Android Studio
Hedgehog

Essentials

publishing

Android Studio Hedgehog
Essentials

Java Edition

Android Studio Hedgehog Essentials - Java Edition
ISBN: 978-1-951442-82-8
© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Payload
-

Find more books at https://www.payloadbooks.com.

https://www.payloadbooks.com

Contents

Table of Contents

1. INEFOAUCHION ..ceeenreieieeeiceeeereeecsneeeseeeesaeesssneesssesssssssssnssssssasssnsssssnssssssssssnssssanssssssasssnssssssessssessssnssssnsssssnanss 1
1.1 Downloading the Code SAMPIEScccreureeureurineiriirieirerseeneireerei et sesseseens 1
1.2 FEEADACK ...ttt sttt bttt b bbb b s s assssebebebebeb s s s ssssasansesetesas 1
1.3 B At ettt b e b et et a e e a e b ae b et et et et e b s be b et et et e s 2

2. Setting up an Android Studio Development Environment

2.1 System reqUITEMENTS........ccceuviimeriiiueiricriieeiee e sessnaes

2.2 Downloading the Android Studio package

2.3 Installing Android StUAIO........cccureerierecrircrreceee e eaene
2.3.1 Installation 0n WINAOWSccueureerirrieriirieeireeneeseeenetsese e sseesesesssasesessssessesssssssesssasesens 4
2.3.2 Installation 0n MACOSc.cveiireceiericeiree et ese s ese s sse s sse s ansns 4
2.3.3 Installation 0N LINUX.......cccvuureemirreerierieniireeeiseeeneesesesessesessssesesssssesessessssessssssessssssesssssssens 5

2.4 The Android Studio SEtUP WIZArdccceuveeurireucurinicirieieireeicireciereetet ettt seesesseneaes 5

2.5 Installing additional Android SDK packagesccceeueueecriermnerrieenemneeeeeneeesenseeenersesessessenenne 6

2.6 Installing the Android SDK Command-line TOOLS........c.cceeuiuemreriueencrnieenerneenrerneceeneeenersenenne 9
2.6.1 WINAOWS 8.1 .ttt sttt et seses ettt sese ettt s seaesesens 10
2.6.2 WINAOWS 10 ...ttt sse s sse s s sse s sse s sse s sse s ssssesessssesscsens
2.6.3 WINAOWS 11 oot sse s ese s s sse s sse s sessessesesens
2.0.4 LINUX oottt sttt
2.6.5 MACOS.......c it

2.7 Android Studio memory management
2.8 Updating Android Studio and the SDK

2.9 SUINIMATY ottt st b s
3. Creating an Example Android App in Android Studio.........cocevevieviienenriniiniisininenniniiniisenenensenninenne 15
3.1 ADOUL the PIOJECL c.ceuveeuicicicireieecireiseetneieeeirei sttt sttt sttt 15
3.2 Creating a New AnNdroid ProjJecCt.......ocveurirnciniurencineineeineineeinesseesessesessessesessessesessessesessesscsenns 15
3.3 Creating an ACHVILY ..ccccuiuiiiiiiciic e 16
3.4 Defining the Project and SDK Settingscecveureurereureurereireinereerersenessessesessessesessessesessessescssesscsenns 16
3.5 Enabling the New Android Studio Ulcccocevenrcineinincininieneineeneiseeneisesessessesessessesessesscsenns 17
3.6 Modifying the Example APPIICAtion......c.ccoeueurereureurecineeneeineiseeeserseessesseseasessesessessesessessescssesscsenns 18
3.7 Modifying the User INtErfacec..cevcureerereuriirineiniinieireinectneiseeressee et tsessese s ssessesesesscsenns 19
3.8 Reviewing the Layout and Resource Files........cocvnncniinincinenencineinecneiseeeneiseensesseessessesenne 25
3.9 AddIng INEIACTION ..c.vuieerecireeeectreteeetret ettt sttt bttt bbb nae 28
3,10 SUMMATY .o 29
4. Creating an Android Virtual Device (AVD) in Android Studio
4.1 About Android Virtual Devices ...
4.2 Starting the Emulator.........cccecveueee.
4.3 Running the Application in the AVD....
4.4 Running on Multiple DEVICESc.cewerreuemrerreeeeneireneeerrerenetnesensesseseesessesessessesessessesessessesensessesenses
4.5 Stopping a RUNNING APPICAtIONcevuevieeeerireieireecierreeeeeeeeeeneseeesseseesensese s s ssesensessesennes
4.6 Supporting Dark TREMIE..........c.veverieeieirereeeirereeeieee et nsensese s eses s sesensessesensessesenaes
4.7 Running the Emulator in a Separate WindoW..........ccccveeeeireeenerneeenerneeeeenneeeneneeeensesenensesennes

Table of Contents

5. Using and Configuring the Android Studio AVD Emulator

4.8 Removing the Device Frame........cccvcueevcirieenerreeierreeeeieeeietseseeesseseesessesessessesensessesensessessesessenes
4.9 SUMMATY ..ottt bbb bbb bbb bbbt

5.1 The Emulator Environment
5.2 Emulator Toolbar Optionsc.ececvevreeererrenen.

5.3 Working in Zoom MOGEcucueuucuiciniiiiiiieiseisessese e s sse s ssssss s ssenas
5.4 Resizing the EMulator WIndOW.......c.cc.ccciiiiiniiccceeeese e senas
5.5 Extended COntrol OPLIONSc.cuecureurecirevrecireineeiresseetsesseessessesessessesessessesessessessssessesssessesesesscas

5.5.1 LOCALION ...ttt

5.5.2 DISPLAYS...triuiriiririniirieeieireeeieiseseseisese st sese i sese ettt

5.5.3 CIULAT ...ttt s

5.5.4 BAtOIY..ocuiiiiiiiiicicc s

5.5.5 CIMEI A ..ottt

5.5.6 PRONE ... s

5.5.7 Directional Pad.........cccciuiiiiniiniicicicicicceieciiiccsie s

5.5.8 MICTOPRONE.ceeieiieinireecieireietisee ettt st eaes

5.5.9 FINGEIPIINT ..ottt

5.5.10 Virtual Sensors

5.5.11 SNAPSHOLS...cucveecerieriecieirieieirecireeseecieaeeaens

5.5.12 Record and Playbackcccccoecureerecuneunnces

5.5.13 Google Play

5.5.14 Settings

5.5.15 HEIP vttt st
5.6 Working with SNapshots...........cceiiiiiniciiiicc e
5.7 Configuring Fingerprint EMUlation ..o
5.8 The Emulator in Tool Window Mode...........cccuiiniiniiniiiinernincicicie e senas
5.9 Creating a Resizable EMUIAtOT.........c.ccccuiiiiiiriiiricirccccc e
5.10 SUIMIMATY ..ottt

