraph="@navigation/navigation_graph" />

</FrameLayout>

The points of note in the above navigation host fragment element are the reference to the NavHostFragment in

the name property, the setting of defaultNavHost to true, and the assignment of the file containing the navigation
graph to the navGraph property.

When the activity launches, this navigation host fragment is replaced by the home destination designated in
the navigation graph. As the user navigates through the app screens, the host fragment will be replaced by the
appropriate fragment for the destination.

357



An Overview of the Navigation Architecture Component

47.3 The Navigation Graph

A navigation graph is an XML file that contains the destinations that will be included in the app navigation. In
addition to these destinations, the file contains navigation actions that define navigation between destinations
and optional arguments for passing data from one destination to another. Android Studio includes a navigation
graph editor that can be used to design graphs and implement actions either visually or by manually editing the
XML.

Figure 47-5 shows the Android Studio navigation graph editor in Design mode:

Figure 47-5

The destinations list (A) lists all destinations within the graph. Selecting a destination from the list will locate and
select the corresponding destination in the graph (particularly useful for locating specific destinations in a large
graph). The navigation graph panel (B) contains a dialog for each destination representing the user interface
layout. In this example, this graph contains two destinations named mainFragment and secondFragment.
Arrows between destinations (C) represent navigation action connections. Actions are added by hovering the
mouse pointer over the edge of the origin until a circle appears, then clicking and dragging from the circle to
the destination. The Attributes panel (D) allows the properties of the currently selected destination or action
connection to be viewed and modified. In the above figure, the attributes for the action are displayed. New
destinations are added by clicking on the button marked E and selecting options from a menu. Options are
available to add existing fragments or activities as destinations or to create new blank fragment destinations. The
Component Tree panel (F) provides a hierarchical overview of the navigation graph.

The underlying XML for the navigation graph can be viewed and modified by switching the editor into Code

mode. The following XML listing represents the navigation graph for the destinations and action connection

shown in Figure 47-5 above:

<?xml version="1.0" encoding="utf-8"?>

<navigation xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/navigation_graph"

app:startDestination="@id/mainFragment">

<fragment

android:id="@+id/mainFragment"

358



An Overview of the Navigation Architecture Component

android:name="com.ebookfrenzy.navigationdemo.ui.main.MainFragment"
android:label="fragment main"
tools:layout="@layout/fragment main" >
<action
android:id="@+id/mainToSecond"
app:destination="@id/secondFragment" />
</fragment>
<fragment
android:id="Q@+id/secondFragment"
android:name="com.ebookfrenzy.navigationdemo.SecondFragment"
android:label="fragment second"
tools:layout="@layout/fragment second" >
</fragment>
</navigation>
Navigation graphs can also be split over multiple files to improve organization and promote reuse. When
structured in this way, nested graphs are embedded into root graphs. To create a nested graph, shift-click on the
destinations to be nested, right-click over the first destination and select the Move to Nested Graph -> New Graph
menu option. The nested graph will then appear as a new node in the graph. Double-click on the nested graph
node to load the graph file into the editor to access the nested graph.

47.4 Accessing the Navigation Controller

Navigating from one destination to another usually occurs in response to an event within an app, such as a
button click or menu selection. Before a navigation action can be triggered, the code must first obtain a reference
to the navigation controller instance. This requires a call to the findNavController() method of the Navigation or
NavHostFragment classes. The following code, for example, can be used to access the navigation controller of an
activity. Note that for the code to work, the activity must contain a navigation host fragment:

val controller: NavController =

Navigation.findNavController (activity, R.id.demo nav_ host fragment)

In this case, the method call is passed a reference to the activity and the id of the NavHostFragment embedded
in the activity’s layout.

Alternatively, the navigation controller associated with any view may be identified by passing that view to the
method:

val controller: NavController = Navigation.findNavController (button)

The final option finds the navigation controller for a fragment by calling the findNavController() method of the
NavHostFragment class, passing through a reference to the fragment:

val controller: NavController = NavHostFragment.findNavController (fragment)

47.5 Triggering a Navigation Action

Once the navigation controller has been found, a navigation action is triggered by calling the controller’s
navigate() method and passing through the resource id of the action to be performed. For example:

controller.navigate (R.id.goToContactsList)

The id of the action is defined within the Attributes panel of the navigation graph editor when an action
connection is selected.

359



An Overview of the Navigation Architecture Component

47.6 Passing Arguments

Data may be passed from one destination to another during a navigation action by using arguments declared
within the navigation graph file. An argument consists of a name, type, and an optional default value and may
be added manually within the XML or using the Attributes panel when an action arrow or destination is selected
within the graph. In Figure 47-6, for example, an integer argument named contactsCount has been declared with
a default value of 0:

Figure 47-6
Once added, arguments are placed within the XML element of the receiving destination, for example:
<fragment
android:id="@+id/secondFragment"
android:name="com.ebookfrenzy.navigationdemo.SecondFragment"
android:label="fragment second"
tools:layout="@layout/fragment second" >
<argument
android:name="contactsCount"
android:defaultValue=0
app:type="integer" />
</fragment>

The Navigation Architecture Component provides two techniques for passing data between destinations. One
approach involves placing the data into a Bundle object that is passed to the destination during an action, where
it is then unbundled and the arguments extracted.

The main drawback to this particular approach is that it is not “type safe”. In other words, if the receiving
destination treats an argument as a different type than it was declared (for example, treating a string as an
integer) this error will not be caught by the compiler and will likely cause problems at runtime.

A better option, which is used in this book, is safeargs. Safeargs is a plugin for the Android Studio Gradle build
system which automatically generates special classes that allow arguments to be passed in a type-safe way. The
safeargs approach to argument passing will be described and demonstrated in the next chapter (“An Android
Jetpack Navigation Component Tutorial”).

47.7 Summary

Navigation within the context of an Android app user interface refers to the ability of a user to move back and
forth between different screens. Once time-consuming to implement and difficult to organize, Android Studio
and the Navigation Architecture Component now make it easier to implement and manage navigation within
Android app projects.

The different screens within an app are referred to as destinations and are usually represented by fragments
or activities. All apps have a home destination, including the screen displayed when the app first loads. The
content area of this layout is replaced by a navigation host fragment which is swapped out for other destination
fragments as the user navigates the app. The navigation path is defined by the navigation graph file consisting of
destinations and the actions that connect them together with any arguments to be passed between destinations.
Navigation is handled by navigation controllers, which, in addition to managing the navigation stack, provide
methods to initiate navigation actions from within app code.

360



Chapter 49

49. An Introduction to MotionLayout

The MotionLayout class provides an easy way to add animation effects to the views of a user interface layout.
This chapter will begin by providing an overview of MotionLayout and introduce the concepts of MotionScenes,
Transitions, and Keyframes. Once these basics have been covered, the next two chapters (entitled “An Android
MotionLayout Editor Tutorial” and “A MotionLayout KeyCycle Tutorial”) will provide additional detail and
examples of MotionLayout animation in action through the creation of example projects.

49.1 An Overview of MotionLayout

MotionLayout is a layout container, the primary purpose of which is to animate the transition of views within
a layout from one state to another. MotionLayout could, for example, animate the motion of an ImageView
instance from the top left-hand corner of the screen to the bottom right-hand corner over a specified time.
In addition to the position of a view, other attribute changes may also be animated, such as the color, size, or
rotation angle. These state changes can also be interpolated (such that a view moves, rotates, and changes size
throughout the animation).

The motion of a view using MotionLayout may be performed in a straight line between two points or
implemented to follow a path comprising intermediate points at different positions between the start and end
points. MotionLayout also supports using touches and swipes to initiate and control animation.

MotionLayout animations are declared entirely in XML and do not typically require writing code. These XML
declarations may be implemented manually in the Android Studio code editor, visually using the MotionLayout
editor, or combining both approaches.

49.2 MotionLayout

When implementing animation, the ConstraintLayout container typically used in a user interface must first be
converted to a MotionLayout instance (a task which can be achieved by right-clicking on the ConstraintLayout
in the layout editor and selecting the Convert to MotionLayout menu option). MotionLayout also requires at
least version 2.0.0 of the ConstraintLayout library.

Unsurprisingly since it is a subclass of ConstraintLayout, MotionLayout supports all of the layout features of the
ConstraintLayout. Therefore, a user interface layout can be similarly designed when using MotionLayout for
views that do not require animation.

For views that are to be animated, two ConstraintSets are declared, defining the appearance and location of the
view at the start and end of the animation. A transition declaration defines keyframes to apply additional effects
to the target view between these start and end states and click and swipe handlers used to start and control the
animation.

The start and end ConstraintSets and the transitions are declared within a MotionScene XML file.

49.3 MotionScene

As we have seen in earlier chapters, an XML layout file contains the information necessary to configure the
appearance and layout behavior of the static views presented to the user, and this is still the case when using
MotionLayout. For non-static views (in other words, the views that will be animated), those views are still
declared within the layout file, but the start, end, and transition declarations related to those views are stored
in a separate XML file referred to as the MotionScene file (so called because all of the declarations are defined

375



An Introduction to MotionLayout

within a MotionScene element). This file is imported into the layout XML file and contains the start and end
ConstraintSets and Transition declarations (a single file can contain multiple ConstraintSet pairs and Transition
declarations, allowing different animations to be targeted to specific views within the user interface layout).

The following listing shows a template for a MotionScene file:

<?xml version="1.0" encoding="utf-8"?>

<MotionScene
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:motion="http://schemas.android.com/apk/res-auto">

<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
</KeyFrameSet>

</Transition>

<ConstraintSet android:id="Q@+id/start">
</ConstraintSet>

<ConstraintSet android:id="@+id/end">
</ConstraintSet>

</MotionScene>

In the above XML, ConstraintSets named start and end (though any name can be used) have been declared,
which, at this point, are yet to contain any constraint elements. The Transition element defines that these
ConstraintSets represent the animation start and end points and contain an empty KeyFrameSet element ready
to be populated with additional animation keyframe entries. The Transition element also includes a millisecond
duration property to control the running time of the animation.

ConstraintSets do not have to imply the motion of a view. It is possible to have the start and end sets declare the
same location on the screen and then use the transition to animate other property changes, such as scale and
rotation angle.

ConstraintSets do not have to imply the motion of a view. It is possible, for example, to have the start and end
sets declare the same location on the screen and then use the transition to animate other property changes, such
as scale and rotation angle.

49.4 Configuring ConstraintSets

The ConstraintSets in the MotionScene file allow the full set of ConstraintLayout settings to be applied to a view
regarding positioning, sizing, and relation to the parent and other views. In addition, the following attributes
may also be included within the ConstraintSet declarations:

o alpha
« visibility
« elevation

« rotation
376



An Introduction to MotionLayout
e rotationX
o rotationY
« translationX

translationY

translationZ

« scaleX
o scaleY

For example, to rotate the view by 180° during the animation, the following could be declared within the start
and end constraints:
<ConstraintSet android:id="@+id/start">

<Constraint

motion:layout constraintStart toStartOf="parent"
android:rotation="0">
</Constraint>
</ConstraintSet>

<ConstraintSet android:id="Q@+id/end">

<Constraint

motion:layout constraintBottom toBottomOf="parent"
android:rotation="180">
</Constraint>
</ConstraintSet>

The above changes tell MotionLayout that the view is to start at 0° and then, during the animation, rotate a full
180° before coming to rest upside-down.

49.5 Custom Attributes

In addition to the standard attributes listed above, it is possible to specify a range of custom attributes (declared
using CustomAttribute). In fact, just about any property available on the view type can be specified as a
custom attribute for inclusion in an animation. To identify the attribute’s name, find the getter/setter name
from the documentation for the target view class, remove the get/set prefix, and lower the case of the first
remaining character. For example, to change the background color of a Button view in code, we might call the
setBackgroundColor() setter method as follows:

myButton.setBackgroundColor (Color.RED)

When setting this attribute in a constraint set or keyframe, the attribute name will be backgroundColor. In
addition to the attribute name, the value must also be declared using the appropriate type from the following
list of options:

« motion:customBoolean - Boolean attribute values.

377



An Introduction to MotionLayout

« motion:customColorValue - Color attribute values.

o motion:customDimension - Dimension attribute values.

« motion:customFloatValue - Floating point attribute values.
« motion:customIntegerValue - Integer attribute values.

» motion:customStringValue - String attribute values

For example, a color setting will need to be assigned using the customColorValue type :
<CustomAttribute
motion:attributeName="backgroundColor"

motion:customColorValue="#43CC76" />

The following excerpt from a MotionScene file, for example, declares start and end constraints for a view in
addition to changing the background color from green to red:

<ConstraintSet android:id="@+id/start">
<Constraint
android:layout width="wrap content"
android:layout height="wrap content"
motion:layout editor absoluteX="21dp"
android:id="@+id/button"
motion:layout constraintTop toTopOf="parent"
motion:layout constraintStart toStartOf="parent" >
<CustomAttribute
motion:attributeName="backgroundColor"
motion:customColorValue="#33CC33" />
</Constraint>
</ConstraintSet>

<ConstraintSet android:id="@+id/end">
<Constraint
android:layout width="wrap content"
android:layout height="wrap content"
motion:layout editor absolutey="21dp"
android:id="@+id/button"
motion:layout constraintEnd toEndOf="parent"
motion:layout constraintBottom toBottomOf="parent" >
<CustomAttribute
motion:attributeName="backgroundColor"
motion:customColorValue="#F80A1F" />
</Constraint>
</ConstraintSet>

378



An Introduction to MotionLayout

49.6 Triggering an Animation

Without some event to tell MotionLayout to start the animation, none of the settings in the MotionScene file will
affect the layout (except that the view will be positioned based on the setting in the start ConstraintSet).

The animation can be configured to start in response to either screen tap (OnClick) or swipe motion (OnSwipe)
gesture. The OnClick handler causes the animation to start and run until completion, while OnSwipe will
synchronize the animation to move back and forth along the timeline to match the touch motion. The OnSwipe
handler will also respond to “flinging” motions on the screen. The OnSwipe handler also provides options
to configure how the animation reacts to dragging in different directions and the side of the target view to
which the swipe is to be anchored. This allows, for example, left-ward dragging motions to move a view in the
corresponding direction while preventing an upward motion from causing a view to move sideways (unless, of
course, that is the required behavior).

The OnSwipe and OnClick declarations are contained within the Transition element of a MotionScene file.
In both cases, the view id must be specified. For example, to implement an OnSwipe handler responding to
downward drag motions anchored to the bottom edge of a view named button, the following XML would be
placed in the Transition element:

<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
</KeyFrameSet>
<OnSwipe
motion: touchAnchorId="@+id/button"
motion:dragDirection="dragDown"
motion:touchAnchorSide="bottom" />
</Transition>

Alternatively, to add an OnClick handler to the same button:
<OnClick motion:targetId="@id/button"
motion:clickAction="toggle" />

In the above example, the action has been set to foggle mode. This mode and the other available options can be
summarized as follows:

o toggle - Animates to the opposite state. For example, if the view is currently at the transition start point, it will
transition to the end point, and vice versa.

o jumpToStart - Changes immediately to the start state without animation.
« jumpToEnd - Changes immediately to the end state without animation.
« transitionToStart - Transitions with animation to the start state.

« transitionToEnd - Transitions with animation to the end state.

379



An Introduction to MotionLayout

49.7 Arc Motion

By default, a movement of view position will travel in a straight line between the start and end points. To change
the motion to an arc path, use the pathMotionArc attribute as follows within the start constraint, configured with
either a startHorizontal or startVertical setting to define whether the arc is to be concave or convex:
<ConstraintSet android:id="@+id/start">
<Constraint

android:layout width="wrap content"

android:layout height="wrap content"

motion:layout editor absoluteX="21ldp"

android:id="@+id/button"

motion:layout constraintTop toTopOf="parent"

motion:layout constraintStart toStartOf="parent"

motion:pathMotionArc="startVertical" >

Figure 49-1 illustrates startVertical and startHorizontal arcs in comparison to the default straight line motion:

Figure 49-1
49.8 Keyframes

All of the ConstraintSet attributes outlined so far only apply to the start and end points of the animation. In other
words, if the rotation property were set to 180° on the end point, the rotation would begin when the animation
starts and complete when the end point is reached. It is not, therefore, possible to configure the rotation to reach
the full 180° at a point 50% of the way through the animation and then rotate back to the original orientation by
the end. Fortunately, this type of effect is available using Keyframes.

Keyframes are used to define intermediate points during the animation at which state changes are to occur.
Keyframes could, for example, be declared such that the background color of a view is to have transitioned to
blue at a point 50% of the way through the animation, green at the 75% point, and then back to the original color
by the end of the animation. Keyframes are implemented within the Transition element of the MotionScene file
embedded into the KeyFrameSet element.