6. A Tour of the Android Studio USer INTEITACEcccecueeeeeerrveneeerirereesisrneeesessneessssssneesssssssessssssssssssssasssssssns

7. Testing Android Studio Apps on a Physical Android Device

ii

6.1 The WEICOME SCIEI.....cuvreverrirercieeenciereesetsessese et aessese e seese e seesasessesaseseessseseas
6.2 The Menu Bar

6.3 The Main Window
6.4 The Tool WIndowsccvceeeerrerrecenernecerernencnne
6.5 The Tool Window Menus........c..ceceeuveuvecererrennnne
6.6 Android Studio Keyboard Shortcuts..................
6.7 Switcher and Recent Files Navigation
6.8 Changing the Android Studio Theme
0.9 SUITIMATY ..ottt bbb bbb bbb bbbt

7.1 An Overview of the Android Debug Bridge (ADB).........cccvcuviuveincincincieiieerineneesesese s
7.2 Enabling USB Debugging ADB on Android Devices...........cocvcuvcucecicirimeenimnennenneesesseseneeenns
7.2.1 macOS ADB COnfIGUrationc.ccccuceeiuriuriuniuniuniinerieseesesessessessessssesssssssssssssssesssssesssssenas
7.2.2 Windows ADB CONfIgUIAtioN.c.cucuiuiuiuniunimniineiieseie e ssessessessssesssssssssesssssesssssesssssenas
7.2.3 Linux adb Configuration ... ssssenas
7.3 Resolving USB CoNNection ISSUESc.cccuuuiuiuiuniiniineiiiseeesesscne e ssessessessesssssssse e ssssenas
7.4 Enabling Wireless Debugging on Android Devices
7.5 Testing the adb Connection
7.6 DeVICE MIITOTINEG. ...ucvivititeieiiiiiitctte ettt

Table of Contents

7.7 SUINIMIATY .ottt bbb bbb bbb bbb bbb bbb bbb bbb as 69
8. The Basics of the Android Studio Code Editor...........uieviienineninieniniieniieinenineinienseesseessesessssenesens 71
8.1 The Android Studio EItOr......c.cocueueiciniieeeirienieireirccireireeseiseese ettt sessese e sseseens
8.2 Splitting the Editor Window
8.3 Code Completion........cccveueeecererenene
8.4 Statement COMPLETIONc.ueueueeirerrieireieeeirei ettt b sttt sttt eae
8.5 Parameter INfOrmationcocveeeecureurinciriineeineineeineieeenei sttt bttt ens
8.6 Parameter Name HiINts ...
8.7 COAE GENETALION «..crveeuiireeinireeeetreieeet ettt seb sttt st sttt bttt
8.8 COAE FOLAING.......couieiieiieicciccit et
8.9 Quick Documentation LOOKUPc.eccureveeeuriureneiriinicireiseetneiseetsessee s ssessesessessesessessesesesecsesns 79
8.10 Code REfOrMAtNg.........cuuvuiuiuiiiiriiiireitiscieie s sae s 79
8.11 Finding SAmMPle COde ..o e 80
8.12 LiVe TEIMIPLALES ..euvvreveeurerrencereeeeaeiretseet sttt sttt seb st b sttt et sttt bttt 80
813 SUMMATY ..ottt e bbb 81
9. An Overview of the Android Architectureocvevirnrninrinrininninininisesensesessees 83
9.1 The Android SOfEWAre StACKcvcueeveuiueeeirirrierereecreieereee e ase e aseseeseens 83
9.2 The Linux KeINel. ..ot ssesesessessasessescsnessesenns 84
9.3 Android RUntime — ART ..o s ssessssessesens 84
9.4 ANAIOId LIDIATIES c...ueevereiecrreeccireiecereieeeteis et sesanns 84
9.4.1 C/CA LIDIATIES ..oeereieeicieeceerieeeeieeenetseee st sssa s ese s ssese s ssesssasnsesssasssesnsasaes 85
9.5 APPLICation FIrameWOTIK......c.cvcueuririuciriieeireeietricieisecistseecieteae sttt sttt seae et ssseaeseeneaes 85
9.6 APPLICALIONS .cevvvreueiiucieineeieiseie et tese ettt bbbt sese ettt seae ettt eta et essesebetneaes 86
9.7 SUIMIMATY ..ottt bbb bbb bbb 86
10. The Anatomy of an ANdroid APP.....ccccevuercerernecninninnucniniininiienninieeesestsssesstsesssssstsesssssesssssssssesses 87
10.1 ANATOId ACHVILIES ...ucvueuereeeineieeeineirereteireeetet st ses et sebe et sese bbbt ses st sesessessesesnetsesesncs 87
10.2 Android Fragments........cccciiuiuniuiincinceneieicieieieisecsiseessssesssessss s s s s ssessssssssssssns 87
10.3 ANATOIA INTENLS ..cuvrevieieeeineireeeicireeetetseee ettt ses et sebe et ses et ses st ses et seb st sebessebsesesaetsesesacs 88
10.4 Broadcast INTENLSc.eueureeeieerereieireeeieireeetetsesetsetsesete s st sese st sesetae st sesessessesessessesesssssesesacs 88
10.5 Broadcast RECEIVETLSc.vcueueueveieurereineireseieisesetsetsesetet s tsesessetsesessetsesessessesessessesessessesessessesesns 88
10.6 ANATOIA SEIVICES ...cvrvveenierinciereieireieteiseeeteisere bbbt ses et ses st seb et seb et s et sesesaetsesesacs 88
10.7 CONENt PIOVIALTScvoeuirevinciereincireieieireeeieisesetsetsesete st sese et seseese st sesessessesessessesesssssesesacs 89
10.8 The APpPlication MAanifestccveureueueureeeieerereieireseieeseseeessesesessesetessesessessesessessesessessesesessesesns 89
10.9 APPLICAtION RESOUICES ...ucuuvuereeircievineireeeieiresetsetsesetet st sesetsetseseeae st sesessessesessessesesssssesesacs 89
10.10 APPLICALION CONLEXL..uvuevruerrereineerereenetreretseesesetsetsesetetsesesessesessessesessessesesaessesessessesesscssesessessesesas 89
1011 SUIMIMATY ¢ttt s et b bbbt 89
11. An Overview of Android View Binding..........coccecvuernrniinisisinnnnininnininenisiieemisssseemene 91
11.1 FINA VIEW DY Id oottt seseese s ssesessessesessssessssesesennes
11.2 VIEW BINAING ...eveieeiciriieciecictreie et tseseese s sese st seseese s ssesessessesensssesssssesenses
11.3 Converting the AndroidSample PIrOJECt........ccoveumeeenerreeererreeeenerreeeeerreeeeesseseeesseseesessesenensesenses
11.4 Enabling View BIndINg.......cccocceeeureuemerreeeeerreeemenneeeeesseneeensesessessesessessesessessesessessesessessessssessesesss
11.5 USINg VIEW BINAINGvucrrivrmeieeeirerreieeeireeeeireeeiesseseeesseseesessese e ssesessessesessessessssessesessessessssessesenses
11.6 ChoOSING an OPHOI c..cuvreeererreeeireireeeeerreeeeersereesesseseees s ssesessessesessessesessessesessessesensessesessessesesss

11.7 View Binding in the Book Examples...
11.8 Migrating a Project to View Binding...
11,9 SUIMMATY ottt bbbt

12. Understanding Android Application and Activity Lifecycles

Table of Contents

12.1 Android Applications and Resource Management..........cceeeeeeeeerecreereemeesesenessesenesseensennes
12.2 ANAroid PrOCESS STALES ...ccuvreeermieecrreriecnsierieensetsesesseasesesseasese e s sssssesesssssssesssasssesssassesssssssenseses
12.2.1 Foreground Process
12.2.2 Visible Process
12.2.3 Service Process
12.2.4 Background Process
12.2.5 Empty Processccccoevvvviccncninciiicininenns
12.3 Inter-Process DEPEndEnCIescovueurereueureniueineneueireeieineeieiseeeietsesetsasesessteaessaesesseesessenesessenees
12.4 The ACtiVItY LIfECYCL....c.cviiieceireccicirecceeeteeeeeee st ese s sse s nsenssanes
12.5 The ACHVILY SEACK......cv ettt sese s sse s ese s sese s ese s s sasasnsennsanes
12.6 ACHIVILY SEAtES ...cuviiiiiiiiiii s
12.7 Configuration CRANEEScccrureerierremiirrereeerereeeeerese e sesease s s sesessessesessessesessesens
12.8 Handling State Changecceeeeeiuercmiurecrieeeerieenenesenesesensessessesessesessessesesessesessessesessesens
12.9 SUIMMIATY oottt

13. Handling Android Activity State Changes..........ccocceverrueruiirinserninninncnininncninnesscninecscsesnessceesees 103

13.1 New vs. Old Lifecycle TEChNIQUES.......covueueuiereueeiiriecieereeeetiseeesseiseseseesesessesesessessesessesssaesseses
13.2 The Activity and Fragment Classes........ccocueuuiuiuniurimniunereiereeseneiesseesesisssessssssasesssssesssssesees
13.3 Dynamic State vs. Persistent State....................
13.4 The Android Lifecycle Methods.........ccoccreuene.
13.5 Lifetimesccocuveueuiurerniireneieicieieiseceecseeaennens
13.6 Foldable Devices and Multi-Resume...............
13.7 Disabling Configuration Change Restarts
13.8 Lifecycle Method LImMitatiOns......ccoc.eeeeurereeeueereeeeneeniseeeeseseseeseseseesesessessesesssssssessessssessessssesseses
13,9 SUMMIATY ..ttt et en s

14. Android Activity State Changes by EXample........cccocvvuirivnininrinininininininiinincninienesii.

15. Saving and Restoring the State of an Android Activity

14.1 Creating the State Change EXample PrOjectccvvecuveeerncrnecencrneceereeneneenenseeenersesensenens
14.2 Designing the User INterface ... ssesessessesessesens
14.3 Overriding the Activity Lifecycle Methodscocecunevecrnicencrneceneeerecenseeneneeeenenene
14.4 Filtering the Logcat Panel..........cccciueeeiieecrniieeernieecreieneneeeeeseseeensesessesesessessesessessesesesens
14.5 Running the APPLICAtIONcvureeuiuercriiercreeeeereeerereie e ssese e ssesessessesssensens
14.6 Experimenting with the Activity
14.7 SUMMATY ..ooiiiiiiii e

15.1 Saving DynNamic Statecoviiiiiimiinicicii s
15.2 Default Saving of User Interface State ... ssesesees
15.3 The BUNALE CLaSS ..ot st saes
15.4 SaVING the STALE.......c.cviiiiiicicicc e s
15.5 RESLOrING the SALecoiuuiiciiicicciiciiieceicet e st saes
15.6 Testing the APPLICALION........ccuiuciciciciciiiciceeee et saes
15.7 SUIMMATY ..ttt et s st

16. Understanding Android Views, View Groups and Layoutsccecevevresresrisnsensenessisnesessessessessesesenne 125

iv

16.1 Designing for Different Android DeVICeS.........cceueureerriuememnieemnernenemerneeeneneeeersesensessesensenens 125
16.2 VIEWS QNd VIEW GIOUPS c.ceuvueeeereeirineieieneesiseaeistesetseesesseesesseaesessessssssesesessesssssesesssnssesssnesesscnces

16.3 Android Layout Managers
16.4 The View Hierarchycocooecneuvecmniurecrneeennee
16.5 Creating User Interfaces.......cccoceeeeuneuvecrneerence
16.6 SUMMATY ..o

Table of Contents

17. A Guide to the Android Studio Layout EAitor TOOLcccceververnuininneininsennucncnnennecsinensscsessecescssens 129

17.1 Basic vs. Empty Views Activity Templates.........cococvreeuniuriernirrierniericnireceseseeneeseseseesenens 129
17.2 The Android Studio Layout Editor ...
17.3 Design Mode
17.4 The Palette......................