MotionLayout supports several types of Keyframe which can be summarized as follows:

49.8.1 Attribute Keyframes

Attribute Keyframes (declared using KeyAttribute) allow view attributes to be changed at intermediate points
in the animation timeline. KeyAttribute supports the attributes listed above for ConstraintSets combined with
the ability to specify where the change will take effect in the animation timeline. For example, the following

380



An Introduction to MotionLayout

Keyframe declaration will gradually cause the button view to double in size horizontally (scaleX) and vertically
(scaleY), reaching full size at 50% through the timeline. For the remainder of the timeline, the view will decrease
in size to its original dimensions:
<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
<KeyAttribute
motion:motionTarget="@+id/button"
motion: framePosition="50"
android:scaleX="2.0" />
<KeyAttribute
motion:motionTarget="@+id/button"
motion: framePosition="50"
android:scaley="2.0" />
</KeyFrameSet>

49.8.2 Position Keyframes

Position keyframes (KeyPosition) modify the path followed by a view as it moves between the start and
end locations. By placing key positions at different points on the timeline, a path of just about any level of
complexity can be applied to an animation. Positions are declared using x and y coordinates combined with
the corresponding points in the transition timeline. These coordinates must be declared relative to one of the
following coordinate systems:

o parentRelative - The x and y coordinates are relative to the parent container where the coordinates are
specified as a percentage (represented as a value between 0.0 and 1.0):

Figure 49-2

o deltaRelative - Instead of relative to the parent, the x and y coordinates are relative to the start and end

381



An Introduction to MotionLayout

positions. For example, the start point is (0, 0) the end point (1, 1). Keep in mind that the x and y coordinates
can be negative values):

Figure 49-3

« pathRelative - The x and y coordinates are relative to the path, where the straight line between the start and
end points serves as the graph’s X-axis. Once again, coordinates are represented as a percentage (0.0 to 1.0).
This is similar to the deltaRelative coordinate space but takes into consideration the angle of the path. Once
again coordinates may be negative:

Figure 49-4
As an example, the following ConstraintSets declare start and end points on either side of a device screen. By

382



An Introduction to MotionLayout

default, a view transition using these points would move in a straight line across the screen, as illustrated in
Figure 49-5:

Figure 49-5

Suppose, however, that the view is required to follow a path similar to that shown in Figure 49-6 below:

Figure 49-6
To achieve this, keyframe position points could be declared within the transition as follows:
<KeyPosition
motion:motionTarget="@+id/button”
motion:framePosition="25"
motion:keyPositionType="pathRelative"
motion:percentY="0.3"

motion:percentX="0.25"/>

<KeyPosition
motion:motionTarget="@+id/button"
motion:framePosition="75"
motion:keyPositionType="pathRelative"
motion:percentY="-0.3"

motion:percentX="0.75"/>

The above elements create keyframe position points 25% and 75% through the path using the pathRelative
coordinate system. The first position is placed at coordinates (0.25, 0.3) and the second at (0.75, -0.3). These
position keyframes can be visualized as illustrated in Figure 49-7 below:

383



An Introduction to MotionLayout

Figure 49-7
49.9 Time Linearity

Without additional settings, the animations outlined above will be performed at a constant speed. To vary
the animation speed (for example, so that it accelerates and then decelerates), the transition easing attribute
(transitionEasing) can be used within a ConstraintSet or Keyframe.

For complex easing requirements, the linearity can be defined by plotting points on a cubic Bézier curve, for
example:

motion:layout constraintBottom toBottomOf="parent"
motion:transitionEasing="cubic(0.2, 0.7, 0.3, 1)"
android:rotation="360">

If you are unfamiliar with Bézier curves, consider using the curve generator online at the following URL:
https://cubic-bezier.com/

For most requirements, however, easing can be specified using the built-in standard, accelerate and decelerate
values:

motion:layout constraintBottom toBottomOf="parent"
motion:transitionEasing="decelerate"

android:rotation="360">

49.10 KeyTrigger

The trigger keyframe (KeyTrigger) allows a method on a view to be called when the animation reaches a
specified frame position within the animation timeline. This also takes into consideration the direction of the

384


https://cubic-bezier.com/

An Introduction to MotionLayout

animations. For example, different methods can be called depending on whether the animation runs forward or
backward. Consider a button that is to be made visible when the animation moves beyond 20% of the timeline.
The KeyTrigger would be implemented within the KeyFrameSet of the Transition element as follows using the
onPositiveCross property:

<KeyFrameSet>
<KeyTrigger
motion: framePosition="20"
motion:onPositiveCross="show"

motion:motionTarget="@id/button"/>

Similarly, if the same button is to be hidden when the animation is reversed and drops below 10%, a second key
trigger could be added using the onNegativeCross property:
<KeyTrigger

motion:framePosition="10"

motion:onNegativeCross="show"

motion:motionTarget="Q@id/button2"/>

If the animation is using toggle action, use the onCross property:
<KeyTrigger
motion:framePosition="10"
motion:onCross="show"

motion:motionTarget="@id/button2"/>

49.11 Cycle and Time Cycle Keyframes

While position keyframes can be used to add intermediate state changes into the animation, this would
quickly become cumbersome if large numbers of repetitive positions and changes needed to be implemented.
For situations where state changes need to be performed repetitively with predictable changes, MotionLayout
includes the Cycle and Time Cycle keyframes. The chapter entitled “A MotionLayout KeyCycle Tutorial” will
cover this topic in detail.

49.12 Starting an Animation from Code

So far in this chapter, we have only looked at controlling an animation using the OnSwipe and OnClick handlers.
It is also possible to start an animation from within code by calling methods on the MotionLayout instance. The
following code, for example, runs the transition from start to end with a duration of 2000ms for a layout named
motionLayout:

motionLayout.setTransitionDuration (2000)
motionLayout.transitionToEnd ()
In the absence of additional settings, the start and end states used for the animation will be those declared in the

Transition declaration of the MotionScene file. To use specific start and end constraint sets, reference them by id
in a call to the setTransition() method of the MotionLayout instance:

motionLayout.setTransition (R.id.myStart, R.id.myEnd)

motionLayout.transitionToEnd ()

385



An Introduction to MotionLayout

To monitor the state of an animation while it is running, add a transition listener to the MotionLayout instance
as follows:
motionLayout.setTransitionListener (

object: MotionLayout.TransitionListener {

override fun onTransitionTrigger (motionLayout: MotionLayout?,
triggerId: Int, positive: Boolean, progress: Float) {
// Called when a trigger keyframe threshold is crossed

override fun onTransitionStarted (motionLayout: MotionLayout?,
startId: Int, endId: Int) {
// Called when the transition starts

override fun onTransitionChange (motionLayout: MotionLayout?,
startId: Int, endId: Int, progress: Float) ({
// Called each time a property changes. Track progress value to find

// current position

override fun onTransitionCompleted(motionLayout: MotionLayout?,
currentId: Int) {

// Called when the transition is complete

1)
49.13 Summary

MotionLayout is a subclass of ConstraintLayout designed specifically to add animation effects to the views in
user interface layouts. MotionLayout works by animating the transition of a view between two states defined
by start and end constraint sets. Additional animation effects may be added between these start and end points
using keyframes.

Animations may be triggered via OnClick or OnSwipe handlers or programmatically via method calls on the
MotionLayout instance.

386



Chapter 61

61. An Introduction to Kotlin
Coroutines

When an Android application is first started, the runtime system creates a single thread in which all components
will run by default. This thread is generally referred to as the main thread. The primary role of the main thread
is to handle the user interface in terms of event handling and interaction with views in the user interface. Any
additional components started within the application will, by default, also run on the main thread.

Any code within an application that performs a time-consuming task using the main thread will cause the
entire application to appear to lock up until the task is completed. This typically results in the operating system
displaying an “Application is not responding” warning to the user. This is far from the desired behavior for
any application. Fortunately, Kotlin provides a lightweight alternative in the form of Coroutines. This chapter
will introduce Coroutines, including terminology such as dispatchers, coroutine scope, suspend functions,
coroutine builders, and structured concurrency. The chapter will also explore channel-based communication
between coroutines.

61.1 What are Coroutines?

Coroutines are blocks of code that execute asynchronously without blocking the thread from which they
are launched. Coroutines can be implemented without worrying about building complex AsyncTask
implementations or directly managing multiple threads. Because of the way they are implemented, coroutines
are much more efficient and less resource intensive than using traditional multi-threading options. Coroutines
also make for code that is much easier to write, understand and maintain since it allows code to be written
sequentially without having to write callbacks to handle thread-related events and results.

Although a relatively recent addition to Kotlin, there is nothing new or innovative about coroutines. Coroutines,
in one form or another, have existed in programming languages since the 1960s and are based on a model
known as Communicating Sequential Processes (CSP). Though it does so efficiently, Kotlin still uses multi-
threading behind the scenes.

61.2 Threads vs. Coroutines

A problem with threads is that they are a finite resource and expensive in terms of CPU capabilities and system
overhead. In the background, much work is involved in creating, scheduling, and destroying a thread. Although
modern CPUs can run large numbers of threads, the actual number of threads that can be run in parallel at
any one time is limited by the number of CPU cores (though newer CPUs have 8 cores, most Android devices
contain CPUs with 4 cores). When more threads are required than there are CPU cores, the system has to
perform thread scheduling to decide how the execution of these threads is to be shared between the available
cores.

To avoid these overheads, instead of starting a new thread for each coroutine and destroying it when the
coroutine exits, Kotlin maintains a pool of active threads and manages how coroutines are assigned to those
threads. When an active coroutine is suspended, the Kotlin runtime saves it, and another coroutine resumes to
take its place. When the coroutine is resumed, it is restored to an existing unoccupied thread within the pool to
continue executing until it either completes or is suspended. Using this approach, a limited number of threads
are used efficiently to execute asynchronous tasks with the potential to perform large numbers of concurrent

487



An Introduction to Kotlin Coroutines

tasks without the inherent performance degeneration that would occur using standard multi-threading.

61.3 Coroutine Scope

All coroutines must run within a specific scope, allowing them to be managed as groups instead of as individual
ones. This is particularly important when canceling and cleaning up coroutines, for example, when a Fragment
or Activity is destroyed, and ensuring that coroutines do not “leak” (in other words, continue running in the
background when the app no longer needs them). By assigning coroutines to a scope, they can, for example, all
be canceled in bulk when they are no longer needed.

Kotlin and Android provide built-in scopes and the option to create custom scopes using the CoroutineScope
class. The built-in scopes can be summarized as follows:

+ GlobalScope - GlobalScope is used to launch top-level coroutines tied to the entire application lifecycle.
Since this has the potential for coroutines in this scope to continue running when not needed (for example,
when an Activity exits), use of this scope is not recommended for Android applications. Coroutines running
in GlobalScope are considered to be using unstructured concurrency.

» ViewModelScope - Provided specifically for ViewModel instances when using the Jetpack architecture
ViewModel component. Coroutines launched in this scope from within a ViewModel instance are automatically
canceled by the Kotlin runtime system when the corresponding ViewModel instance is destroyed.

LifecycleScope - Every lifecycle owner has associated with it a LifecycleScope. This scope is canceled when
the corresponding lifecycle owner is destroyed, making it particularly useful for launching coroutines from
within activities and fragments.

For all other requirements, a custom scope will likely be used. The following code, for example, creates a custom
scope named myCoroutineScope:

private val myCoroutineScope = CoroutineScope (Dispatchers.Main)

The coroutineScope declares the dispatcher that will be used to run coroutines (though this can be overridden)

and must be referenced each time a coroutine is started if it is to be included within the scope. All of the running
coroutines in a scope can be canceled via a call to the cancel() method of the scope instance:

myCoroutineScope.cancel ()

61.4 Suspend Functions
A suspend function is a special type of Kotlin function that contains the code of a coroutine. It is declared
using the Kotlin suspend keyword, which indicates to Kotlin that the function can be paused and resumed later,
allowing long-running computations to execute without blocking the main thread.
The following is an example suspend function:
suspend fun mySlowTask() {
// Perform long-running tasks here
}
61.5 Coroutine Dispatchers
Kotlin maintains threads for different types of asynchronous activity, and when launching a coroutine, it will be
necessary to select the appropriate dispatcher from the following options:

« Dispatchers.Main - Runs the coroutine on the main thread and is suitable for coroutines that need to make
changes to the UT and as a general-purpose option for performing lightweight tasks.

« Dispatchers.IO - Recommended for coroutines that perform network, disk, or database operations.

488



An Introduction to Kotlin Coroutines

o Dispatchers.Default - Intended for CPU-intensive tasks such as sorting data or performing complex
calculations.

The dispatcher is responsible for assigning coroutines to appropriate threads and suspending and resuming the
coroutine during its lifecycle. In addition to the predefined dispatchers, it is also possible to create dispatchers
for your own custom thread pools.

61.6 Coroutine Builders

The coroutine builders bring together all of the components covered so far and launch the coroutines so that
they start executing. For this purpose, Kotlin provides the following six builders:

« launch - Starts a coroutine without blocking the current thread and does not return a result to the caller. Use
this builder when calling a suspend function from within a traditional function and when the results of the
coroutine do not need to be handled (sometimes referred to as “fire and forget” coroutines).

o async - Starts a coroutine and allows the caller to wait for a result using the await() function without blocking
the current thread. Use async when you have multiple coroutines that need to run in parallel. The async
builder can only be used from within another suspend function.

withContext — Allows a coroutine to be launched in a different context from that used by the parent coroutine.
Using this builder, a coroutine running using the Main context could launch a child coroutine in the Default
context. The withContext builder also provides a useful alternative to async when returning results from a
coroutine.

coroutineScope — The coroutineScope builder is ideal for situations where a suspend function launches
multiple coroutines that will run in parallel and where some action must occur only when all the coroutines
reach completion. If those coroutines are launched using the coroutineScope builder, the calling function will
not return until all child coroutines have completed. When using coroutineScope, a failure in any coroutine
will cancel all other coroutines.

supervisorScope — Similar to the coroutineScope outlined above, except that a failure in one child does not
result in the cancellation of the other coroutines.

runBlocking - Starts a coroutine and blocks the current thread until the coroutine reaches completion. This
is typically the exact opposite of what is wanted from coroutines but is useful for testing code and when
integrating legacy code and libraries. Otherwise to be avoided.

61.7 Jobs

Each call to a coroutine builder, such as launch or async, returns a Job instance which can, in turn, be used
to track and manage the lifecycle of the corresponding coroutine. Subsequent builder calls from within the
coroutine create new Job instances, which will become children of the immediate parent Job, forming a parent-
child relationship tree where canceling a parent Job will recursively cancel all its children. Canceling a child does
not, however, cancel the parent, though an uncaught exception within a child created using the launch builder
may result in the cancellation of the parent (this is not the case for children created using the async builder,
which encapsulates the exception in the result returned to the parent).

The status of a coroutine can be identified by accessing the isActive, isCompleted, and isCancelled properties of
the associated Job object. In addition to these properties, several methods are also available on a Job instance.
For example, a Job and all of its children may be canceled by calling the cancel() method of the Job object, while
a call to the cancelChildren() method will cancel all child coroutines.

The join() method can be called to suspend the coroutine associated with the job until all of its child jobs have
completed. To perform this task and cancel the Job once all child jobs have completed, call the cancelAndjoin()

489



An Introduction to Kotlin Coroutines
method.

This hierarchical Job structure, together with coroutine scopes, form the foundation of structured concurrency,
which aims to ensure that coroutines do not run longer than required without manually keeping references to
each coroutine.

61.8 Coroutines — Suspending and Resuming

It helps to see some coroutine examples in action to understand coroutine suspension better. To start with, let’s
assume a simple Android app containing a button that, when clicked, calls a function named startTask(). This
function calls a suspend function named performSlowTask() using the Main coroutine dispatcher. The code for
this might read as follows:

private val myCoroutineScope = CoroutineScope (Dispatchers.Main)

fun startTask (view: View) {
myCoroutineScope.launch (Dispatchers.Main) {

performSlowTask ()

}

In the above code, a custom scope is declared and referenced in the call to the launch builder, which, in turn,
calls the performSlowTask() suspend function. Since startTask() is not a suspend function, the coroutine must be
started using the launch builder instead of the async builder.

Next, we can declare the performSlowTask() suspend function as follows:
suspend fun performSlowTask () {
Log.1i(TAG, "performSlowTask before")
delay (5 000) // simulates long-running task
Log.1(TAG, "performSlowTask after")
}

As implemented, all the function does is output diagnostic messages before and after performing a 5-second
delay, simulating a long-running task. While the 5-second delay is in effect, the user interface will continue
to be responsive because the main thread is not being blocked. To understand why it helps to explore what is
happening behind the scenes.

First, the startTask() function is executed and launches the performSlowTask() suspend function as a coroutine.
This function then calls the Kotlin delay() function passing through a time value. The built-in Kotlin delay()
function is implemented as a suspend function, so it is also launched as a coroutine by the Kotlin runtime
environment. The code execution has now reached what is referred to as a suspend point which will cause the
performSlowTask() coroutine to be suspended while the delay coroutine is running. This frees up the thread on
which performSlowTask() was running and returns control to the main thread so that the Ul is unaffected.

Once the delay() function reaches completion, the suspended coroutine will be resumed and restored to a thread
from the pool where it can display the Log message and return to the startTask() function.

When working with coroutines in Android Studio suspend points within the code editor are marked as shown
in the figure below:

490



An Introduction to Kotlin Coroutines

Figure 61-1
61.9 Returning Results from a Coroutine
The above example ran a suspend function as a coroutine but did not demonstrate how to return results.

However, suppose the performSlowTask() function is required to return a string value to be displayed to the user
via a TextView object.

To do this, we must rewrite the suspend function to return a Deferred object. A Deferred object is a commitment
to provide a value at some point in the future. By calling the await() function on the Deferred object, the Kotlin
runtime will deliver the value when the coroutine returns it. The code in our startTask() function might,
therefore, be rewritten as follows:

fun startTask(view: View) {

coroutineScope.launch (Dispatchers.Main) {

statusText.text = performSlowTask () .await ()

}

The problem now is that we are having to use the launch builder to start the coroutine since startTask() is not a
suspend function. As outlined earlier in this chapter, it is only possible to return results when using the async
builder. To get around this, we have to adapt the suspend function to use the async builder to start another
coroutine that returns a Deferred result:
suspend fun performSlowTask(): Deferred<String> =
coroutineScope.async (Dispatchers.Default) {
Log.1(TAG, "performSlowTask before")
delay (5 000)
Log.1(TAG, "performSlowTask after")
return@async "Finished"

}

When the app runs, the “Finished” result string will be displayed on the TextView object when the
performSlowTask() coroutine completes. Once again, the wait for the result will occur in the background without
blocking the main thread.