17.5 Design Mode and Layout Views....
17.6 NIGHE MOAE ...ttt nans
17.7 COde MOdE.....ouieiiieiiieiir s
17.8 SPLE MOAE ..ttt ettt bttt ettt sen
17.9 Setting AtIIDULES......c.cvuivieceeicceir ettt nans
17.10 TEANSTOIINS ..ottt ss s as e ss s
17.11 Tools Visibility TOGELES.......ccovueviuiuceniirieciiiieciiiricii et eans
17.12 CONVEItiNg VIEWS.....occuiuiiiiiiriiciiini st ssse s sssssas s ssssssssssesens
17.13 Displaying Sample Datacccveeiurieeniericeiirieeiieeesiiessss s ssesssasssessssesesssssesesssssssens
17.14 Creating a Custom Device Definition
17.15 Changing the CUrrent DEVICE........cvuuurererrmererieieieeeneisiesensease e ssessessessensessssssssssssesens
17.16 Layout ValidAtioncccveeeuriuneuneuiirereieneienenersenseeseeseasessssesessesessessessessessessensessesssssssesens
17.17 SUININATY oottt s bbb bbb s

18. A Guide to the Android ConstraintLayout

18.1 How ConstraintLayout Works
18.1.1 Constraints........ccocvverevreruennee.
18.1.2 MATGINS .ceeuiiiiiiiici bbb bbb
18.1.3 Opposing CONSIIAINES......cciuiiiiiiiiiiiic s
18.1.4 Constraint Biasccoceueiieiiiiriiiciciict s
18.1.5 CRAINS ..ot bbb e
18.1.6 Chainl SLYIES....c.veveeeecireeecireieicireteectrei ettt sttt ses e scaens
18.2 Baseline ALIGNIMENT.......c.oveuiureeeieirieiiirieeieereeetesseeeseesesessssesessssessessessesesssasssesssssesessssessesnsssssens
18.3 Configuring Widget DIMENSIONSc.cveeurureeerivreerieneserteseeeneseesessesessessessssesssssssessesessesesessess
18.4 GUIAElINe HEIPETcueuiveeeiiireecieireicitireecieiseic ettt tasese st eae s ese s ese s sesessssssesnssssaces
18.5 GIOUP HEIPET ..ottt ese st sb st esacen
18.6 BAITIer HELPET ..eceuirieeuiieeieieecietseeetttreee ettt ese st ese b seee s ese s ese st escsasssesesassssacen
18.7 Flow Helper
18.8 Ratios ..o
18.9 ConstraintLayout Advantages.......
18.10 ConstraintLayout Availability
18,11 SUIMIMATY w.uiiiiiiiii sttt bbb bbb bbbttt

19. A Guide to Using ConstraintLayout in Android Studio

19.1 Design and Layout VIEWS........cccccuieeiurierniirieeiirieeiiesesseesesssss s ssesssasssesssssssesssssesesssssssens
19.2 AUtOCONNECE MOGE ...t es s
19.3 INference MOde.........cuieiiieiiciciicieci st
19.4 Manipulating Constraints Manually..............ccoreicincnincc s
19.5 Adding Constraints in the INSPeCtOr ..o esesseeeaens
19.6 Viewing Constraints in the Attributes Window........ceceevereneenernemnenenernencneneceneecesenneenens
19.7 Deleting CONSLIAINESccueuieerieeeensririeerseeisessessesessses st esesssasesesssasssesssasssesssasesesssssesesssssssens
19.8 Adjusting Constraint BIasccccvceiurieeiuriceniirieniiienieeessesesesses s esessss s s esesssssesns
19.9 Understanding ConstraintLayout Margins...........ccceceeeeeiureeuniurecnniereennieseensseseessessesesessesens
19.10 The Importance of Opposing Constraints and Bias
19.11 Configuring Widget DIMenSIONS.cocucuerereermemmeesemueueseesenessesessensensersessessersessessssssssscns

Table of Contents

19.12 Design Time TOOLlS POSIIONINGcuvueumiurrecrniernerieeeereieneseienserseseesenesessesesesessesessessesesesens
19.13 AAding GUIAELINEScucvurvreeemierecrierecitieeeneeeee e sese e sseseesesseseens
19.14 Adding Barriers
19.15 Adding a Group
19.16 Working with the Flow Helper.........c.ccccccecuunce.
19.17 Widget Group Alignment and Distribution.....
19.18 Converting other Layouts to ConstraintLayout..
19.19 SUIMIMATY oottt bbb as

20. Working with ConstraintLayout Chains and Ratios in Android Studiocceceverueveiveivenenncnennene 177

20.1 Creating @ CRAiN........c.cciuiiieccciieccieeeieeei e saes
20.2 Changing the Chain StYle ... saes
20.3 Spread Inside Chain StYle........c.oveiureueiiirieieiricieirecineiseecei sttt ssss et ese s sssees
20.4 Packed Chainl StYLe.....c.cuivieeeiiricieirectire ettt siees
20.5 Packed Chain Style With Bias.......ccoeeeeuniurieiniirieineinecineineecineiseeieisesesseesesesssssesessessesesssssseseses
20.6 Weighted CRaiN ..ot saes
20.7 Working With RAtiOSc.cucuiuciiciicicieiiiieicsisese e ss s saes
20.8 SUIMMATY ..ttt bbb et s s

21. An Android Studio Layout Editor ConstraintLayout Tutorial

21.1 An Android Studio Layout Editor Tool Examplecccevuneee.
21.2 Preparing the Layout Editor Environment..........ccccocovvuniuncnnes
21.3 Adding the Widgets to the User INterface..........cocvveeeureeeniurecrirrecrniunecrnieeeeneeeneseseneseeens
21.4 Adding the CONSIIAINEScevueureeererrieerierieereereeneeseeeseseeeesseesese s ssasesessssssesssasssesssssssessses
21.5 Testing the LAYOULccceureeeeireecerreeetieeaeteeesesseeeseseesesssss s sse s s ssasssesssssnsesssssssesnssnes
21.6 Using the Layout INSPECLOTvucuuereeeerieriereereeeneeseeesessesesseesesensessesesssssssessssssesssssssesssssssesesees
21.7 SUIMMATY woiiiiiiiii bbb bbbt

22. Manual XML Layout Design in Android Studioccccevevrecvinsennucninninnecninninnncninicncninecseseeeene

22.1 Manually Creating an XIML Layoutcccceuiuriuniuniinienemceseieieieieceisesasssesssesssssesssssessssessees
22.2 Manual XML vs. Visual Layout Design..........creuiuriuiuremienemicncieeeimesesssesesesssssesssssessssessees
22.3 SUIMMATY ..ttt e bbbt bbbt b s s st

23. Managing Constraints using Constraint Sets.........cccuevveiiiiiiiniiniinieniinnnrcreeesesen e

23.1 Java Code vs. XML Layout Files........ccvuurueuirrierniirieriirieeiieeneeseeneisesessssessessssesessesssseneses 197
23.2 Creating VIEWS......coiiiiiiiiii it 197
23.3 VIEW AHIIDULES ..ot ssessesesssss s st ese s ese s sse s esessssensesasassscsnsenes 198
23.4 COnSIAINt SEtS....oiiiiiiiiiiiiiiiii 198
23.4.1 Establishing CONNECtiONS........c.ceeuevrecurerrenemrerneennereenereesensessesesessesessessesessessesessessesssenens 198
23.4.2 Applying Constraints t0 @ LaYOULcoceeecurerrercuneurenennerneenneireenerseseneseesenessesensessesenenens 198
23.4.3 Parent Constraint CONNECIONS........cccuiviiiiiiiiiiii s 198
23.4.4 Sizing CONSLIAINESccuiviiiiiiii s 199
23.4.5 Constraint Bias ... 199
23.4.6 Alignment CONSLIAINTSccc.eurererrereererrerrerenrereeetrereeensereesensessesessessesessessesessessesessessesssesens 199
23.4.7 Copying and Applying Constraint Sets..........eoerurererrerrererrerrereererrerenserseensessesensessesensenens 199
23.4.8 ConstraintLayout Chainsc.ccccveeercirerrencineeceeeeeeeeesseeseseesesesseseaessesesessesessenens 199
23.4.9 GUIAEINEScucrreeieereicirerecreeeeire et seas
23.4.10 Removing Constraints
23.4.11 Scaling..............
23.4.12 Rotation
23.5 Summary ...

vi

24. An Android ConstraintSet Tutorial

27. Android Touch and Multi-touch Event Handling

28. Detecting Common Gestures Using the Android Gesture Detector Class

Table of Contents

24.1 Creating the Example Project in Android Studiocceeeeeeeuvcenernirnerneenerernerenereneceneencenennes 203

24.2 Adding Views to an Activity..........

24.3 Setting View Attributes

24.4 Creating View IDs.......ccccceveuruvennnes

24.5 Configuring the Constraint Set

24.6 Adding the EdItText VIEWcocuriuiiciriiiiriceereecreeeesee et ssessesesssssesenaes

24.7 Converting Density Independent Pixels (dp) to Pixels (PX).....cccceeureeurerreemncerereencerereenenrenennee 208

24.8 SUIIMATY ..ovuieiiiiiiiriici it ses bbb st s bbb bbb a s 209
25. A Guide to Using Apply Changes in Android Studioceeeeveereevineinncnennenncnenscscnsennncsensenns

25.1 Introducing APPLY Changes..........cccreeeereureeeeneireueenctreeeenenseseeesseseesessesessessesessessesessessesessessesesses 211

25.2 Understanding Apply Changes OPLiONScveeeereereeeererrereereerereesersemeesesseseesessesessessesessessesesses 211

25.3 USING APPLY CRANGES.....c.cvveveeecirieeietrereieireieietseeeeetseaeeessesessessesessessesessessesessessesessessesessessesesnes 212

25.4 Configuring Apply Changes Fallback Settings...........ccecveureveureerereercireueererrereesersereeseeseseesersesennes 213

25.5 An Apply Changes TULOTIAL........c.oceuveureeeeneireeeineineeeietreeeeessereeetseseeetseseasesseseesessesessessesessessesesse 213

25.6 Using Apply Code Changesccvcureveereureeeeneereeeeseereueeessesenessesesessesessessesessessesessessesessessesesses 213
25.7 Using Apply Changes and Restart ACHIVITYoceveureueererreveereerereencireeeeenreseesesseseeesseseeessesenne 214

25.8 USING RUN APD .ot 214
25.9 SUMMATY ..ottt bbb 214
26. An Overview and Example of Android Event Handling........ccccoceeveeviiinnucnennensucnennenncccnsucsncnennne
26.1 Understanding Android EVENtS............ccceieiiinicincinieieieereeeeeeeseseneesesessessesensensesennes 215
26.2 Using the android:onClick RESOUICE........c.ceviiieeiiiriiciciriccreecreeeeeee e 215
26.3 Event Listeners and Callback Methodsccueueeereeneeneeneineinenninnenersenenersensessensessssssesseses 216
26.4 An Event Handling EXamPIecovcuiiiiiiiiiiniccrccreeeeneeeeieee s ssessesensessesenaas 216
26.5 Designing the User INTErfacecoviuremerreincenerererenieieeeneeneineiseessesessesessessessessessssssscssesnes 217
26.6 The Event Listener and Callback Method.........cccueveveinineneninininneneneeneneneneneeceesaseenenns 217
26.7 Consuming EVENLSceuiuiiiiimiiiiiiiiiii s sssae s 219
26.8 SUIIMATIY ..ovuivriniiiicieiici st ses bbbt st 220

27.1 Intercepting TOUCh EVENTSc.cocueueincirieeineiriieieireeeietreieeetseseietseveeetseaessessesessessesessessesessessesesses
27.2 The MotionEvent Object................