61.10 Using withContext

As we have seen, coroutines are launched within a specified scope and using a specific dispatcher. By default,
any child coroutines will inherit the same dispatcher as that used by the parent. Consider the following code

491



An Introduction to Kotlin Coroutines

designed to call multiple functions from within a suspend function:

fun startTask(view: View) {

coroutineScope.launch (Dispatchers.Main) {

performTasks ()

suspend fun performTasks () {
performTaskl ()
performTask?2 ()
performTask3 ()

suspend fun performTaskl () {
Log.i(TAG, "Task 1 ${Thread.currentThread() .name}")

suspend fun performTask2 () {
Log.i(TAG, "Task 2 ${Thread.currentThread() .name}")

suspend fun performTask3 () {
Log.i(TAG, "Task 3 ${Thread.currentThread() .name}")
}

Since the performTasks() function was launched using the Main dispatcher, all three functions will default to the
main thread. To prove this, the functions have been written to output the name of the thread in which they are

running. On execution, the Logcat panel will contain the following output:
Task 1 main
Task 2 main

Task 3 main

However, imagine that the performTask2() function performs network-intensive operations more suited to
the IO dispatcher. This can easily be achieved using the withContext launcher, which allows the context of a
coroutine to be changed while still staying in the same coroutine scope. The following change switches the

performTask2() coroutine to an IO thread:

suspend fun performTasks () {
performTaskl ()
withContext (Dispatchers.IO) { performTask2() }
performTask3 ()

}

When executed, the output will read as follows, indicating that the Task 2 coroutine is no longer on the main

thread:

Task 1 main

Task 2 DefaultDispatcher-worker-1

492



An Introduction to Kotlin Coroutines
Task 3 main

The withContext builder also provides an interesting alternative to using the async builder and the Deferred
object await() call when returning a result. Using withContext, the code from the previous section can be
rewritten as follows:

fun startTask(view: View) {

coroutineScope.launch (Dispatchers.Main) {

statusText.text = performSlowTask ()

suspend fun performSlowTask(): String =
withContext (Dispatchers.Main) {
Log.1(TAG, "performSlowTask before")
delay (5 000)
Log.1(TAG, "performSlowTask after")

return@withContext "Finished"

}
61.11 Coroutine Channel Communication

Channels provide a simple way to implement communication between coroutines, including streams of data.
In the simplest form, this involves the creation of a Channel instance and calling the send() method to send the
data. Once sent, transmitted data can be received in another coroutine via a call to the receive() method of the
same Channel instance.

The following code, for example, passes six integers from one coroutine to another:

import kotlinx.coroutines.channels.*

val channel = Channel<Int> ()

suspend fun channelDemo () {
coroutineScope.launch (Dispatchers.Main) { performTaskl () }
coroutineScope.launch (Dispatchers.Main) { performTask2() }
}
suspend fun performTaskl () {

(1..6).forEach {

channel.send (it)

493



An Introduction to Kotlin Coroutines
suspend fun performTask2 () {
repeat (6) |

Log.d(TAG, "Received: ${channel.receive()}")

}

When executed, the following logcat output will be generated:
Received: 1

Received:

Received:

2
3
Received: 4
Received: 5
6

Received:

61.12 Summary

Kotlin coroutines provide a simpler and more efficient approach to performing asynchronous tasks than
traditional multi-threading. Coroutines allow asynchronous tasks to be implemented in a structured way
without implementing the callbacks associated with typical thread-based tasks. This chapter has introduced the
basic concepts of coroutines, including jobs, scope, builders, suspend functions, structured concurrency, and
channel-based communication.

494



Chapter 68

68. An Overview of Android SQLite
Databases

Mobile applications that do not need to store at least some persistent data are few and far between. The use of
databases is an essential aspect of most applications, ranging from almost entirely data-driven applications to
those that need to store small amounts of data, such as the prevailing game score.

The importance of persistent data storage becomes even more evident when considering the transient lifecycle
of the typical Android application. With the ever-present risk that the Android runtime system will terminate
an application component to free up resources, a comprehensive data storage strategy to avoid data loss is a key
factor in designing and implementing any application development strategy.

This chapter will cover the SQLite database management system bundled with the Android operating system
and outline the Android SDK classes that facilitate persistent SQLite-based database storage within an Android
application. Before delving into the specifics of SQLite in the context of Android development, however, a brief
overview of databases and SQL will be covered.

68.1 Understanding Database Tables

Database Tables provide the most basic level of data structure in a database. Each database can contain multiple
tables, each designed to hold information of a specific type. For example, a database may contain a customer
table that contains the name, address, and telephone number of each of the customers of a particular business.
The same database may also include a products table used to store the product descriptions with associated
product codes for the items sold by the business.

Each table in a database is assigned a name that must be unique within that particular database. A table name,
once assigned to a table in one database, may not be used for another table except within the context of another
database.

68.2 Introducing Database Schema

Database Schemas define the characteristics of the data stored in a database table. For example, the table schema
for a customer database table might define the customer name as a string of no more than 20 characters long and
the customer phone number is a numerical data field of a certain format.

Schemas are also used to define the structure of entire databases and the relationship between the various tables
in each database.

68.3 Columns and Data Types

It is helpful at this stage to begin viewing a database table as similar to a spreadsheet where data is stored in rows
and columns.

Each column represents a data field in the corresponding table. For example, a table’s name, address, and
telephone data fields are all columns.

Each column, in turn, is defined to contain a certain type of data. Therefore, a column designed to store numbers
would be defined as containing numerical data.

543



An Overview of Android SQLite Databases
68.4 Database Rows

Each new record saved to a table is stored in a row. Each row, in turn, consists of the columns of data associated
with the saved record.

Once again, consider the spreadsheet analogy described earlier in this chapter. Each entry in a customer table
is equivalent to a row in a spreadsheet, and each column contains the data for each customer (name, address,
telephone, etc.). When a new customer is added to the table, a new row is created, and the data for that customer
is stored in the corresponding columns of the new row.

Rows are also sometimes referred to as records or entries, and these terms can generally be used interchangeably.

68.5 Introducing Primary Keys

Each database table should contain one or more columns that can be used to identify each row in the table
uniquely. This is known in database terminology as the Primary Key. For example, a table may use a bank
account number column as the primary key. Alternatively, a customer table may use the customer’s social
security number as the primary key.

Primary keys allow the database management system to uniquely identify a specific row in a table. Without
a primary key, retrieving or deleting a specific row in a table would not be possible because there can be no
certainty that the correct row has been selected. For example, suppose a table existed where the customer’s last
name had been defined as the primary key. Imagine the problem if more than one customer named “Smith” were
recorded in the database. Without some guaranteed way to identify a specific row uniquely, ensuring the correct
data was being accessed at any given time would be impossible.

Primary keys can comprise a single column or multiple columns in a table. To qualify as a single column primary
key, no two rows can contain matching primary key values. When using multiple columns to construct a primary
key, individual column values do not need to be unique, but all the columns’ values combined must be unique.

68.6 What is SQLite?

SQLite is an embedded, relational database management system (RDBMS). Most relational databases (Oracle,
SQL Server, and MySQL being prime examples) are standalone server processes that run independently and
cooperate with applications requiring database access. SQLite is referred to as embedded because it is provided in
the form of a library that is linked into applications. As such, there is no standalone database server running in
the background. All database operations are handled internally within the application through calls to functions
in the SQLite library.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

SQLite is written in the C programming language, so the Android SDK provides a Java-based “wrapper” around
the underlying database interface. This consists of classes that may be utilized within an application’s Java or
Kotlin code to create and manage SQLite-based databases.

For additional information about SQLite, refer to https://www.sqlite.org.

68.7 Structured Query Language (SQL)

Data is accessed in SQLite databases using a high-level language known as Structured Query Language. This is
usually abbreviated to SQL and pronounced sequel. SQL is a standard language used by most relational database
management systems. SQLite conforms mostly to the SQL-92 standard.

544


http://www.sqlite.org

An Overview of Android SQLite Databases

SQL is a straightforward and easy-to-use language designed specifically to enable the reading and writing of
database data. Because SQL contains a small set of keywords, it can be learned quickly. In addition, SQL syntax is
more or less identical between most DBMS implementations, so having learned SQL for one system, your skills
will likely transfer to other database management systems.

While some basic SQL statements will be used within this chapter, a detailed overview of SQL is beyond the
scope of this book. However, many other resources provide a far better overview of SQL than we could ever hope
to provide in a single chapter here.

68.8 Trying SQLite on an Android Virtual Device (AVD)

For readers unfamiliar with databases and SQLite, diving right into creating an Android application that
uses SQLite may seem intimidating. Fortunately, Android is shipped with SQLite pre-installed, including an
interactive environment for issuing SQL commands from within an adb shell session connected to a running
Android AVD emulator instance. This is a useful way to learn about SQLite and SQL and an invaluable tool for
identifying problems with databases created by applications running in an emulator.

To launch an interactive SQLite session, begin by running an AVD session. This can be achieved within Android
Studio by launching the Android Virtual Device Manager (Tools -> AVD Manager), selecting a previously
configured AVD, and clicking on the start button.

Once the AVD is up and running, open a Terminal or Command-Prompt window and connect to the emulator
using the adb command-line tool as follows (note that the —e flag directs the tool to look for an emulator with
which to connect, rather than a physical device):

adb —-e shell

Once connected, the shell environment will provide a command prompt at which commands may be entered.
Begin by obtaining superuser privileges using the su command:

Generic x86:/ su

root@android:/ #

If a message indicates that superuser privileges are not allowed, the AVD instance likely includes Google Play

support. To resolve this, create a new AVD and, on the “Choose a device definition” screen, select a device that
does not have a marker in the “Play Store” column.

The data in SQLite databases are stored in database files on the file system of the Android device on which the
application is running. By default, the file system path for these database files is as follows:

/data/data/<package name>/databases/<database filename>.db

For example, if an application with the package name com.example. MyDBApp creates a database named
mydatabase.db, the path to the file on the device would read as follows:

/data/data/com.example.MyDBApp/databases/mydatabase.db

For this exercise, therefore, change directory to /data/data within the adb shell and create a sub-directory
hierarchy suitable for some SQLite experimentation:

cd /data/data

mkdir com.example.dbexample

cd com.example.dbexample

mkdir databases

cd databases

With a suitable location created for the database file, launch the interactive SQLite tool as follows:

root@android:/data/data/databases # sglite3 ./mydatabase.db
545



An Overview of Android SQLite Databases

sqlite3 ./mydatabase.db
SQLite version 3.8.10.2 2015-05-20 18:17:19
Enter ".help" for usage hints.

sglite>

At the sqlite> prompt, commands may be entered to perform tasks such as creating tables and inserting and
retrieving data. For example, to create a new table in our database with fields to hold ID, name, address, and
phone number fields, the following statement is required:

create table contacts (_id integer primary key autoincrement, name text, address

text, phone text);

Note that each row in a table should have a primary key that is unique to that row. In the above example, we have
designated the ID field as the primary key, declared it as being of type integer, and asked SQLite to increment
the number automatically each time a row is added. This is a common way to ensure that each row has a unique
primary key. On most other platforms, the primary key’s name choice is arbitrary. In the case of Android,
however, the key must be named _id for the database to be fully accessible using all Android database-related
classes. The remaining fields are each declared as being of type text.

To list the tables in the currently selected database, use the .tables statement:
sglite> .tables

contacts

To insert records into the table:

sglite> insert into contacts (name, address, phone) wvalues ("Bill Smith", "123
Main Street, California™, "123-555-2323");

sglite> insert into contacts (name, address, phone) wvalues ("Mike Parks", "10
Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:

sglite> select * from contacts;

1|Bill Smith|123 Main Street, Californial|l23-555-2323

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:

sglite> select * from contacts where name="Mike Parks";

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:

sglite> .exit

When running an Android application in the emulator environment, any database files will be created on the
emulator’s file system using the previously discussed path convention. This has the advantage that you can

connect with adb, navigate to the location of the database file, load it into the sqlite3 interactive tool, and perform
tasks on the data to identify possible problems occurring in the application code.

It is also important to note that while connecting with an adb shell to a physical Android device is possible, the
shell is not granted sufficient privileges by default to create and manage SQLite databases. Therefore, database
problem debugging is best performed using an AVD session.

68.9 The Android Room Persistence Library

As previously mentioned, SQLite is written in the C programming language, while Android applications are
primarily developed using Java or Kotlin. To bridge this “language gap” in the past, the Android SDK included

546



An Overview of Android SQLite Databases

a set of classes that provide a layer on top of the SQLite database management system. Although available in
the SDK, use of these classes still involved writing a considerable amount of code and did not take advantage of
the new architecture guidelines and features such as LiveData and lifecycle management. The Android Jetpack
Architecture Components include the Room persistent library to address these shortcomings. This library
provides a high-level interface on top of the SQLite database system, making it easy to store data locally on
Android devices with minimal coding while also conforming to the recommendations for modern application
architecture.

The next few chapters will provide an overview and tutorial on SQLite database management using the Room
persistence library.

68.10 Summary

SQLite is a lightweight, embedded relational database management system included in the Android framework
and provides a mechanism for implementing organized persistent data storage for Android applications. When
combined with the Room persistence library, Android provides a modern way to implement data storage from
within an Android app.

This chapter provided an overview of databases in general and SQLite in particular within the context of
Android application development. The next chapters will provide an overview of the Room persistence library,
after which we will work through the creation of an example application.

547






Chapter 76

76. Android Audio Recording and
Playback using MediaPlayer and
MediaRecorder

This chapter will provide an overview of the MediaRecorder class and explain how this class can be used to
record audio or video. The use of the MediaPlayer class to play back audio will also be covered. Having covered
the basics, an example application will be created to demonstrate these techniques. In addition to looking at
audio and video handling, this chapter will also touch on saving files to the SD card.

76.1 Playing Audio

In terms of audio playback, most implementations of Android support AAC LC/LTP, HE-AACv1 (AAC+), HE-
AACV2 (enhanced AAC+), AMR-NB, AMR-WB, MP3, MIDI, Ogg Vorbis, and PCM/WAVE formats.

Audio playback can be performed using either the MediaPlayer or the AudioTrack classes. AudioTrack is a more
advanced option that uses streaming audio buffers and provides greater control over the audio. The MediaPlayer
class, on the other hand, provides an easier programming interface for implementing audio playback and will
meet the needs of most audio requirements.

The MediaPlayer class has associated with it a range of methods that can be called by an application to perform
certain tasks. A subset of some of the key methods of this class is as follows:

o create() — Called to create a new instance of the class, passing through the Uri of the audio to be played.
« setDataSource() — Sets the source from which the audio is to play.

o prepare() — Instructs the player to prepare to begin playback.

o start() — Starts the playback.

o pause() — Pauses the playback. Playback may be resumed via a call to the resume() method.

o stop() - Stops playback.

o setVolume() - Takes two floating-point arguments specifying the playback volume for the left and right
channels.

o resume() — Resumes a previously paused playback session.

o reset() — Resets the state of the media player instance. Essentially sets the instance back to the uninitialized
state. At a minimum, a reset player will need to have the data source set again, and the prepare() method
called.

o release() — To be called when the player instance is no longer needed. This method ensures that any resources
held by the player are released.

In a typical implementation, an application will instantiate an instance of the MediaPlayer class, set the source
609



Android Audio Recording and Playback using MediaPlayer and MediaRecorder

of the audio to be played, and then call prepare() followed by start(). For example:

val mediaPlayer = MediaPlayer ()

mediaPlayer?.setDataSource ("https://www.yourcompany.com/myaudio.mp3")

mediaPlayer?.prepare ()

mediaPlayer?.start ()

76.2 Recording Audio and Video using the MediaRecorder Class

As with audio playback, recording can be performed using several different techniques. One option is to use the
MediaRecorder class, which, as with the MediaPlayer class, provides several methods that are used to record
audio:

setAudioSource() - Specifies the audio source to be recorded (typically, this will be MediaRecorder.
AudioSource. MIC for the device microphone).

setVideoSource() — Specifies the source of the video to be recorded (for example MediaRecorder.VideoSource.
CAMERA).

setOutputFormat() — Specifies the format into which the recorded audio or video is to be stored (for example
MediaRecorder.OutputFormat. AAC_ADTS).

setAudioEncoder() — Specifies the audio encoder for the recorded audio (for example MediaRecorder.
AudioEncoder.AAC).

setOutputFile() - Configures the path to the file into which the recorded audio or video will be stored.
prepare() — Prepares the MediaRecorder instance to begin recording.
start() - Begins the recording process.

stop() — Stops the recording process. Once a recorder has been stopped, it must be completely reconfigured
and prepared before restarting.

reset() — Resets the recorder. The instance will need to be completely reconfigured and prepared before being
restarted.

release() — Should be called when the recorder instance is no longer needed. This method ensures that all
resources held by the instance are released.

A typical implementation using this class will set the source, output, encoding format, and output file. Calls will
then be made to the prepare() and start() methods. The stop() method will then be called when the recording
ends, followed by the reset() method. When the application no longer needs the recorder instance, a call to the
release() method is recommended:

val mediaRecorder = MediaRecorder (context)

mediaRecorder?.setAudioSource (MediaRecorder.AudioSource.MIC)
mediaRecorder?.setOutputFormat (MediaRecorder.OutputFormat.THREE GPP)

mediaRecorder?.setAudioEncoder (MediaRecorder.AudioEncoder.AMR NB)

mediaRecorder?.setOutputFile (audioFilePath)

mediaRecorder?.prepare ()

mediaRecorder?.start ()

610



Android Audio Recording and Playback using MediaPlayer and MediaRecorder

mediaRecorder?.stop ()
mediaRecorder?.reset ()

mediaRecorder?.release ()

To record audio, the manifest file for the application must include the android.permission.RECORD_AUDIO
permission:

<uses-permission android:name="android.permission.RECORD AUDIO" />

As outlined in the chapter entitled “Making Runtime Permission Requests in Android”, access to the microphone
falls into the category of dangerous permissions. To support Android 6, therefore, a specific request for
microphone access must also be made when the application launches, the steps for which will be covered later
in this chapter.