27.3 Understanding Touch Actions

27.4 Handling Multiple TOUCRESccvvuevveireeeieireieicireicictreieictneee e setseseesetsese et sesessessesessessesennes
27.5 An Example Multi-Touch APpliCationceueureeeercrreeeererrereeeireeeietreeeeetseseeeeseseesesseseesessesenses 222
27.6 Designing the Activity User INtEIfaceoeuveureeeercrreeinerreeeeeireeeinctneeeeetseeeeetseseesesseseesessesennes 223
27.7 Implementing the Touch Event LiSteNnercocveuvcureueererreeeereerereeneireeeeerseseesessesenesseseesessesenne 223
27.8 Running the Example APpPLICAtiON.......ccveueueereereeeercrreeeeerreeeiensesenetseaeeessesessessesessessesesessesesses 226
27.9 SUMMATY ..ottt bbb bbb 227

28.1 Implementing Common Gesture Detection.........ccccvueueureueeeurieeencirieeerieeseseeeesseneeensenennes
28.2 Creating an Example Gesture Detection Project ...
28.3 Implementing the Listener Class..........cccouieuveuriureneerieieirineeereeeetreeeeessesenessesesessesessessesennes
28.4 Creating the GestureDetectorCompat Instance...
28.5 Implementing the onTouchEvent() Method.........
28.6 Testing the Application
28.7 SUMMALY c..oovieiriincriicniinenicnenes

..

.......................................

vii

Table of Contents

29. Implementing Custom Gesture and Pinch Recognition on Androidcocevevveverncnirensencnncsneennes 235

29.1 The Android Gesture Builder Application
29.2 The GestureOverlayView Class........cccccecuveuneen.
29.3 Detecting Gestures..........coocvveiricnsivicnsirencnens
29.4 Identifying Specific Gestures
29.5 Installing and Running the Gesture Bullder Apphcatlon
29.6 Creating a GeStUIres File ... ssees
29.7 Creating the EXample PTOJECt.......c.cevreeeiuniuneereeiirenemrenenenensensensessessssssssssesssssessssesessensens
29.8 Extracting the Gestures File from the SD Cardcovcuvenerererereieieeneneneneereesenensenens
29.9 Adding the Gestures File t0 the PrOJECtcvuveviurerniirereenerenereneeenieeeneeeesesseesenessesessensens
29.10 Designing the USer INTErfaceccueeueeeereuneeremniineriirereseensenensessesseessssessessessessssessessensens
29.11 Loading the GeStUres Filec.cucueeeeieeeniniineiineiieeneesenensessesaeessesssssesssssessssesessensens
29.12 Registering the EVent LIStENETcccouuieuiuiceniiriceiiiceieeeiieeneiesesssss s s s esesssenes
29.13 Implementing the onGesturePerformed Method.........c.cceueuerercreieenineneneerenereneerennens
29.14 Testing the APPLICALION.......c.cvevercrereereereeeieeereieeseseese e s saesssassssesssssesssssesessessens
29.15 Configuring the GestureOVerlayVIEW.........cocreueurerirremerserererensersenseesssssessessessessessessessensens
29.16 INtercepting GESLUIES........cvviuiiriimiiciii s ssas
29.17 Detecting Pinch GESTULES.........cccveuiueeiiriceiiriceicciecei e ssessas s esenssenes
29.18 A Pinch Gesture Example Project..................

29.19 SUMMATY ..ovuviiiriieiicnciesesenesssesssesenens

30. An Introduction to Android Fragments

30.1 What is @ Fragment?ccceeureeincireeeneineieicineeeeetreeeeetsesesetsesessessesessessesessessesessessesessessesessesseses 245
30.2 Creating @ Fragment ..o s 245
30.3 Adding a Fragment to an Activity using the Layout XML File.......cocceceereeunerreeencereenrcenenee 246
30.4 Adding and Managing Fragments in Codecoeuveureueeneureeeererreueinerneeeereineneesesseseesessesensessenes 248
30.5 Handling Fragment EVENLSc.ccocurceureireurencineeeineireeeicireeeeenseeeeessesetsessesessessesessessesessessesessessenes 249
30.6 Implementing Fragment COmMMUNICAION.cccueueereureeeeneereeeeserrereesetrerenesseseesessesessessesessessenes 250
30.7 SUIMIMATY ..ottt bbb bbb bbb bbb 251

31. Using Fragments in Android Studio - An Example........ccccoeevininneinvinenncninnennnncnnensecscssensscsesssenes 253

31.1 About the Example Fragment Application
31.2 Creating the Example Project...........ccccccovuuucee.
31.3 Creating the First Fragment Layout.................
31.4 Migrating a Fragment to View Binding
31.5 Adding the Second Fragment...........cccccecereuneen.
31.6 Adding the Fragments to the Activity..........
31.7 Making the Toolbar Fragment Talk to the Activity
31.8 Making the Activity Talk to the Text Fragmentcccocrveveuricincirieenereeenereeeneereneeenenee
31.9 Testing the APPLICAtION.......cvvueuieercirerereerereeaeieeseaseesesseese e s ssesssasassssssesssasesssasensenses
31.10 SUIMIMATY coucuiiieiiiiiicneici et s

32. Modern Android App Architecture with JetpacK........cccevivviiivinsinninnsinnsiiniinninninninneneesncsnacnaees 265

32.1 What is Android JEtPACK?c.cueuveereueeerreieieireeeeetreeeeetreseeetseseesessesessessesessessesessessesessessesesesseses 265
32.2 The “Old” ATCRItECTUTIEcucvuereveecirereictreieietreeeeetreee et sese et sebease st sese et sese st sesessetsesessesenes
32.3 Modern Android Architecture
32.4 The ViewModel COMPONENLccureveerreeeeeirereeetreeeeetreseeesseseesessesessessesessessesessessesessessesessesseses
32.5 The LiveData Component..........eoceveeeecercveneene

32.6 ViewModel Saved State........ccooeureerrerrercrrerrenene

32.7 LiveData and Data Binding........ccocveeererreueeneireeeencineeieineeeienneeeesesseseesesseseesesseseesessesessessesessesseses