76.3 About the Example Project

The remainder of this chapter will create an example application to demonstrate the use of the MediaPlayer and
MediaRecorder classes to implement the recording and playback of audio on an Android device.

When developing applications that use specific hardware features, the microphone being a case in point, it is
important to check the feature’s availability before attempting to access it in the application code. The application
created in this chapter will, therefore, also include code to detect the presence of a microphone on the device.

Once completed, this application will provide a straightforward interface allowing the user to record and play
audio. The recorded audio will be stored within an audio file on the device. That being the case, this tutorial will
also briefly explore the mechanism for using SD Card storage.

76.4 Creating the AudioApp Project

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter AudioApp into the Name field and specify com.ebookfrenzy.audioapp as the package name. Before clicking
on the Finish button, change the Minimum API level setting to API 31: Android 12.0 and the Language menu
to Kotlin. Add view binding support to the project using the steps outlined in section 18.8 Migrating a Project
to View Binding.

76.5 Designing the User Interface

Once the new project has been created, select the activity_main.xml file from the Project tool window, and with
the Layout Editor tool in Design mode, select the “Hello World!” TextView and delete it from the layout.

Drag and drop three Button views onto the layout. The positioning of the buttons is not paramount to this
example, though Figure 76-1 shows a suggested layout using a vertical chain.

Configure the buttons to display string resources that read Play, Record, and Stop and give them view IDs of
playButton, recordButton, and stopButton, respectively.

Select the Play button and, within the Attributes panel, configure the onClick property to call a method named
playAudio when selected by the user. Repeat these steps to configure the remaining buttons to call methods
named recordAudio and stopAudio, respectively.

611



Android Audio Recording and Playback using MediaPlayer and MediaRecorder

Figure 76-1
76.6 Checking for Microphone Availability

Attempting to record audio on a device without a microphone will cause the Android system to throw an
exception. It is vital, therefore, that the code checks for the presence of a microphone before making such an
attempt. There are several ways of doing this, including checking for the physical presence of the device. An
easier approach that is more likely to work on different Android devices is to ask the Android system if it has
a package installed for a particular feature. This involves creating an instance of the Android PackageManager
class and then calling the object’s hasSystemFeature() method. PackageManager. FEATURE_MICROPHONE is
the feature of interest in this case.

For this example, we will create a method named hasMicrophone() that may be called upon to check for the
presence of a microphone. Within the Project tool window, locate and double-click on the MainActivity.kt file
and modify it to add this method:

package com.ebookfrenzy.audioapp
import android.content.pm.PackageManager
class MainActivity : AppCompatActivity() {
private fun hasMicrophone(): Boolean {
val pmanager = this.packageManager

return pmanager.hasSystemFeature (
PackageManager . FEATURE MICROPHONE)

612



Android Audio Recording and Playback using MediaPlayer and MediaRecorder
76.7 Initializing the Activity

The next step is to modify the activity to perform several initialization tasks. Remaining within the MainActivity.kt
file, modify the code as follows:

import android.media.MediaRecorder
import android.os.Environment
import android.view.View

import android.media.MediaPlayer

import java.io.File

class MainActivity : AppCompatActivity() {

private lateinit var binding: ActivityMainBinding
private var mediaRecorder: MediaRecorder? = null

private var mediaPlayer: MediaPlayer? = null

private var audioFilePath: String? = null

private var isRecording = false

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
binding = ActivityMainBinding.inflate (layoutInflater)
setContentView (binding.root)

audioSetup ()

private fun audioSetup() {

if ('hasMicrophone()) {
binding.stopButton.isEnabled = false
binding.playButton.isEnabled = false
binding.recordButton.isEnabled = false

} else {
binding.playButton.isEnabled

false
binding.stopButton.isEnabled = false

val audioFile File(this.filesDir, "myaudio.3gp")

audioFilePath = audioFile.absolutePath

613



Android Audio Recording and Playback using MediaPlayer and MediaRecorder
}

The added code calls hasMicrophone() method to ascertain whether the device includes a microphone. If it does
not, all the buttons are disabled; otherwise, only the Stop and Play buttons are disabled.

The next line of code needs a little more explanation:

val audioFile = File(this.filesDir, "myaudio.3gp")
audioFilePath = audioFile.absolutePath

This code creates a new file named myaudio.3gp within the app’s internal storage to store the audio recording.

76.8 Implementing the record Audio() Method

The recordAudio() method will be called when the user touches the Record button. This method will need to
turn the appropriate buttons on and off and configure the MediaRecorder instance with information about the
source of the audio, the output format and encoding, and the file’s location into which the audio is to be stored.
Finally, the prepare() and start() methods of the MediaRecorder object will need to be called. Combined, these
requirements result in the following method implementation in the MainActivity.kt file:
fun recordAudio (view: View) {

isRecording = true

binding.stopButton.isEnabled = true

binding.playButton.isEnabled = false

binding.recordButton.isEnabled = false

try {
mediaRecorder = MediaRecorder (this)
mediaRecorder?.setAudioSource (MediaRecorder.AudioSource.MIC)
mediaRecorder?.setOutputFormat (

MediaRecorder.OutputFormat.THREE_GPP)

mediaRecorder?.setOutputFile (audioFilePath)
mediaRecorder?.setAudioEncoder (MediaRecorder.AudioEncoder.AMR NB)
mediaRecorder?.prepare ()

} catch (e: Exception) {
e.printStackTrace ()

}

mediaRecorder?.start ()

}
76.9 Implementing the stopAudio() Method

The stopAudio() method enables the Play button, turning oft the Stop button, and then stopping and resetting
the MediaRecorder instance. The code to achieve this reads as outlined in the following listing and should be
added to the MainActivity.kt file:

fun stopAudio (view: View) {

binding.stopButton.isEnabled = false

binding.playButton.isEnabled true

if (isRecording) {
binding.recordButton.isEnabled = false

614



Android Audio Recording and Playback using MediaPlayer and MediaRecorder

mediaRecorder?.stop ()
mediaRecorder?.release ()
mediaRecorder = null
isRecording = false

} else {
mediaPlayer?.release ()
mediaPlayer = null
binding.recordButton.isEnabled = true

)
76.10 Implementing the playAudio() method

The playAudio() method will create a new MediaPlayer instance, assign the audio file located on the SD card as
the data source and then prepare and start the playback:
fun playAudio (view: View) {

binding.playButton.isEnabled = false

binding.recordButton.isEnabled = false

binding.stopButton.isEnabled = true

mediaPlayer = MediaPlayer ()
mediaPlayer?.setDataSource (audioFilePath)
mediaPlayer?.prepare ()
mediaPlayer?.start ()

)
76.11 Configuring and Requesting Permissions

Before testing the application, the appropriate permissions must be requested within the manifest file for the
application. Specifically, the application will require permission to access the microphone. Within the Project
tool window, locate and double-click on the AndroidManifest.xml file to load it into the editor and modify the
XML to add the permission tags:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">
<uses-permission android:name="android.permission.RECORD_AUDIO" />

<application

The above steps will be adequate to ensure that the user enables microphone access permission when the app is
installed on devices running versions of Android predating Android 6.0. Microphone access is categorized in
Android as being a dangerous permission because it allows the app to compromise the user’s privacy. For the
example app to function on Android 6 or later devices, code needs to be added to request permission at app
runtime.

Edit the MainActivity.kt file and begin by adding some additional import directives and a constant to act as
request identification codes for the permissions being requested:
615



Android Audio Recording and Playback using MediaPlayer and MediaRecorder

import android.Manifest
import android.widget.Toast
import androidx.core.app.ActivityCompat

import androidx.core.content.ContextCompat

class MainActivity : AppCompatActivity() {

private val RECORD_REQUEST CODE = 101

Next, a method needs to be added to the class, the purpose of which is to take as arguments the permission to
be requested and the corresponding request identification code. Remaining with the MainActivity.kt class file,
implement this method as follows:
private fun requestPermission (permissionType: String, requestCode: Int) {

val permission = ContextCompat.checkSelfPermission (this,

permissionType)

if (permission != PackageManager.PERMISSION GRANTED) {
ActivityCompat.requestPermissions (this,

arrayOf (permissionType), requestCode

}

Using the steps outlined in the “Making Runtime Permission Requests in Android” chapter of this book, the above
method verifies that the specified permission has not already been granted before making the request, passing
through the identification code as an argument.

When the request has been handled, the onRequestPermissionsResult() method will be called on the activity,
passing through the identification code and the request results. The next step, therefore, is to implement this
method within the MainActivity.kt file as follows:
override fun onRequestPermissionsResult (requestCode: Int,

permissions: Array<String>, grantResults: IntArray) {

super.onRequestPermissionsResult (requestCode, permissions, grantResults)

when (requestCode) {
RECORD REQUEST CODE -> {
if (grantResults.isEmpty () || grantResults[0]
!= PackageManager.PERMISSION GRANTED

binding.recordButton.isEnabled = false

616



Android Audio Recording and Playback using MediaPlayer and MediaRecorder

Toast.makeText (
this,
"Record permission required",
Toast.LENGTH LONG

) .show ()

}

The above code checks the request identifier code to identify which permission request has returned before
checking whether or not the corresponding permission was granted. If permission is denied, a message is
displayed to the user indicating that the app will not function and the record button is disabled.

Before testing the app, all that remains is to call the newly added requestPermission() method for microphone
access when the app launches. Remaining in the MainActivity.kt file, modify the audioSetup() method as follows:

private fun audioSetup () {

audioFilePath = audioFile.absolutePath

requestPermission(Manifest.permission.RECORD_AUDIO,
RECORD_REQUEST CODE)
}

76.12 Testing the Application

Compile and run the application on an Android device containing a microphone, allow microphone access, and
tap the Record button. After recording, touch Stop followed by Play. At this point, the recorded audio should
play back through the device speakers.

76.13 Summary

The Android SDK provides several mechanisms to implement audio recording and playback. This chapter has
looked at two of these: the MediaPlayer and MediaRecorder classes. Having covered the theory of using these
techniques, this chapter worked through creating an example application designed to record and then play back
audio. While working with audio in Android, this chapter also looked at the steps involved in ensuring that the
device on which the application is running has a microphone before attempting to record audio.

617






Chapter 89

89. Working with Material Design 3
Theming

The appearance of an Android app is intended to conform to a set of guidelines defined by Material Design.
Google developed Material Design to provide a level of design consistency between different apps while also
allowing app developers to include their own branding in terms of color, typography, and shape choices (a
concept referred to as Material theming). In addition to design guidelines, Material Design also includes a set
of UI components for use when designing user interface layouts, many of which we have used throughout this
book.

This chapter will provide an overview of how theming works within an Android Studio project and explore how
the default design configurations provided for newly created projects can be modified to meet your branding
requirements.

89.1 Material Design 2 vs. Material Design 3

Before beginning, it is important to note that Google is transitioning from Material Design 2 to Material Design
3 and that Android Studio Hedgehog projects default to Material Design 3. Material Design 3 provides the basis
for Material You, a feature introduced in Android 12 that allows an app to automatically adjust theme elements to
complement preferences configured by the user on the device. For example, dynamic color support provided by
Material Design 3 allows the colors used in apps to adapt automatically to match the user’s wallpaper selection.

89.2 Understanding Material Design Theming

We know that Android app user interfaces are created by assembling components such as layouts, text fields, and
buttons. These components appear using default colors unless we specifically override a color attribute in the
XML layout resource file or by writing code. The project’s theme defines these default colors. The theme consists
of a set of color slots (declared in themes.xml files) which are assigned color values (declared in the colors.xml
file). Each UI component is programmed internally to use theme color slots as the default color for specific
attributes (such as the foreground and background colors of the Text widget). It follows, therefore, that we can
change the application-wide theme of an app by changing the colors assigned to specific theme slots. When the
app runs, the new default colors will be used for all widgets when the user interface is rendered.

89.3 Material Design 3 Theming

Before exploring Material Design 3, we must consider how it is used in an Android Studio project. The theme
used by an application project is declared as a property of the application element within the AndroidManifest.
xml file, for example:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">

<application

745



Working with Material Design 3 Theming

android:supportsRtl="true"

android: theme="Q@style/Theme .MyDemoApp"
tools:targetApi="31">

<activity

As previously discussed, all of the files associated with the project theme are contained within the colors.xml and
themes.xml files located in the res -> values folder, as shown in Figure 89-1:

Figure 89-1
The theme itself is declared in the two themes.xml files located in the themes folder. These resource files declare
different color palettes containing Material Theme color slots for use when the device is in light or dark (night)
mode. Note that the style name property in each file must match that referenced in the AndroidManifest.xml file,
for example:
<resources xmlns:tools="http://schemas.android.com/tools">
<!-- Base application theme. -->

<style name="Base.Theme.MyDemoApp" parent="Theme.Material3.DayNight.
NoActionBar">

<!-- Customize your light theme here. -->
<!-- <item name="colorPrimary">Q@color/my light primary</item> -->
</style>

<style name="Theme.MyDemoApp" parent="Base.Theme.MyDemoApp" />

</resources>

These color slots (also referred to as color attributes) are used by the Material components to set colors when
they are rendered on the screen. For example, the colorPrimary color slot is used as the background color for the
Material Button component.

Color slots in MD3 are grouped as Primary, Secondary, Tertiary, Error, Background, and Surface. These slots
are further divided into pairs consisting of a base color and an “on” base color. This generally translates to the
background and foreground colors of a Material component.

746



Working with Material Design 3 Theming

The particular group used for coloring will differ between widgets. A Material Button widget, for example, will
use the colorPrimary base color for the background color and colorOnPrimary for its content (i.e., the text or
icon it displays). The FloatingActionButton component, on the other hand, uses colorPrimaryContainer as the
background color and colorOnPrimaryContainer for the foreground. The correct group for a specific widget type
can usually be identified quickly by changing color settings in the theme files and reviewing the rendering in
the layout editor.

Suppose that we need to change colorPrimary to red. We achieve this by adding a new entry to the colors.xml file
for the red color and then assigning it to the colorPrimary slot in the themes.xml file. The colorPrimary slot in an
MD3 theme night, therefore, read as follows:
<resources xmlns:tools="http://schemas.android.com/tools">

<!-- Base application theme. -->

<style name="Base.Theme.MyDemoApp" parent="Theme.Material3.DayNight.
NoActionBar">

<item name="colorPrimary">@color/my bright primary</item>
</style>

<style name="Theme.MyDemoApp" parent="Base.Theme.MyDemoApp" />

</resources>

This color is then declared in the colors.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<color name="my bright primary">#FC0505</color>

</resources>

89.4 Building a Custom Theme

As we have seen, the coding work in implementing a theme is relatively simple. The difficult part, however, is
often choosing complementary colors to make up the theme. Fortunately, Google has developed a tool that
makes it easy to design custom color themes for your apps. This tool is called the Material Theme Builder and
is available at:

https://m3.material.io/theme-builder#/custom

On the custom screen (Figure 89-2), make a color selection for the primary color key (A) by clicking on the
color circle to display the color selection dialog. Once a color has been selected, the preview (B) will change
to reflect the recommended colors for all MD3 color slots, along with example app interfaces and widgets. In
addition, you can override the generated colors for the Secondary, Tertiary, and Neutral slots by clicking on the
corresponding color circles to display the color selection dialog.

The area marked B displays example app interfaces, light and dark color scheme charts, and widgets that update
to preview your color selections. Since the panel is longer than the typical browser window, you must scroll
down to see all the information.

To incorporate the theme into your design, click the Export button (C) and select the Android View (XML)
option. Once downloaded, the colors.xml and themes.xml files can be used to replace the existing files in your
project. Note that the theme name in the two exported themes.xml files must be changed to match your project.

747


https://m3.material.io/theme-builder#/dynamic

Working with Material Design 3 Theming

Figure 89-2
89.5 Summary

Material Design provides guidelines and components defining how Android apps appear. Individual branding
can be applied to an app by designing themes that specify the colors, fonts, and shapes used when displaying
the app. Google recently introduced Material Design 3, which replaces Material Design 2 and supports the
new features of Material You, including dynamic colors. Google also provides the Material Theme Builder for
designing your own themes, which eases the task of choosing complementary theme colors. Once this tool has
been used to design a theme, the corresponding files can be exported and used within an Android Studio project.