viii

Table of Contents

32.8 ANAIOId LIfECYCLESucvreerrireecinciriecicirerceeireeeeeteeeeset e nsese st sese s s ssessesensessesensessesenses 268
32.9 RePOSItOrY MOAUIES........cecveieeicieiecirercieereieeeteeeeset et sese st sese s s ssessesensessesensessesennes 268
32.10 SUIMMATY ..ottt bbb 269
33. An Android ViewModel Tutorial..........ccouvviuieinininiiiintnticeetntntnseesststse et sesessse e snenenes 271
33.1 ADOUL the PIOJECL ..ceueuereeieireeeicireicicireeetctreeeteisesete sttt sese st sese bbbt ses et ses st sesesacs 271
33.2 Creating the ViewModel Example Project.........ccociininininincncscieeeicieceieseesnesesens 271
33.3 Removing Unwanted Project EIEMents..........cccccucucuininininiincinisecscicieseseseesaessesaesenenns 271
33.4 Designing the Fragment LayOuL............ccccuvcununcicieicieininiiciseeise e ssesssssessessesesssns 272
33.5 Implementing the View Model...........ccouiinincininicieiniiciseese e 273
33.6 Associating the Fragment with the View Model..........cccccounininnininincincinciccicecncnenennns 274
33.7 Modifying the Fragmentcccoeiriiiniuniincinciciieieieceeeseiscsssese et ssessesssssssssssssns 275
33.8 Accessing the VieWMOodel Data..........ccocuiuiicicieiciiiiniiiciseese et ssessessessesssssessssnns 276
33.9 TeSting the PrOJct ...ttt 276
33,10 SUIMMATY ..ttt 277
34. An Android Jetpack LiveData Tutorial........cccccccevireeiivinnirninsinnenniiinnensceesencacstsesesessessssesesssessessesnes 279
34.1 LiveData - A RECAP .covvrerviieeiiiirieieccctttte ettt sttt ettt nene
34.2 Adding LiveData to the ViewModel....
34.3 Implementing the Observer..................
34.4 Summary ...
35. An Overview of Android Jetpack Data Bindingc..coeceeuevinrernininscscnnenncninnennncnensensscsesseessesennes 285
35.1 An Overview of Data Binding..........cocvuviuneincincicieiciinineiisesse et ssessessesssssesassans 285
35.2 The Key Components of Data Binding ..o 285
35.2.1 The Project Build Configuration............cccuecuecucecmcininieriiniiisessisesseesese e ssecssssessessens 285
35.2.2 The Data Binding Layout File...........ccocuvuioeicinininiiiniese e ssessessesscssens 286
35.2.3 The Layout File Data EIeMentc.occcuveureveuiurecineinicineeeieineieeeiseseeesseseeessesessessesesesseseens 287
35.2.4 The Binding CIaSSesccuuruuiuiurimiuriuiiseieieiseisenieisesisessss s sssssssssssssssens 288
35.2.5 Data Binding Variable CONfiguration..........cccccucueuriniuninimniincrnsincisesessecsecsecseesssaseneens 288
35.2.6 Binding Expressions (One-Way).........c.ccucuueuueirmnrmnimniesisiesessesesessese s ssessssssssssens

35.2.7 Binding Expressions (Two-Way)...
35.2.8 Event and Listener Bindings...
35.3 SUMMATY ..ottt bbb

36. An Android Jetpack Data Binding Tutorial...........cccevvvrininuisnsnninininennnnnininninnnecncnseees 293

36.1 Removing the Redundant Code...........eeinieenerreeeerneeeireeeetseenensenenesseseesessesessessesenses 293
36.2 Enabling Data BINAINGccvveveirieeineireeieiriceineeietreeeeenreee s nsessese s ssesessessesensessesensessesense 294
36.3 Adding the Layout EIEMEntcoceveureeeeeireeeernieeieireeeeenneneeetseseesessesensessesensessesensessesensessesenses 295
36.4 Adding the Data Element to Layout File.........c.occevcurueeineeneineeeeineenereenenseneeesseseeensenennes 296
36.5 Working with the Binding Classcccveureeererreueenerreeemennerenenreeenesseneesessesensessesensessesessessesenses 296
36.6 Assigning the ViewModel Instance to the Data Binding Variableccccocveeeverreeencrnencnnce 297
36.7 Adding Binding EXPIrESSIONScccveureveeerreuememrieceerreieesensenensessesensesseseesessesessessesessessesessessesenses
36.8 Adding the Conversion Methodccceneinerencineeenerneeereeetreeeeeeeeeesseseeesseseesessesenses
36.9 Adding a Listener Bindingcoeveureeeneireemnerneeeincrrieienneeenenseseeetseseesessesessessesessessesessessesesses
36.10 TeStING the AP ..ttt ssese e sese et sese s sese st s st sesensessesenne
36.11 SUIMMATY ..ottt bbb bbb bbb

37. An Android ViewModel Saved State Tutorial

37.1 Understanding ViewModel State Saving...............
37.2 Implementing ViewModel State Saving ..o

ix

Table of Contents

37.3 Saving and ReStOring State.........ccocveerreeecrreeeenerrieeierrereeensereeesseseeessesensessesessessesessessesessessenes 303
37.4 Adding Saved State Support to the ViewModelDemo Project.........c..eveureeencrreecencereeenrennenee 303
37.5 SUMMATY ..ottt 305

38. Working with Android Lifecycle-Aware COMPONENLScccererirreininsensucsinsensucsessesssesessessscsesssesses
38.1 LifECYCle AWATEIIESS ...cvuvreeerereveineireieesetseseesetseseasetsesetaeasese st sebesset st ssesessessesesssssesesastsesesasseses 307
38.2 LIfECYCLe OWIIELS ..ucvuvienieeircireeciciseiete sttt sesetse bt sese st seb st st ses et sese st sebesaetsesesaetnenes 307
38.3 LifeCYCle ODSEIVETScuvreeeacieeeincireieietseeeesetseseeetsesesseasese et sebesset st ssesessessesessetsesesssssesesssseses 308
38.4 Lifecycle States and EVENLS.........ccocreueureireueicirereineireeeieireeeteeseseeetsesessessesessessesesessesesessesesesseses 309
38.5 SUIMMATY ..ottt bbb 310

39. An Android Jetpack Lifecycle Awareness Tutorialcococevivuirnsnrenisrinisnsensenisesssenesescsnesnsesnes

39.1 Creating the Example Lifecycle PIOJECt.......coeeureeeereureeeeerreeeeeieeeieireeeeeeseseeensesensessesensennenes
39.2 Creating a Lifecycle ODSEIVETcveirieeecrrieeeeireecicireeeeeireieeesseseesensese s ssessesessessesensessenes
39.3 AddINg the ODSEIVETc.ceviiecicireceireiccireectee e ssese e asese et sesessessesensessenes
39.4 Testing the ObServer.........ccocveveeernerrercrrernennne
39.5 Creating a Lifecycle Owner.........ccccocveeeunerenee.
39.6 Testing the Custom Lifecycle Owner...............
39.7 SUMMATY ...ooviiiiiiir s