748



Index

Symbols

2. 101

<application> 502

<fragment> 293

<fragment> element 293
<receiver> 480

<service> 502, 508, 515

:: operator 103

.well-known folder 453, 476, 692

A

AbsoluteLayout 174
ACCESS_COARSE_LOCATION permission 602
ACCESS_FINE_LOCATION permission 602
acknowledgePurchase() method 731
ACTION_CREATE_DOCUMENT 765
ACTION_CREATE_INTENT 766
ACTION_DOWN 270
ACTION_MOVE 270
ACTION_OPEN_DOCUMENT intent 758
ACTION_POINTER_DOWN 270
ACTION_POINTER_UP 270
ACTION_UP 270
ACTION_VIEW 471
Active / Running state 150
Activity 87, 153

adding views in Java code 251

class 153

creation 16

Entire Lifetime 157

Foreground Lifetime 157

lifecycle methods 155

lifecycles 147

returning data from 450

state change example 161

state changes 153

states 150

Visible Lifetime 157
Activity Lifecycle 149
Activity Manager 86
ActivityResultLauncher 451
Activity Stack 149
Actual screen pixels 242
adb

command-line tool 63

connection testing 69

device pairing 67

enabling on Android devices 63

Linux configuration 66

list devices 63

macOS configuration 64

overview 63

restart server 64

testing connection 69

WiFi debugging 67

Windows configuration 65

Wireless debugging 67

Wireless pairing 67
addCategory() method 479
addMarker() method 655
addView() method 245
ADD_VOICEMAIL permission 602
android

exported 503

gestureColor 286

layout_behavior property 443

onClick 295

process 503, 515

uncertainGestureColor 286
Android

Activity 87

architecture 83

events 263

intents 88

787



Index

onClick Resource 263

runtime 84

SDK Packages 6
android.app 84
Android Architecture Components 309
android.content 84
android.content.Intent 449

android.database 84

Android Debug Bridge. See ADB
Android Development

System Requirements 3
Android Devices

designing for different 173
android.graphics 84
android.hardware 84
android.intent.action 485
android.intent.action.BOOT_COMPLETED 503
android.intent.action.MAIN 471
android.intent.category. LAUNCHER 471
Android Libraries 84
android.media 85
Android Monitor tool window 36
Android Native Development Kit 85
android.net 85
android.opengl 84
android.os 85
android.permission.RECORD_AUDIO 611
android.print 85
Android Project

create new 15
android.provider 85
Android SDK Location

identifying 10
Android SDK Manager 8, 10
Android SDK Packages

version requirements 8
Android SDK Tools

command-line access 9

Linux 11

macOS 11

Windows 7 10

Windows 8 10

788

Android Software Stack 83

Android Storage Access Framework 758

Android Studio
changing theme 61
downloading 3
Editor Window 56
installation 4
Linux installation 5
macOS installation 4
Navigation Bar 55
Project tool window 56
setup wizard 5
Status Bar 56
Toolbar 55
Tool window bars 56
tool windows 56
updating 12
Welcome Screen 53
Windows installation 4

android.text 85

android.util 85

android.view 85

android.view.View 176

android.view.ViewGroup 173,176

Android Virtual Device. See AVD
overview 31
Android Virtual Device Manager 31
android.webkit 85
android.widget 85
AndroidX libraries 780
API Key 647
APK analyzer 724
APK file 717
APK File
analyzing 724
APK Signing 780
APK Wizard dialog 716
App Architecture
modern 309
AppBar
anatomy of 441

appbar_scrolling_view_behavior 443



App Bundles 713
creating 717
overview 713
revisions 723
uploading 720
AppCompatActivity class 154
App Inspector 57
Application
stopping 36
Application Context 89
Application Framework 85
Application Manifest 89
Application Resources 89
App Link
Adding Intent Filter 700
Digital Asset Links file 692, 453
Intent Filter Handling 700
Intent Filters 691
Intent Handling 692
Testing 704
URL Mapping 697
App Links 691
auto verification 452
autoVerify 453
overview 691
Apply Changes 259
Apply Changes and Restart Activity 259
Apply Code Changes 259
fallback settings 261
options 259
Run App 259
tutorial 261
applyToActivitiesIfAvailable() method 753
Architecture Components 309
ART 84
as 103
as? 103
asFlow() builder 520
assetlinks.json , 692, 453
asSharedFlow() 530
asStateFlow() 529
async 489

Index

Attribute Keyframes 380
Audio

supported formats 609
Audio Playback 609
Audio Recording 609
Autoconnect Mode 207
Automatic Link Verification 452, 475
autoVerify 453,700
AVD

cold boot 48

command-line creation 31

creation 31

device frame 40

Display mode 50

launch in tool window 40

overview 31

quickboot 48

Resizable 50

running an application 34

Snapshots 47

standalone 37

starting 33

Startup size and orientation 34

B

Background Process 148
Barriers 200
adding 219
constrained views 200
Baseline Alignment 199
beginTransaction() method 294
BillingClient 732
acknowledgePurchase() method 731
consumeAsync() method 731
getPurchaseState() method 730
initialization 728, 736
launchBillingFlow() method 730
queryProductDetailsAsync() method 729
queryPurchasesAsync() method 732
BillingResult 743
getDebugMessage() 743
Binding Expressions 329

789



Index

one-way 329

two-way 330

BIND_JOB_SERVICE permission 503
bindService() method 501, 505, 509

Biometric Authentication 705
callbacks 709
overview 705
tutorial 705

Biometric Prompt 710

BitmapFactory 760

Bitwise AND 109

Bitwise Inversion 108

Bitwise Left Shift 110

Bitwise OR 109

Bitwise Right Shift 110

Bitwise XOR 109

black activity 16

Blank template 177

Blueprint view 205

BODY_SENSORS permission 602

Boolean 96
Bound Service 501, 505
adding to a project 506
Implementing the Binder 506
Interaction options 505
BoundService class 507
Broadcast Intent 479
example 481
overview 88, 479
sending 482
Sticky 481
Broadcast Receiver 479
adding to manifest file 484
creation 483
overview 88, 480
BroadcastReceiver class 480
BroadcastReceiver superclass 483
BufferedReader object 768
buffer() operator 523
Build tool window 58
Build Variants , 58

tool window 58

790

Bundle class 170
Bundled Notifications 630

C

Calendar permissions 602
CALL_PHONE permission 602
CAMERA permission 602
Camera permissions 602
CameraUpdateFactory class

methods 656
cancelAndJoin() 489
cancelChildren() 489
CancellationSignal 710
Canvas class 686
CardView

layout file 431

responding to selection of 439
CardView class 431
CATEGORY_OPENABLE 758
C/C++ Libraries 85
Chain bias 228
chain head 198
chains 198
Chains

creation of 225
Chain style

changing 227
chain styles 198
Char 96
CheckBox 173

checkSelfPermission() method 606

Circle class 643

Code completion 74

Code Editor
basics 71
Code completion 74
Code Generation 76
Code Reformatting 79
Document Tabs 72
Editing area 72
Gutter Area 72

Live Templates 80



Splitting 74
Statement Completion 76
Status Bar 73
Code Generation 76
Code Reformatting 79
code samples
download 1
cold boot 48
Cold flows 528
CollapsingToolbarLayout
example 444
introduction 444
parallax mode 444
pin mode 444
setting scrim color 447
setting title 447
with image 444
collectLatest() operator 522
Color class 687
COLOR_MODE_COLOR 662, 682
COLOR_MODE_MONOCHROME 662, 682
combine() operator 527
Common Gestures 275
detection 275
Communicating Sequential Processes 487
Companion Objects 133
Component tree 20
conflate() operator 522
Constraint Bias 197
adjusting 211
ConstraintLayout
advantages of 203
Availability 204
Barriers 200
Baseline Alignment 199
chain bias 228
chain head 198
chains 198
chain styles 198
Constraint Bias 197
Constraints 195

conversion to 223

Index
convert to MotionLayout 387
deleting constraints 210
guidelines 217
Guidelines 200
manual constraint manipulation 207
Margins 196, 211
Opposing Constraints 196, 213
overview of 195
Packed chain 199, 228
ratios 203, 229
Spread chain 198
Spread inside 228
Spread inside chain 198
tutorial 233
using in Android Studio 205
Weighted chain 198, 228
Widget Dimensions 199, 215
Widget Group Alignment 221
ConstraintLayout chains
creation of 225
in layout editor 225
ConstraintLayout Chain style
changing 227
Constraints
deleting 210
ConstraintSet
addToHorizontalChain() method 248
addToVerticalChain() method 248
alignment constraints 247
apply to layout 246
applyTo() method 246
centerHorizontally() method 247
centerVertically() method 247
chains 247
clear() method 248
clone() method 247
connect() method 246
connect to parent 246
constraint bias 247
copying constraints 247
create 246

create connection 246

791



Index

createHorizontalChain() method 247 Coroutine Dispatchers 488
createVerticalChain() method 247 Coroutines 487, 519
guidelines 248 adding libraries 495
removeFromHorizontalChain() method 248 channel communication 493
removeFromVerticalChain() method 248 GlobalScope 488
removing constraints 248 returning results 491
rotation 249 Suspend Functions 488
scaling 248 suspending 490
setGuidelineBegin() method 248 tutorial 495
setGuidelineEnd() method 248 ViewModelScope 488
setGuidelinePercent() method 248 vs. Threads 487
setHorizonalBias() method 247 coroutineScope 489
setRotationX() method 249 Coroutine Scope 488
setRotationY() method 249 createPrintDocumentAdapter() method 677
setScaleX() method 248 Custom Accessors 131
setScaleY() method 248 Custom Attribute 377
setTransformPivot() method 249 Custom Document Printing 665, 677
setTransformPivotX() method 249 Custom Gesture
setTransformPivotY() method 249 recognition 281
setVerticalBias() method 247 Custom Print Adapter
sizing constraints 247 implementation 679
tutorial 251 Custom Print Adapters 677
view IDs 253 Custom Theme

ConstraintSet class 245, 246 building 747

Constraint Sets 246 Cycle Editor 405

ConstraintSets Cycle Keyframe 385
configuring 376 Cycle Keyframes

consumeAsync() method 731 overview 401

ConsumeParams 741

Contacts permissions 602 D
container view 173 dangerous permissions
Content Provider 86 list of 602
overview 89 Dark Theme 36
Context class 89 enable on device 36
CoordinatorLayout 174, 443 Data Access Object (DAO) 550
Coroutine Builders 489 Database Inspector 556, 580
async 489 live updates 580
coroutineScope 489 SQL query 580
launch 489 Database Rows 544
runBlocking 489 Database Schema 543
supervisorScope 489 Database Tables 543
withContext 489 Data binding

792



binding expressions 329
Data Binding 311
binding classes 328
enabling 334
event and listener binding 330
key components 325
overview 325
tutorial 333
variables 328
with LiveData 311
DDMS 36
Debugging
enabling on device 63
debug keystore file 453, 475
Default Function Parameters 123
DefaultLifecycleObserver 346, 349
deltaRelative 381
Density-independent pixels 241
Density Independent Pixels
converting to pixels 256
Device Definition
custom 191
Device File Explorer 58
device frame 40
Device Mirroring 69
enabling 69
device pairing 67
Digital Asset Links file 692, 453, 453
Direct Reply Input 639
Dispatchers.Default 489
Dispatchers.JO 488
Dispatchers.Main 488
document provider 757
dp 241
DROP_LATEST 530
DROP_OLDEST 530
Dynamic Colors
applyToActivitiesIfAvailable() method 753
enabling in Android 753
Dynamic State 155
saving 169

Index

E

Elvis Operator 103
Empty Process 149
Empty template 177
Emulator
battery 46
cellular configuration 46
configuring fingerprints 48
directional pad 46
extended control options 45
Extended controls 45
fingerprint 46
location configuration 46
phone settings 46
Resizable 50
resize 45
rotate 44
Screen Record 47
Snapshots 47
starting 33
take screenshot 44
toolbar 43
toolbar options 43
tool window mode 49
Virtual Sensors 47
zoom 44
enablePendingPurchases() method 731
enabling ADB support 63
Escape Sequences 97
ettings.gradle file 780
Event Handling 263
example 264
Event Listener 265
Event Listeners 264
Events
consuming 267
explicit
intent 88
explicit intent 449
Explicit Intent 449
Extended Control

options 45
793



Index

F

Files

switching between 72
filter() operator 524
findPointerIndex() method 270
findViewByld() 143
Fingerprint

emulation 48
Fingerprint authentication

device configuration 706

permission 706

steps to implement 705
Fingerprint Authentication

overview 705

tutorial 705

FLAG_INCLUDE_STOPPED_PACKAGES 479

flatMapConcat() operator 527
flatMapMerge() operator 527
flexible space area 441
Float 96
floating action button 16, 178
changing appearance of 416
margins 414
removing 179
sizes 414
Flow 519
asFlow() builder 520
asSharedFlow() 530
asStateFlow() 529
backgroudn handling 538
buffering 522
buffer() operator 523
cold 528
collect() 521
collecting data 521
collectLatest() operator 522
combine() operator 527
conflate() operator 522
declaring 520
emit() 521
emitting data 521
filter() operator 524

794

flatMapConcat() operator 527
flatMapMerge() operator 527
flattening 526
flowOf() builder 520
flow of flows 526
fold() operator 526
hot 528
intermediate operators 524
library requirements 520
map() operator 524
MutableSharedFlow 530
MutableStateFlow 529
onEach() operator 528
reduce() operator 525, 526
repeatOnLifecycle 540
SharedFlow 530
single() operator 522
StateFlow 529
terminal flow operators 525
transform() operator 525
try/finally 522
zip() operator 527
flowOf() builder 520
flow of flows 526
Flow operators 524
Flows
combining 527
Introduction to 519
Foldable Devices 158
multi-resume 158
Foreground Process 148
Forward-geocoding 649
Fragment
creation 291
event handling 295
XML file 292
FragmentActivity class 154
Fragment Communication 295
Fragments 291
adding in code 294
duplicating 422
example 299



overview 291
FragmentStateAdapter class 425
FrameLayout 174
Function Parameters

variable number of 123

Functions 121

G

Geocoder object 650
Geocoding 648
Gesture Builder Application 281
building and running 281
Gesture Detector class 275
GestureDetectorCompat 278
instance creation 278
GestureDetectorCompat class 275
GestureDetector.OnDoubleTapListener 275, 276
GestureDetector.OnGestureListener 276
GestureLibrary 281
GestureOverlayView 281
configuring color 286
configuring multiple strokes 286
GestureOverlayView class 281
GesturePerformedListener 281
Gestures
interception of 287
Gestures File
creation 282
extract from SD card 282
loading into application 284
GET_ACCOUNTS permission 602
getAction() method 485
getDebugMessage() 743
getFromLocation() method 650
getld() method 246
getIntent() method 450
getPointerCount() method 270
getPointerId() method 270
getPurchaseState() method 730
getService() method 509
GlobalScope 488
GNU/Linux 84

Index
Google Cloud
billing account 644
new project 645
Google Cloud Print 660
Google Drive 758
printing to 660
GoogleMap 643
map types 653
GoogleMap.MAP_TYPE_HYBRID 653
GoogleMap.MAP_TYPE_NONE 653
GoogleMap.MAP_TYPE_NORMAL 653
GoogleMap.MAP_TYPE_SATELLITE 653
GoogleMap.MAP_TYPE_TERRAIN 653
Google Maps Android API 643
Controlling the Map Camera 656
displaying controls 654
Map Markers 655
overview 643
Google Maps SDK 643
API Key 647
Credentials 647
enabling 646
Maps SDK for Android 647
Google Play App Signing 716
Google Play Console 734
Creating an in-app product 734
License Testers 735
Google Play Developer Console 714
Gradle
APK signing settings 784
Build Variants 780
command line tasks 785
dependencies 779
Manifest Entries 780
overview 779
sensible defaults 779
Gradle Build File
top level 781
Gradle Build Files
module level 782
gradle.properties file 780
GridLayout 174

795



Index

GridLayoutManager 429

H

Handler class 514
Higher-order Functions 125
Hot flows 528
HP Print Services Plugin 659
HTML printing 663
HTML Printing

example 667

I

IBinder 501, 507

IBinder object 505, 514

Image Printing 662

Immutable Variables 98

implicit
intent 88

implicit intent 449

Implicit Intent 451

Implicit Intents
example 467

importance hierarchy 147

in 241

INAPP 732

In-App Products 727

In-App Purchasing 733
acknowledgePurchase() method 731
BillingClient 728
BillingResult 743
consumeAsync() method 731
ConsumeParams 741
Consuming purchases 740
enablePendingPurchases() method 731
getPurchaseState() method 730
launchBillingFlow() method 730
Libraries 733
newBuilder() method 728
onBillingServiceDisconnected() callback 737
onBillingServiceDisconnected() method 729
onBillingSetupFinished() listener 737
onProductDetailsResponse() callback 738

796

Overview 727
ProductDetail 730
ProductDetails 738
products 727
ProductType 732
Purchase Flow 739
PurchaseResponseListener 732
PurchasesUpdatedListener 730
PurchaseUpdatedListener 739
purchase updates 739
queryProductDetailsAsync() 738
queryProductDetailsAsync() method 729
queryPurchasesAsync() 741
queryPurchasesAsync() method 732
runOnUiThread() 739
subscriptions 727
tutorial 733

Initializer Blocks 131

In-Memory Database 556

Inner Classes 132

Intelli] IDEA 91

Intent 88
explicit 88
implicit 88

Intent Availability
checking for 456

Intent. CATEGORY_OPENABLE 766

Intent Filters 452
App Link 691

Intents 449
ActivityResultLauncher 451
overview 449
registerForActivityResult() 451, 464

Intent Service 501

Intent URL 470

intermediate flow operators 524

is 103

isnitialized property 103

J

Java

convert to Kotlin 91



Java Native Interface 85

JetBrains 91

Jetpack 309
overview 309

JobIntentService 501
BIND_JOB_SERVICE permission 503
onHandleWork() method 501

join() 489

K

KeyAttribute 380
Keyboard Shortcuts 59
KeyCycle 401
Cycle Editor 405
tutorial 401
Keyframe 394
Keyframes 380
KeyFrameSet 410
KeyPosition 381
deltaRelative 381
parentRelative 381
pathRelative 382
Keystore File
creation 716
KeyTimeCycle 401
keytool 453
KeyTrigger 384
Killed state 150
Kotlin
accessing class properties 131
and Java 91
arithmetic operators 105
assignment operator 105
augmented assignment operators 106
bitwise operators 108
Boolean 96
break 116
breaking from loops 115
calling class methods 131
Char 96
class declaration 127

class initialization 128

Index
class properties 128
Companion Objects 133
conditional control flow 117
continue labels 116
continue statement 116
control flow 113
convert from Java 91
Custom Accessors 131
data types 95
decrement operator 106
Default Function Parameters 123
defining class methods 128
do ... while loop 115
Elvis Operator 103
equality operators 107
Escape Sequences 97
expression syntax 105
Float 96
Flow 519
for-in statement 113
function calling 122
Functions 121
Higher-order Functions 125
if ... else ... expressions 118
if expressions 117
Immutable Variables 98
increment operator 106
inheritance 137
Initializer Blocks 131
Inner Classes 132
introduction 91
Lambda Expressions 124
let Function 101
Local Functions 122
logical operators 107
looping 113
Mutable Variables 98
Not-Null Assertion 101
Nullable Type 100
Overriding inherited methods 140
playground 92

Primary Constructor 128

797



Index

properties 131

range operator 108

Safe Call Operator 100
Secondary Constructors 128
Single Expression Functions 122
String 96

subclassing 137

Type Annotations 99

Type Casting 103

Type Checking 103

Type Inference 99

variable parameters 123
when statement 118

while loop 114

L

Lambda Expressions 124
lateinit 102
Late Initialization 102
launch 489
launchBillingFlow() method 730
layout_collapseMode

parallax 446

pin 446

layout_constraintDimentionRatio 230

layout_constraintHorizontal_bias 228

layout_constraintVertical_bias 228
layout editor

ConstraintLayout chains 225
Layout Editor 19, 233

Autoconnect Mode 207

code mode 184

Component Tree 181

design mode 181

device screen 181

example project 233

Inference Mode 207

palette 181

properties panel 182

Sample Data 190

Setting Properties 185

toolbar 182

798

user interface design 233
view conversion 189
Layout Editor Tool
changing orientation 20
overview 181
Layout Inspector 58
Layout Managers 173
LayoutResultCallback object 683
Layouts 173
layout_scrollFlags
enterAlwaysCollapsed mode 443
enterAlways mode 443
exitUntilCollapsed mode 443
scroll mode 443
Layout Validation 192
let Function 101
libc 85
License Testers 735
Lifecycle
awareness 345
components 312
observers 346
owners 345
states and events 346
tutorial 349
Lifecycle-Aware Components 345
Lifecycle library 520
Lifecycle Methods 155
Lifecycle Observer 349
creatinga 349
Lifecycle Owner
creatinga 351
Lifecycles
modern 312
Lifecycle.State. CREATED 540
Lifecycle.State. DESTROYED 540
Lifecycle.State. INITIALIZED 540
Lifecycle.State RESUMED 540
Lifecycle.State.STARTED 540
LinearLayout 174
LinearLayoutManager 429
LinearLayoutManager layout 437



Linux Kernel 84
list devices 63
LiveData 310, 321
adding to ViewModel 321
observer 323
tutorial 321
Live Templates 80
Local Bound Service 505
example 505
Local Functions 122
Location Manager 86
Location permission 602
Logcat
tool window 57
LogCat
enabling 165

M

MANAGE_EXTERNAL_STORAGE 603
adb enabling 603
testing 603
Manifest File
permissions 471
map() operator 524
Maps 643
MapView 643
adding to a layout 650
Marker class 643
Master/Detail Flow
creation 772
two pane mode 771
match_parent properties 241
Material design 413
Material Design 2 745
Material Design 2 Theming 745
Material Design 3 745
Material Theme Builder 747
Material You 745
measureTimeMillis() function 523
MediaController
adding to VideoView instance 587
MediaController class 584

Index

methods 584
MediaPlayer class 609
methods 609
MediaRecorder class 609
methods 610
recording audio 610
Memory Indicator 73
Messenger object 514
Microphone
checking for availability 612
Microphone permissions 602
mm 241
MotionEvent 269, 270, 289
getActionMasked() 270
MotionLayout 375
arc motion 380
Attribute Keyframes 380
ConstraintSets 376
Custom Attribute 396
Custom Attributes 377
Cycle Editor 405
Editor 387
KeyAttribute 380
KeyCycle 401
Keyframes 380
KeyFrameSet 410
KeyPosition 381
KeyTimeCycle 401
KeyTrigger 384
OnClick 379, 392
OnSwipe 379
overview 375
Position Keyframes 381
previewing animation 392
Trigger Keyframe 384
Tutorial 387
MotionScene
ConstraintSets 376
Custom Attributes 377
file 376
overview 375

transition 376

799



Index

moveCamera() method 656
multiple devices

testing app on 35
Multiple Touches

handling 270
multi-resume 158
Multi-Touch

example 271
Multi-touch Event Handling 269
multi-window support 158
MutableSharedFlow 530
MutableStateFlow 529
Mutable Variables 98
My Location Layer 643

PendingIntent 636

Reply Action 638

updating direct reply 640
Notifications

bundled 630

overview 619
Notifications Manager 86
Not-Null Assertion 101
Nullable Type 100

o

Observer
implementing a LiveData 323

onAttach() method 296

onBillingServiceDisconnected() callback 737

N

Navigation 355 onBillingSetupFinished() listener 737

onBillingServiceDisconnected() method 729

adding destinations 364
overview 355
pass data with safeargs 371
passing arguments 360
stack 355
tutorial 361
Navigation Action
triggering 359
Navigation Architecture Component 355
Navigation Component
tutorial 361
Navigation Controller
accessing 359
Navigation Graph 358, 362
adding actions 367
creatinga 362
Navigation Host 356
declaring 363
newBuilder() method 728
normal permissions 601
Notification
adding actions 630
Direct Reply Input 639
issuing a basic 626

launch activity from a 628

800

onBind() method 502, 505
onBindViewHolder() method 437
OnClick 379
onClickListener 264, 265, 268
onClick() method 263
onCreateContextMenuListener 264
onCreate() method 148, 155, 502
onCreateView() method 156
onDestroy() method 156, 502
onDoubleTap() method 275
onDown() method 275
onEach() operator 528
onFling() method 275
onFocusChangeListener 264
OnFragmentInteractionListener
implementation 369
onGesturePerformed() method 281
onHandleWork() method 502
onKeyListener 264
onLayoutFailed() method 683
onLayoutFinished() method 683
onLongClickListener 264
onLongPress() method 275
onMapReady() method 652
onPageFinished() callback 668



onPause() method 156
onProductDetailsResponse() callback 738
onReceive() method 148, 480, 481, 483
onRequestPermissionsResult() method 605, 616, 624, 634
onRestart() method 155
onRestorelnstanceState() method 156
onResume() method 148, 156
onSavelnstanceState() method 156
onScaleBegin() method 287

onScaleEnd() method 287

onScale() method 287

onScroll() method 275
OnSeekBarChangeListener 306
onServiceConnected() method 505, 508, 515
onServiceDisconnected() method 505, 508, 515
onShowPress() method 275
onSingleTapUp() method 275
onStartCommand() method 502

onStart() method 155

onStop() method 156

onTouchEvent() method 275, 287
onTouchListener 264

onTouch() method 270

onViewCreated() method 156
onViewStatusRestored() method 156
openFileDescriptor() method 758
OpenJDK 3

P

Package Explorer 18

Package Manager 86

PackageManager class 612

PackageManager. FEATURE_MICROPHONE 612
PackageManager. PERMISSION_DENIED 603
PackageManager. PERMISSION_GRANTED 603
Package Name 16

Packed chain 199, 228

PageRange 684, 685

Paint class 687

parentRelative 381

parent view 175

pathRelative 382

Index

Paused state 150
PdfDocument 665
PdfDocument.Page 677, 684
Pendinglntent class 636
Permission

checking for 603
permissions

normal 601
Persistent State 155
Phone permissions 602
picker 757
Pinch Gesture

detection 287

example 287
Pinch Gesture Recognition 281
Position Keyframes 381
POST_NOTIFICATIONS permission 602, 634
Primary Constructor 128
PrintAttributes 682
PrintDocumentAdapter 665, 677
Printing

color 662

monochrome 662
Printing framework

architecture 659
Printing Framework 659
Print Job

starting 688
PrintManager service 669
Problems

tool window 58
process

priority 147

state 147
PROCESS_OUTGOING_CALLS permission 602
Process States 147
ProductDetail 730
ProductDetails 738
ProductType 732
Profiler

tool window 58

ProgressBar 173

801



Index

proguard-rules.pro file 784
ProGuard Support 780

Project Name 16

Project tool window 18, 57

pt 241
PurchaseResponseListener 732
PurchasesUpdatedListener 730
PurchaseUpdatedListener 739
putExtra() method 449, 479

StaggeredGridLayoutManager 429
RecyclerView Adapter

creation of 435
RecyclerView.Adapter 430, 436

getltemCount() method 430

onBindViewHolder() method 430

onCreateViewHolder() method 430
RecyclerView.ViewHolder

getAdapterPosition() method 440

px 242 reduce() operator 525, 526
registerForActivityResult() 451

Q registerForActivityResult() method 450, 464

queryProductDetailsAsync() 738 registerReceiver() method 481

queryProductDetailsAsync() method 729 RelativeLayout 174

queryPurchaseHistoryAsync() method 732 releasePersistableUriPermission() method 761

queryPurchasesAsync() 741
queryPurchasesAsync() method 732
quickboot snapshot 48

Quick Documentation 79

R

RadioButton 173

Range Operator 108

ratios 229

READ_CALENDAR permission 602
READ_CALL_LOG permission 602
READ_CONTACTS permission 602

READ_EXTERNAL_STORAGE permission 603
READ_PHONE_STATE permission 602

READ_SMS permission 602
RECEIVE_MMS permission 602
RECEIVE_SMS permission 602

RECEIVE_WAP_PUSH permission 602

Recent Files Navigation 60
RECORD_AUDIO permission 602
Recording Audio
permission 611
RecyclerView 429
adding to layout file 430
GridLayoutManager 429
initializing 437

LinearLayoutManager 429

802

Release Preparation 713
Remote Bound Service 513
client communication 513
implementation 513
manifest file declaration 515
Remotelnput.Builder() method 636
Remotelnput Object 636
Remote Service
launching and binding 515
sending a message 517
repeatOnLifecycle 540
Repository
tutorial 567
Repository Modules 312
Resizable Emulator 50
Resource
string creation 23
Resource File 25
Resource Management 147
Resource Manager , 57
result receiver 481
Reverse-geocoding 649
Reverse Geocoding 648
Room
Data Access Object (DAO) 550
entities 550, 551
In-Memory Database 556



Repository 550
Room Database 550
tutorial 567
Room Database Persistence 549
Room Persistence Library 546, 549
root element 173
root view 175
Run
tool window 57
runBlocking 489
Running Devices
tool window 69

runOnUiThread() 739

S

safeargs 371
Safe Call Operator 100
Sample Data 190
Saved State 311, 341

library dependencies 343
SavedStateHandle 342

contains() method 343

keys() method 343

remove() method 343
Saved State module 341
SavedStateViewModelFactory 342
ScaleGestureDetector class 287
Scale-independent 241
SDK Packages 6
Secondary Constructors 128
Secure Sockets Layer (SSL) 85
SeekBar 299
sendBroadcast() method 479, 481
sendOrderedBroadcast() method 479, 481
SEND_SMS permission 602
sendStickyBroadcast() method 479
Sensor permissions 602
Service

anatomy 502

launch at system start 503

manifest file entry 502

overview 88

Index

run in separate process 503
ServiceConnection class 515
Service Process 148
Service Restart Options 502
setAudioEncoder() method 610
setAudioSource() method 610
setBackgroundColor() 246
setCompassEnabled() method 654
setContentView() method 245, 251
setld() method 246
setMyLocationButtonEnabled() method 654
setOnClickListener() method 263, 265
setOnDoubleTapListener() method 275, 278
setOutputFile() method 610
setOutputFormat() method 610
setResult() method 451
setText() method 172
settings.gradle.kts file 780
setTransition() 385
setVideoSource() method 610
SHA-256 certificate fingerprint 453
SharedFlow 530, 533

backgroudn handling 538

DROP_LATEST 530

DROP_OLDEST 530

in ViewModel 535

repeatOnLifecycle 540

SUSPEND 531

tutorial 533
shouldOverrideUrlLoading() method 668
SimpleOnScaleGestureListener 287
SimpleOnScaleGestureListener class 288
single() operator 522
SMS permissions 602
Snackbar 413, 414, 415
Snapshots

emulator 47
sp 241
Spread chain 198
Spread inside 228
Spread inside chain 198
SQL 544

803



Index

SQLite 543
AVD command-line use 545
Columns and Data Types 543
overview 544
Primary keys 544
StaggeredGridLayoutManager 429
startActivity() method 449
startForeground() method 148
START_NOT_STICKY 502
START_REDELIVER_INTENT 502
START_STICKY 502
State
restoring 172
State Change
handling 151
StateFlow 529
Statement Completion 76
Status Bar Widgets 73
Memory Indicator 73
Sticky Broadcast Intents 481
Stopped state 150

Storage Access Framework 757

ACTION_CREATE_DOCUMENT 758
ACTION_OPEN_DOCUMENT 758

deleting a file 761
example 763
file creation 765
file filtering 758
file reading 759
file writing 760
intents 758
MIME Types 759
Persistent Access 761
picker 757
Storage permissions 603
String 96
StringBuilder object 768
strings.xml file 27
Structure
tool window 58
Structured Query Language 544

Structure tool window 58

804

SUBS 732
subscriptions 727

supervisorScope 489

SupportMapFragment class 643

SUSPEND 531
Suspend Functions 488
Switcher 60

System Broadcasts 485

system requirements 3

T

TabLayout

adding to layout 423

app

tabGravity property 428
tabMode property 428

example 420

fixed mode 427

getltemCount() method 419

overview 419
TableLayout 174, 559
TableRow 559
Telephony Manager 86
Templates

blank vs. empty 177
Terminal

tool window 58
terminal flow operators 525
Theme

building a custom 747
Theming 745

tutorial 749
Time Cycle Keyframes 385
TODO

tool window 59
ToolbarListener 296
tools

layout 293
Tool window bars 56
Tool windows 56
Touch Actions 270

Touch Event Listener



implementation 271
Touch Events
intercepting 269
Touch handling 269
transform() operator 525
try/finally 522
Type Annotations 99
Type Casting 103
Type Checking 103
Type Inference 99

U

UiSettings class 643
unbindService() method 501

unregisterReceiver() method 481

upload key 716

URL Mapping 697

USB connection issues
resolving 66

USE_BIOMETRIC 706

user interface state 155

USE_SIP permission 602

\%

Video Playback 583
VideoView class 583
methods 583
supported formats 583
view bindings
enabling 144
using 144
View class
setting properties 252
view conversion 189
ViewGroup 173
View Groups 173
View Hierarchy 175
ViewHolder class 430
sample implementation 436
ViewModel
adding LiveData 321

data access 319

Index
overview 310
saved state 341
Saved State 311, 341
tutorial 315
ViewModelProvider 318
ViewModel Saved State 341
ViewModelScope 488
ViewPager
adding to layout 423
example 420
Views 173
Java creation 245
View System 86
Virtual Device Configuration dialog 32
Virtual Sensors 47

Visible Process 148

w

WebViewClient 663, 668

WebView view 469

Weighted chain 198, 228

Welcome screen 53

while Loop 114

Widget Dimensions 199

Widget Group Alignment 221
Widgets palette 234

WiFi debugging 67

Wireless debugging 67

Wireless pairing 67

withContext 489, 491

wrap_content properties 243
WRITE_CALENDAR permission 602
WRITE_CALL_LOG permission 602
WRITE_CONTACTS permission 602
WRITE_EXTERNAL_STORAGE permission 603

X

XML Layout File
manual creation 241

vs. Java Code 245

Z

805



Index

zip() operator 527

806



	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Installing the Android SDK Command-line Tools
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Enabling the New Android Studio UI
	3.6 Modifying the Example Application
	3.7 Modifying the User Interface 
	3.8 Reviewing the Layout and Resource Files
	3.9 Adding Interaction
	3.10 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Removing the Device Frame
	4.9 Summary

	5. Using and Configuring the Android Studio AVD Emulator 
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Creating a Resizable Emulator
	5.10 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Menu Bar
	6.3 The Main Window
	6.4 The Tool Windows
	6.5 The Tool Window Menus
	6.6 Android Studio Keyboard Shortcuts
	6.7 Switcher and Recent Files Navigation
	6.8 Changing the Android Studio Theme
	6.9 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Device Mirroring
	7.7 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android App
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types, Variables, and Nullability
	12.1 Kotlin Data Types
	12.1.1 Integer Data Types
	12.1.2  Floating-Point Data Types
	12.1.3 Boolean Data Type
	12.1.4 Character Data Type
	12.1.5 String Data Type
	12.1.6 Escape Sequences

	12.2 Mutable Variables
	12.3 Immutable Variables
	12.4 Declaring Mutable and Immutable Variables
	12.5 Data Types are Objects
	12.6 Type Annotations and Type Inference
	12.7 Nullable Type
	12.8 The Safe Call Operator
	12.9 Not-Null Assertion
	12.10 Nullable Types and the let Function
	12.11 Late Initialization (lateinit)
	12.12 The Elvis Operator
	12.13 Type Casting and Type Checking
	12.14 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression Syntax in Kotlin
	13.2 The Basic Assignment Operator
	13.3 Kotlin Arithmetic Operators
	13.4 Augmented Assignment Operators
	13.5 Increment and Decrement Operators
	13.6 Equality Operators
	13.7 Boolean Logical Operators
	13.8 Range Operator
	13.9 Bitwise Operators
	13.9.1 Bitwise Inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise Left Shift
	13.9.6 Bitwise Right Shift

	13.10 Summary

	14. Kotlin Control Flow
	14.1 Looping Control flow
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while Loop 
	14.1.3 The do ... while loop 
	14.1.4 Breaking from Loops
	14.1.5 The continue Statement 
	14.1.6 Break and Continue Labels

	14.2 Conditional Control Flow
	14.2.1 Using the if Expressions 
	14.2.2 Using if ... else … Expressions 
	14.2.3 Using if ... else if ... Expressions 
	14.2.4 Using the when Statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a Function?
	15.2 How to Declare a Kotlin Function
	15.3 Calling a Kotlin Function
	15.4 Single Expression Functions
	15.5 Local Functions
	15.6 Handling Return Values
	15.7 Declaring Default Function Parameters
	15.8 Variable Number of Function Parameters 
	15.9 Lambda Expressions
	15.10 Higher-order Functions
	15.11 Summary

	16. The Basics of Object Oriented Programming in Kotlin
	16.1 What is an Object?
	16.2 What is a Class?
	16.3 Declaring a Kotlin Class
	16.4 Adding Properties to a Class
	16.5 Defining Methods
	16.6 Declaring and Initializing a Class Instance
	16.7 Primary and Secondary Constructors
	16.8 Initializer Blocks
	16.9 Calling Methods and Accessing Properties
	16.10 Custom Accessors
	16.11 Nested and Inner Classes
	16.12 Companion Objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, Classes and Subclasses
	17.2 Subclassing Syntax
	17.3 A Kotlin Inheritance Example
	17.4 Extending the Functionality of a Subclass
	17.5 Overriding Inherited Methods
	17.6 Adding a Custom Secondary Constructor
	17.7 Using the SavingsAccount Class
	17.8 Summary

	18. An Overview of Android View Binding
	18.1 Find View by Id
	18.2 View Binding 
	18.3 Converting the AndroidSample project
	18.4 Enabling View Binding
	18.5 Using View Binding
	18.6 Choosing an Option
	18.7 View Binding in the Book Examples
	18.8 Migrating a Project to View Binding
	18.9 Summary

	19. Understanding Android Application and Activity Lifecycles
	19.1 Android Applications and Resource Management
	19.2 Android Process States
	19.2.1 Foreground Process
	19.2.2 Visible Process
	19.2.3 Service Process
	19.2.4 Background Process
	19.2.5 Empty Process

	19.3 Inter-Process Dependencies 
	19.4 The Activity Lifecycle
	19.5 The Activity Stack
	19.6 Activity States
	19.7 Configuration Changes
	19.8 Handling State Change
	19.9 Summary

	20. Handling Android Activity State Changes
	20.1 New vs. Old Lifecycle Techniques
	20.2 The Activity and Fragment Classes
	20.3 Dynamic State vs. Persistent State
	20.4 The Android Lifecycle Methods
	20.5 Lifetimes
	20.6 Foldable Devices and Multi-Resume
	20.7 Disabling Configuration Change Restarts
	20.8 Lifecycle Method Limitations
	20.9 Summary

	21. Android Activity State Changes by Example
	21.1 Creating the State Change Example Project
	21.2 Designing the User Interface
	21.3 Overriding the Activity Lifecycle Methods
	21.4 Filtering the Logcat Panel
	21.5 Running the Application
	21.6 Experimenting with the Activity
	21.7 Summary

	22. Saving and Restoring the State of an Android Activity
	22.1 Saving Dynamic State
	22.2 Default Saving of User Interface State
	22.3 The Bundle Class
	22.4 Saving the State
	22.5 Restoring the State
	22.6 Testing the Application
	22.7 Summary

	23. Understanding Android Views, View Groups and Layouts
	23.1 Designing for Different Android Devices
	23.2 Views and View Groups
	23.3 Android Layout Managers
	23.4 The View Hierarchy
	23.5 Creating User Interfaces
	23.6 Summary

	24. A Guide to the Android Studio Layout Editor Tool
	24.1 Basic vs. Empty Views Activity Templates
	24.2 The Android Studio Layout Editor
	24.3 Design Mode
	24.4 The Palette
	24.5 Design Mode and Layout Views
	24.6 Night Mode
	24.7 Code Mode
	24.8 Split Mode
	24.9 Setting Attributes
	24.10 Transforms
	24.11 Tools Visibility Toggles
	24.12 Converting Views
	24.13 Displaying Sample Data
	24.14 Creating a Custom Device Definition
	24.15 Changing the Current Device
	24.16 Layout Validation
	24.17 Summary

	25. A Guide to the Android ConstraintLayout
	25.1 How ConstraintLayout Works
	25.1.1 Constraints
	25.1.2 Margins
	25.1.3 Opposing Constraints
	25.1.4 Constraint Bias
	25.1.5 Chains
	25.1.6 Chain Styles

	25.2 Baseline Alignment
	25.3 Configuring Widget Dimensions
	25.4 Guideline Helper
	25.5 Group Helper
	25.6 Barrier Helper
	25.7 Flow Helper
	25.8 Ratios
	25.9 ConstraintLayout Advantages
	25.10 ConstraintLayout Availability
	25.11 Summary

	26. A Guide to Using ConstraintLayout in Android Studio
	26.1 Design and Layout Views
	26.2 Autoconnect Mode
	26.3 Inference Mode
	26.4 Manipulating Constraints Manually
	26.5 Adding Constraints in the Inspector
	26.6 Viewing Constraints in the Attributes Window
	26.7 Deleting Constraints
	26.8 Adjusting Constraint Bias
	26.9 Understanding ConstraintLayout Margins
	26.10 The Importance of Opposing Constraints and Bias
	26.11 Configuring Widget Dimensions
	26.12 Design Time Tools Positioning
	26.13 Adding Guidelines
	26.14 Adding Barriers
	26.15 Adding a Group
	26.16 Working with the Flow Helper
	26.17 Widget Group Alignment and Distribution
	26.18 Converting other Layouts to ConstraintLayout
	26.19 Summary 

	27. Working with ConstraintLayout Chains and Ratios in Android Studio
	27.1 Creating a Chain
	27.2 Changing the Chain Style
	27.3 Spread Inside Chain Style
	27.4 Packed Chain Style
	27.5 Packed Chain Style with Bias
	27.6 Weighted Chain
	27.7 Working with Ratios
	27.8 Summary

	28. An Android Studio Layout Editor ConstraintLayout Tutorial
	28.1 An Android Studio Layout Editor Tool Example
	28.2 Preparing the Layout Editor Environment
	28.3 Adding the Widgets to the User Interface
	28.4 Adding the Constraints
	28.5 Testing the Layout
	28.6 Using the Layout Inspector
	28.7 Summary

	29. Manual XML Layout Design in Android Studio
	29.1 Manually Creating an XML Layout
	29.2 Manual XML vs. Visual Layout Design
	29.3 Summary

	30. Managing Constraints using Constraint Sets
	30.1 Kotlin Code vs. XML Layout Files
	30.2 Creating Views
	30.3 View Attributes
	30.4 Constraint Sets
	30.4.1 Establishing Connections
	30.4.2 Applying Constraints to a Layout
	30.4.3 Parent Constraint Connections
	30.4.4 Sizing Constraints
	30.4.5 Constraint Bias
	30.4.6 Alignment Constraints
	30.4.7 Copying and Applying Constraint Sets
	30.4.8 ConstraintLayout Chains
	30.4.9 Guidelines
	30.4.10 Removing Constraints
	30.4.11 Scaling
	30.4.12 Rotation

	30.5 Summary

	31. An Android ConstraintSet Tutorial
	31.1 Creating the Example Project in Android Studio
	31.2 Adding Views to an Activity
	31.3 Setting View Attributes
	31.4 Creating View IDs
	31.5 Configuring the Constraint Set
	31.6 Adding the EditText View
	31.7 Converting Density Independent Pixels (dp) to Pixels (px)
	31.8 Summary

	32. A Guide to Using Apply Changes in Android Studio
	32.1 Introducing Apply Changes
	32.2 Understanding Apply Changes Options
	32.3 Using Apply Changes
	32.4 Configuring Apply Changes Fallback Settings
	32.5 An Apply Changes Tutorial
	32.6 Using Apply Code Changes
	32.7 Using Apply Changes and Restart Activity
	32.8 Using Run App
	32.9 Summary

	33. An Overview and Example of Android Event Handling
	33.1 Understanding Android Events
	33.2 Using the android:onClick Resource
	33.3 Event Listeners and Callback Methods
	33.4 An Event Handling Example
	33.5 Designing the User Interface
	33.6 The Event Listener and Callback Method
	33.7 Consuming Events
	33.8 Summary

	34. Android Touch and Multi-touch Event Handling
	34.1 Intercepting Touch Events
	34.2 The MotionEvent Object
	34.3 Understanding Touch Actions
	34.4 Handling Multiple Touches
	34.5 An Example Multi-Touch Application
	34.6 Designing the Activity User Interface
	34.7 Implementing the Touch Event Listener
	34.8 Running the Example Application
	34.9 Summary

	35. Detecting Common Gestures Using the Android Gesture Detector Class
	35.1 Implementing Common Gesture Detection
	35.2 Creating an Example Gesture Detection Project
	35.3 Implementing the Listener Class
	35.4 Creating the GestureDetectorCompat Instance
	35.5 Implementing the onTouchEvent() Method
	35.6 Testing the Application
	35.7 Summary

	36. Implementing Custom Gesture and Pinch Recognition on Android
	36.1 The Android Gesture Builder Application
	36.2 The GestureOverlayView Class
	36.3 Detecting Gestures
	36.4 Identifying Specific Gestures
	36.5 Installing and Running the Gesture Builder Application
	36.6 Creating a Gestures File
	36.7 Creating the Example Project
	36.8 Extracting the Gestures File from the SD Card
	36.9 Adding the Gestures File to the Project
	36.10 Designing the User Interface
	36.11 Loading the Gestures File
	36.12 Registering the Event Listener
	36.13 Implementing the onGesturePerformed Method
	36.14 Testing the Application
	36.15 Configuring the GestureOverlayView
	36.16 Intercepting Gestures
	36.17 Detecting Pinch Gestures
	36.18 A Pinch Gesture Example Project
	36.19 Summary

	37. An Introduction to Android Fragments
	37.1 What is a Fragment?
	37.2 Creating a Fragment
	37.3 Adding a Fragment to an Activity using the Layout XML File
	37.4 Adding and Managing Fragments in Code
	37.5 Handling Fragment Events
	37.6 Implementing Fragment Communication
	37.7 Summary 

	38. Using Fragments in Android Studio - An Example
	38.1 About the Example Fragment Application
	38.2 Creating the Example Project
	38.3 Creating the First Fragment Layout
	38.4 Migrating a Fragment to View Binding
	38.5 Adding the Second Fragment
	38.6 Adding the Fragments to the Activity
	38.7 Making the Toolbar Fragment Talk to the Activity
	38.8 Making the Activity Talk to the Text Fragment
	38.9 Testing the Application
	38.10 Summary

	39. Modern Android App Architecture with Jetpack
	39.1 What is Android Jetpack?
	39.2 The “Old” Architecture
	39.3 Modern Android Architecture
	39.4 The ViewModel Component
	39.5 The LiveData Component
	39.6 ViewModel Saved State
	39.7 LiveData and Data Binding
	39.8 Android Lifecycles
	39.9 Repository Modules
	39.10 Summary

	40. An Android ViewModel Tutorial
	40.1 About the Project
	40.2 Creating the ViewModel Example Project
	40.3 Removing Unwanted Project Elements
	40.4 Designing the Fragment Layout
	40.5 Implementing the View Model
	40.6 Associating the Fragment with the View Model
	40.7 Modifying the Fragment
	40.8 Accessing the ViewModel Data
	40.9 Testing the Project
	40.10 Summary

	41. An Android Jetpack LiveData Tutorial
	41.1 LiveData - A Recap
	41.2 Adding LiveData to the ViewModel
	41.3 Implementing the Observer
	41.4 Summary

	42. An Overview of Android Jetpack Data Binding
	42.1 An Overview of Data Binding
	42.2 The Key Components of Data Binding
	42.2.1 The Project Build Configuration
	42.2.2 The Data Binding Layout File
	42.2.3 The Layout File Data Element
	42.2.4 The Binding Classes
	42.2.5 Data Binding Variable Configuration
	42.2.6 Binding Expressions (One-Way)
	42.2.7 Binding Expressions (Two-Way)
	42.2.8 Event and Listener Bindings

	42.3 Summary

	43. An Android Jetpack Data Binding Tutorial
	43.1 Removing the Redundant Code
	43.2 Enabling Data Binding
	43.3 Adding the Layout Element
	43.4 Adding the Data Element to Layout File
	43.5 Working with the Binding Class
	43.6 Assigning the ViewModel Instance to the Data Binding Variable
	43.7 Adding Binding Expressions
	43.8 Adding the Conversion Method
	43.9 Adding a Listener Binding
	43.10 Testing the App
	43.11 Summary

	44. An Android ViewModel Saved State Tutorial
	44.1 Understanding ViewModel State Saving
	44.2 Implementing ViewModel State Saving
	44.3 Saving and Restoring State
	44.4 Adding Saved State Support to the ViewModelDemo Project
	44.5 Summary

	45. Working with Android Lifecycle-Aware Components
	45.1 Lifecycle Awareness
	45.2 Lifecycle Owners
	45.3 Lifecycle Observers
	45.4 Lifecycle States and Events
	45.5 Summary

	46. An Android Jetpack Lifecycle Awareness Tutorial
	46.1 Creating the Example Lifecycle Project
	46.2 Creating a Lifecycle Observer
	46.3 Adding the Observer
	46.4 Testing the Observer
	46.5 Creating a Lifecycle Owner
	46.6 Testing the Custom Lifecycle Owner
	46.7 Summary

	47. An Overview of the Navigation Architecture Component
	47.1 Understanding Navigation
	47.2 Declaring a Navigation Host
	47.3 The Navigation Graph
	47.4 Accessing the Navigation Controller
	47.5 Triggering a Navigation Action
	47.6 Passing Arguments
	47.7 Summary

	48. An Android Jetpack Navigation Component Tutorial
	48.1 Creating the NavigationDemo Project
	48.2 Adding Navigation to the Build Configuration
	48.3 Creating the Navigation Graph Resource File
	48.4 Declaring a Navigation Host
	48.5 Adding Navigation Destinations
	48.6 Designing the Destination Fragment Layouts
	48.7 Adding an Action to the Navigation Graph
	48.8 Implement the OnFragmentInteractionListener
	48.9 Adding View Binding Support to the Destination Fragments
	48.10 Triggering the Action
	48.11 Passing Data Using Safeargs
	48.12 Summary

	49. An Introduction to MotionLayout
	49.1 An Overview of MotionLayout
	49.2 MotionLayout
	49.3 MotionScene
	49.4 Configuring ConstraintSets
	49.5 Custom Attributes
	49.6 Triggering an Animation
	49.7 Arc Motion
	49.8 Keyframes
	49.8.1 Attribute Keyframes
	49.8.2 Position Keyframes

	49.9 Time Linearity
	49.10 KeyTrigger
	49.11 Cycle and Time Cycle Keyframes
	49.12 Starting an Animation from Code
	49.13 Summary

	50. An Android MotionLayout Editor Tutorial
	50.1 Creating the MotionLayoutDemo Project
	50.2 ConstraintLayout to MotionLayout Conversion
	50.3 Configuring Start and End Constraints
	50.4 Previewing the MotionLayout Animation
	50.5 Adding an OnClick Gesture
	50.6 Adding an Attribute Keyframe to the Transition
	50.7 Adding a CustomAttribute to a Transition
	50.8 Adding Position Keyframes
	50.9 Summary

	51. A MotionLayout KeyCycle Tutorial
	51.1 An Overview of Cycle Keyframes
	51.2 Using the Cycle Editor
	51.3 Creating the KeyCycleDemo Project
	51.4 Configuring the Start and End Constraints
	51.5 Creating the Cycles
	51.6 Previewing the Animation
	51.7 Adding the KeyFrameSet to the MotionScene
	51.8 Summary

	52. Working with the Floating Action Button and Snackbar
	52.1 The Material Design
	52.2 The Design Library
	52.3 The Floating Action Button (FAB) 
	52.4 The Snackbar
	52.5 Creating the Example Project
	52.6 Reviewing the Project
	52.7 Removing Navigation Features
	52.8 Changing the Floating Action Button
	52.9 Adding an Action to the Snackbar
	52.10 Summary

	53. Creating a Tabbed Interface using the TabLayout Component
	53.1 An Introduction to the ViewPager2
	53.2 An Overview of the TabLayout Component
	53.3 Creating the TabLayoutDemo Project
	53.4 Creating the First Fragment
	53.5 Duplicating the Fragments
	53.6 Adding the TabLayout and ViewPager2
	53.7 Performing the Initialization Tasks
	53.8 Testing the Application
	53.9 Customizing the TabLayout
	53.10 Summary

	54. Working with the RecyclerView and CardView Widgets
	54.1 An Overview of the RecyclerView
	54.2 An Overview of the CardView
	54.3 Summary

	55. An Android RecyclerView and CardView Tutorial
	55.1 Creating the CardDemo Project
	55.2 Modifying the Basic Views Activity Project
	55.3 Designing the CardView Layout
	55.4 Adding the RecyclerView
	55.5 Adding the Image Files
	55.6 Creating the RecyclerView Adapter
	55.7 Initializing the RecyclerView Component
	55.8 Testing the Application
	55.9 Responding to Card Selections
	55.10 Summary

	56. Working with the AppBar and Collapsing Toolbar Layouts
	56.1 The Anatomy of an AppBar
	56.2 The Example Project
	56.3 Coordinating the RecyclerView and Toolbar
	56.4 Introducing the Collapsing Toolbar Layout
	56.5 Changing the Title and Scrim Color
	56.6 Summary

	57. An Overview of Android Intents
	57.1 An Overview of Intents
	57.2 Explicit Intents
	57.3 Returning Data from an Activity
	57.4 Implicit Intents
	57.5 Using Intent Filters
	57.6 Automatic Link Verification
	57.7 Manually Enabling Links
	57.8 Checking Intent Availability
	57.9 Summary

	58. Android Explicit Intents – A Worked Example
	58.1 Creating the Explicit Intent Example Application
	58.2 Designing the User Interface Layout for MainActivity
	58.3 Creating the Second Activity Class
	58.4 Designing the User Interface Layout for SecondActivity
	58.5 Reviewing the Application Manifest File
	58.6 Creating the Intent
	58.7 Extracting Intent Data
	58.8 Launching SecondActivity as a Sub-Activity
	58.9 Returning Data from a Sub-Activity
	58.10 Testing the Application
	58.11 Summary

	59. Android Implicit Intents – A Worked Example
	59.1 Creating the Android Studio Implicit Intent Example Project
	59.2 Designing the User Interface
	59.3 Creating the Implicit Intent
	59.4 Adding a Second Matching Activity
	59.5 Adding the Web View to the UI
	59.6 Obtaining the Intent URL
	59.7 Modifying the MyWebView Project Manifest File
	59.8 Installing the MyWebView Package on a Device
	59.9 Testing the Application
	59.10 Manually Enabling the Link
	59.11 Automatic Link Verification
	59.12 Summary

	60. Android Broadcast Intents and Broadcast Receivers
	60.1 An Overview of Broadcast Intents
	60.2 An Overview of Broadcast Receivers
	60.3 Obtaining Results from a Broadcast
	60.4 Sticky Broadcast Intents
	60.5 The Broadcast Intent Example
	60.6 Creating the Example Application
	60.7 Creating and Sending the Broadcast Intent
	60.8 Creating the Broadcast Receiver
	60.9 Registering the Broadcast Receiver
	60.10 Testing the Broadcast Example
	60.11 Listening for System Broadcasts
	60.12 Summary

	61. An Introduction to Kotlin Coroutines
	61.1 What are Coroutines?
	61.2 Threads vs. Coroutines
	61.3 Coroutine Scope
	61.4 Suspend Functions
	61.5 Coroutine Dispatchers
	61.6 Coroutine Builders
	61.7 Jobs
	61.8 Coroutines – Suspending and Resuming
	61.9 Returning Results from a Coroutine
	61.10 Using withContext
	61.11 Coroutine Channel Communication
	61.12 Summary

	62. An Android Kotlin Coroutines Tutorial
	62.1 Creating the Coroutine Example Application
	62.2 Adding Coroutine Support to the Project
	62.3 Designing the User Interface
	62.4 Implementing the SeekBar
	62.5 Adding the Suspend Function
	62.6 Implementing the launchCoroutines Method
	62.7 Testing the App
	62.8 Summary

	63. An Overview of Android Services
	63.1 Intent Service
	63.2 Bound Service
	63.3 The Anatomy of a Service
	63.4 Controlling Destroyed Service Restart Options
	63.5 Declaring a Service in the Manifest File
	63.6 Starting a Service Running on System Startup
	63.7 Summary

	64. Android Local Bound Services – A Worked Example
	64.1 Understanding Bound Services
	64.2 Bound Service Interaction Options
	64.3 A Local Bound Service Example
	64.4 Adding a Bound Service to the Project
	64.5 Implementing the Binder
	64.6 Binding the Client to the Service
	64.7 Completing the Example
	64.8 Testing the Application
	64.9 Summary

	65. Android Remote Bound Services – A Worked Example
	65.1 Client to Remote Service Communication
	65.2 Creating the Example Application
	65.3 Designing the User Interface
	65.4 Implementing the Remote Bound Service
	65.5 Configuring a Remote Service in the Manifest File
	65.6 Launching and Binding to the Remote Service
	65.7 Sending a Message to the Remote Service
	65.8 Summary

	66. An Introduction to Kotlin Flow
	66.1 Understanding Flows
	66.2 Creating the Sample Project
	66.3 Adding the Kotlin Lifecycle Library
	66.4 Declaring a Flow
	66.5 Emitting Flow Data
	66.6 Collecting Flow Data
	66.7 Adding a Flow Buffer
	66.8 Transforming Data with Intermediaries
	66.9 Terminal Flow Operators
	66.10 Flow Flattening
	66.11 Combining Multiple Flows
	66.12 Hot and Cold Flows
	66.13 StateFlow
	66.14 SharedFlow
	66.15 Summary

	67. An Android SharedFlow Tutorial
	67.1 About the Project
	67.2 Creating the SharedFlowDemo Project
	67.3 Designing the User Interface Layout
	67.4 Adding the List Row Layout
	67.5 Adding the RecyclerView Adapter
	67.6 Adding the ViewModel
	67.7 Configuring the ViewModelProvider
	67.8 Collecting the Flow Values
	67.9 Testing the SharedFlowDemo App
	67.10 Handling Flows in the Background
	67.11 Summary

	68. An Overview of Android SQLite Databases
	68.1 Understanding Database Tables
	68.2 Introducing Database Schema 
	68.3 Columns and Data Types 
	68.4 Database Rows 
	68.5 Introducing Primary Keys 
	68.6 What is SQLite?
	68.7 Structured Query Language (SQL)
	68.8 Trying SQLite on an Android Virtual Device (AVD)
	68.9 The Android Room Persistence Library
	68.10 Summary

	69. The Android Room Persistence Library
	69.1 Revisiting Modern App Architecture
	69.2 Key Elements of Room Database Persistence
	69.2.1 Repository
	69.2.2 Room Database
	69.2.3 Data Access Object (DAO)
	69.2.4 Entities
	69.2.5 SQLite Database

	69.3 Understanding Entities
	69.4 Data Access Objects
	69.5 The Room Database
	69.6 The Repository
	69.7 In-Memory Databases
	69.8 Database Inspector
	69.9 Summary

	70. An Android TableLayout and TableRow Tutorial
	70.1 The TableLayout and TableRow Layout Views
	70.2 Creating the Room Database Project
	70.3 Converting to a LinearLayout
	70.4 Adding the TableLayout to the User Interface
	70.5 Configuring the TableRows
	70.6 Adding the Button Bar to the Layout
	70.7 Adding the RecyclerView
	70.8 Adjusting the Layout Margins
	70.9 Summary

	71. An Android Room Database and Repository Tutorial
	71.1 About the RoomDemo Project
	71.2 Modifying the Build Configuration
	71.3 Building the Entity
	71.4 Creating the Data Access Object
	71.5 Adding the Room Database
	71.6 Adding the Repository
	71.7 Adding the ViewModel
	71.8 Creating the Product Item Layout
	71.9 Adding the RecyclerView Adapter
	71.10 Preparing the Main Activity
	71.11 Adding the Button Listeners
	71.12 Adding LiveData Observers
	71.13 Initializing the RecyclerView
	71.14 Testing the RoomDemo App
	71.15 Using the Database Inspector
	71.16 Summary

	72. Video Playback on Android using the VideoView and MediaController Classes
	72.1 Introducing the Android VideoView Class
	72.2 Introducing the Android MediaController Class
	72.3 Creating the Video Playback Example
	72.4 Designing the VideoPlayer Layout
	72.5 Downloading the Video File
	72.6 Configuring the VideoView
	72.7 Adding the MediaController to the Video View
	72.8 Setting up the onPreparedListener
	72.9 Summary

	73. Android Picture-in-Picture Mode
	73.1 Picture-in-Picture Features
	73.2 Enabling Picture-in-Picture Mode
	73.3 Configuring Picture-in-Picture Parameters
	73.4 Entering Picture-in-Picture Mode
	73.5 Detecting Picture-in-Picture Mode Changes
	73.6 Adding Picture-in-Picture Actions
	73.7 Summary

	74. An Android Picture-in-Picture Tutorial
	74.1 Adding Picture-in-Picture Support to the Manifest
	74.2 Adding a Picture-in-Picture Button
	74.3 Entering Picture-in-Picture Mode
	74.4 Detecting Picture-in-Picture Mode Changes
	74.5 Adding a Broadcast Receiver
	74.6 Adding the PiP Action
	74.7 Testing the Picture-in-Picture Action
	74.8 Summary

	75. Making Runtime Permission Requests in Android
	75.1 Understanding Normal and Dangerous Permissions
	75.2 Creating the Permissions Example Project
	75.3 Checking for a Permission
	75.4 Requesting Permission at Runtime
	75.5 Providing a Rationale for the Permission Request
	75.6 Testing the Permissions App
	75.7 Summary

	76. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	76.1 Playing Audio
	76.2 Recording Audio and Video using the MediaRecorder Class
	76.3 About the Example Project
	76.4 Creating the AudioApp Project
	76.5 Designing the User Interface
	76.6 Checking for Microphone Availability
	76.7 Initializing the Activity
	76.8 Implementing the recordAudio() Method
	76.9 Implementing the stopAudio() Method
	76.10 Implementing the playAudio() method
	76.11 Configuring and Requesting Permissions
	76.12 Testing the Application
	76.13 Summary

	77. An Android Notifications Tutorial
	77.1 An Overview of Notifications
	77.2 Creating the NotifyDemo Project
	77.3 Designing the User Interface
	77.4 Creating the Second Activity
	77.5 Creating a Notification Channel
	77.6 Requesting Notification Permission
	77.7 Creating and Issuing a Notification
	77.8 Launching an Activity from a Notification
	77.9 Adding Actions to a Notification
	77.10 Bundled Notifications
	77.11 Summary

	78. An Android Direct Reply Notification Tutorial
	78.1 Creating the DirectReply Project
	78.2 Designing the User Interface
	78.3 Requesting Notification Permission
	78.4 Creating the Notification Channel
	78.5 Building the RemoteInput Object
	78.6 Creating the PendingIntent
	78.7 Creating the Reply Action
	78.8 Receiving Direct Reply Input
	78.9 Updating the Notification
	78.10 Summary

	79. Working with the Google Maps Android API in Android Studio
	79.1 The Elements of the Google Maps Android API
	79.2 Creating the Google Maps Project
	79.3 Creating a Google Cloud Billing Account
	79.4 Creating a New Google Cloud Project
	79.5 Enabling the Google Maps SDK
	79.6 Generating a Google Maps API Key
	79.7 Adding the API Key to the Android Studio Project
	79.8 Testing the Application
	79.9 Understanding Geocoding and Reverse Geocoding
	79.10 Adding a Map to an Application
	79.11 Requesting Current Location Permission
	79.12 Displaying the User’s Current Location
	79.13 Changing the Map Type
	79.14 Displaying Map Controls to the User
	79.15 Handling Map Gesture Interaction
	79.15.1 Map Zooming Gestures
	79.15.2 Map Scrolling/Panning Gestures
	79.15.3 Map Tilt Gestures
	79.15.4 Map Rotation Gestures

	79.16 Creating Map Markers
	79.17 Controlling the Map Camera
	79.18 Summary

	80. Printing with the Android Printing Framework
	80.1 The Android Printing Architecture
	80.2 The Print Service Plugins
	80.3 Google Cloud Print
	80.4 Printing to Google Drive
	80.5 Save as PDF
	80.6 Printing from Android Devices
	80.7 Options for Building Print Support into Android Apps
	80.7.1 Image Printing
	80.7.2 Creating and Printing HTML Content
	80.7.3 Printing a Web Page
	80.7.4 Printing a Custom Document

	80.8 Summary

	81. An Android HTML and Web Content Printing Example
	81.1 Creating the HTML Printing Example Application
	81.2 Printing Dynamic HTML Content
	81.3 Creating the Web Page Printing Example
	81.4 Removing the Floating Action Button
	81.5 Removing Navigation Features
	81.6 Designing the User Interface Layout
	81.7 Accessing the WebView from the Main Activity
	81.8 Loading the Web Page into the WebView
	81.9 Adding the Print Menu Option
	81.10 Summary

	82. A Guide to Android Custom Document Printing
	82.1 An Overview of Android Custom Document Printing
	82.1.1 Custom Print Adapters

	82.2 Preparing the Custom Document Printing Project
	82.3 Creating the Custom Print Adapter
	82.4 Implementing the onLayout() Callback Method
	82.5 Implementing the onWrite() Callback Method
	82.6 Checking a Page is in Range
	82.7 Drawing the Content on the Page Canvas
	82.8 Starting the Print Job
	82.9 Testing the Application
	82.10 Summary

	83. An Introduction to Android App Links
	83.1 An Overview of Android App Links
	83.2 App Link Intent Filters
	83.3 Handling App Link Intents
	83.4 Associating the App with a Website
	83.5 Summary

	84. An Android Studio App Links Tutorial
	84.1 About the Example App
	84.2 The Database Schema
	84.3 Loading and Running the Project
	84.4 Adding the URL Mapping
	84.5 Adding the Intent Filter
	84.6 Adding Intent Handling Code
	84.7 Testing the App
	84.8 Creating the Digital Asset Links File
	84.9 Testing the App Link
	84.10 Summary

	85. An Android Biometric Authentication Tutorial
	85.1 An Overview of Biometric Authentication
	85.2 Creating the Biometric Authentication Project
	85.3 Configuring Device Fingerprint Authentication
	85.4 Adding the Biometric Permission to the Manifest File
	85.5 Designing the User Interface
	85.6 Adding a Toast Convenience Method
	85.7 Checking the Security Settings
	85.8 Configuring the Authentication Callbacks
	85.9 Adding the CancellationSignal
	85.10 Starting the Biometric Prompt
	85.11 Testing the Project
	85.12 Summary

	86. Creating, Testing, and Uploading an Android App Bundle
	86.1 The Release Preparation Process
	86.2 Android App Bundles
	86.3 Register for a Google Play Developer Console Account
	86.4 Configuring the App in the Console
	86.5 Enabling Google Play App Signing
	86.6 Creating a Keystore File
	86.7 Creating the Android App Bundle
	86.8 Generating Test APK Files
	86.9 Uploading the App Bundle to the Google Play Developer Console
	86.10 Exploring the App Bundle
	86.11 Managing Testers
	86.12 Rolling the App Out for Testing
	86.13 Uploading New App Bundle Revisions
	86.14 Analyzing the App Bundle File
	86.15 Summary

	87. An Overview of Android In-App Billing
	87.1 Preparing a Project for In-App Purchasing
	87.2 Creating In-App Products and Subscriptions
	87.3 Billing Client Initialization
	87.4 Connecting to the Google Play Billing Library
	87.5 Querying Available Products
	87.6 Starting the Purchase Process
	87.7 Completing the Purchase
	87.8 Querying Previous Purchases
	87.9 Summary

	88. An Android In-App Purchasing Tutorial
	88.1 About the In-App Purchasing Example Project
	88.2 Creating the InAppPurchase Project
	88.3 Adding Libraries to the Project
	88.4 Designing the User Interface
	88.5 Adding the App to the Google Play Store
	88.6 Creating an In-App Product
	88.7 Enabling License Testers
	88.8 Initializing the Billing Client
	88.9 Querying the Product
	88.10 Launching the Purchase Flow
	88.11 Handling Purchase Updates
	88.12 Consuming the Product
	88.13 Restoring a Previous Purchase
	88.14 Testing the App
	88.15 Troubleshooting
	88.16 Summary

	89. Working with Material Design 3 Theming
	89.1 Material Design 2 vs. Material Design 3
	89.2 Understanding Material Design Theming
	89.3 Material Design 3 Theming
	89.4 Building a Custom Theme
	89.5 Summary

	90. A Material Design 3 Theming and Dynamic Color Tutorial
	90.1 Creating the ThemeDemo Project
	90.2 Designing the User Interface
	90.3 Building a New Theme
	90.4 Adding the Theme to the Project
	90.5 Enabling Dynamic Color Support
	90.6 Previewing Dynamic Colors
	90.7 Summary

	91. Accessing Cloud Storage using the Android Storage Access Framework
	91.1 The Storage Access Framework
	91.2  Working with the Storage Access Framework
	91.3 Filtering Picker File Listings
	91.4 Handling Intent Results
	91.5 Reading the Content of a File
	91.6 Writing Content to a File
	91.7 Deleting a File
	91.8 Gaining Persistent Access to a File
	91.9 Summary

	92. An Android Storage Access Framework Example
	92.1 About the Storage Access Framework Example
	92.2 Creating the Storage Access Framework Example
	92.3 Designing the User Interface
	92.4 Adding the Activity Launchers
	92.5 Creating a New Storage File
	92.6 Saving to a Storage File
	92.7 Opening and Reading a Storage File
	92.8 Testing the Storage Access Application
	92.9 Summary

	93. An Android Studio Primary/Detail Flow Tutorial
	93.1 The Primary/Detail Flow
	93.2 Creating a Primary/Detail Flow Activity
	93.3 Adding the Primary/Detail Flow Activity
	93.4 Modifying the Primary/Detail Flow Template
	93.5 Changing the Content Model
	93.6 Changing the Detail Pane
	93.7 Modifying the ItemDetailFragment Class
	93.8 Modifying the ItemListFragment Class
	93.9 Adding Manifest Permissions
	93.10 Running the Application
	93.11 Summary

	94. An Overview of Gradle in Android Studio
	94.1 An Overview of Gradle
	94.2 Gradle and Android Studio
	94.2.1 Sensible Defaults
	94.2.2 Dependencies
	94.2.3 Build Variants
	94.2.4 Manifest Entries
	94.2.5 APK Signing
	94.2.6 ProGuard Support

	94.3 The Property and Settings Gradle Build File
	94.4 The Top-level Gradle Build File
	94.5 Module Level Gradle Build Files
	94.6 Configuring Signing Settings in the Build File
	94.7 Running Gradle Tasks from the Command Line
	94.8 Summary

	Index