40. An Overview of the Navigation Architecture Component

40.1 Understanding Naviation........cc.ccuccucueeeumriunimniuimiesesseseseesese e ssesssasssesssssssssesssssesssssessees
40.2 Declaring a Navigation HOSt.........c.ccccuirimriniiniirininciscicsee e sees
40.3 The Navigation GIaph ... sse s sees
40.4 Accessing the Navigation Controller...........ooiinnincinieicieeieeeeseessesssssesssese s
40.5 Triggering a Navigation ACtiON ...t
40.6 Passing ATZUMENLS.........coceuiiiiiiiiiiii s sss s saas
40.7 SUIMMATY ..ottt et s s st

41. An Android Jetpack Navigation Component Tutorialccocceuvvvrvervnirisisnsnininisnnnnnenscsensennes

41.1 Creating the NavigationNDemo PIOJEctcocvveuiurieriericeiireeneieennieseeneeseeseesesesessnseneees
41.2 Adding Navigation to the Build Configuration.....
41.3 Creating the Navigation Graph Resource File....
41.4 Declaring a Navigation Host.....c..cceccevverreerrerrcnccn.
41.5 Adding Navigation Destinations............cccoeeueeee.
41.6 Designing the Destination Fragment Layouts...........ccceeeeiurecmirrecrniunecrnieeeenneeeeensessnensesens
41.7 Adding an Action to the Navigation Graph.........ecccveeeeceniurevcrirrecrniunecnnieseensenenesesesenseeens
41.8 Implement the OnFragmentInteractionListener
41.9 Adding View Binding Support to the Destination Fragments..........coccvvureverneurevernerreennenn 332
41.10 Triggering the ACHIONoceueureeeiereeetireeete ettt sse s ese st sae s s esesnsees 332
41.11 Passing Data UsINg Safeargseceeureerirreemnirreerieneeenieseensteesesessesesessssesssssssessessssesesees 333
41,12 SUIMIMNATY «.oviiiiiiiic bbb bbb bbb bbb bbb 336

42. An Introduction to MOtionLayouUL........c.ececeiereinininnecsinsinsicnisinncsesessscsesissseeessessesssssssssessssssesse

42.1 An Overview of MotionLayout
42.2 MOtIONLAYOUL ...ttt
42.3 MOtionSCene.ccvvvimciriinciiiicnnes
42.4 Configuring ConstraintSets............ccccecreureunen.
42.5 Custom Attributes.........cococuvcuecececeeccriernurenenn.
42.6 Triggering an Animation..........cccoecvuvicurirennees
42.7 ATC MOION....ouiiiiiiiciicn st s

Table of Contents

42.8 KEYITAIMES.....cuvreeerrreeerneieeeeeteee ettt eae s ese s ese st sese st es st sa st sese s ss st aenacsnsaescns 342
42.8.1 Attribute KeyIrames.ccocvueeernirrecinirreneirenneciereeeeensesessessesessessesesessesessessesessessessanessescens 342
42.8.2 POSItION KEYIramesc.cocueureerniereeireineeineinecinereeeerenseese e ssessesessessesessessesssnescscens 343

42.9 TIMe LINEATILY c..ovuieiiieiiiciriciiiccctic st sens 346

42.10 KEYTTIGEOTcuvinieciiiiiiiiciricrciit ettt 346

42.11 Cycle and Time Cycle Keyframes ... 347

42.12 Starting an Animation from Code.......cccociiiiiinii s 347

42,13 SUINIMATY wocuiiiiiiiiiiiiiis i b bbb bbb bbbt 348

43. An Android MotionLayout Editor Tutorial...........cceccevrrerrcirinneninsenncninsinscsinsienscsesseesesessecsscsseens 349

43.1 Creating the MotionLayoutDemo Project ... eeeiseceesseessesesaens 349

43.2 ConstraintLayout to MotionLayout CONVErSIONcccceeuiuriririniicceeeerissesiisseeesenenns 349

43.3 Configuring Start and End Constraints ... sesseesecsessesssessssens 351

43.4 Previewing the MotionLayout ANIMAation.........cccccueiuririniineiniincrneiseieeeneenseeseceessesssesessens 354

43.5 Adding an ONCHCK GEStUIEc.ccucuiicrcicicicicieciiienieisese e saens 354

43.6 Adding an Attribute Keyframe to the Transition............cccoeverencneincincinceneicicieceieeseeenens 356

43.7 Adding a CustomAttribute t0 @ Transitionccccocueiririniniiincneincieeeeeieceeeeseeeaens 358

43.8 Adding Position Keyframesccocuvcuvcunciciricieieirinniisisessse e ssessss s sssssssssssens 360

43.9 SUIMATY ..ottt bbb bna 362

44. A MotionLayout KeyCycle TUtorialcocevurrirrisuirinsninisisinisinensisniniiiisnininieisisseeses 363

44.1 An Overview of Cycle KeyfIames.........occeueureerirrierirreerierecrieneeeseenesenessesesssessessesessesessesens 363

44.2 USIng the Cycle EQITOT ..ottt eeesssesesensesessessssssesssssssesssasesens 367

44.3 Creating the KeyCycleDemo PrOJECt.......couveuurecriereerirricniieeeneenreneeeesessssesesesessessessesens 368

44 .4 Configuring the Start and End Constraints..........cccceeeeeeereceneurecrneenecrneesecnnieeeensesenersessesens 368

44.5 Creating the CYCLeS ...ttt sse e ese s sae s sasnsens 370

44.6 Previewing the ANIMAtiONcccveureerierieriirieeieeneeseesteseeeseeseeesseesesesssssesesssessesssaessesssssesens 372

44.7 Adding the KeyFrameSet to the MOtiONSCENEc.uevveeemivreecrieriecriereeneeeeeenseeeeeneseneeneaensens 372

44.8 SUINIMATY ..ottt bbb bbb bbb bbb bbbt 374

45. Working with the Floating Action Button and Snackbarccievinnnncnininncnninncncnennecncnnenns 375

45.1 The Material DESIGI.......ccvuuiuiuiuniiiireicicic et e aees 375

45.2 The Design LIDIATYc.cceiuiiuiuiiiniiiireicicicciceie i sssssssss s 375

45.3 The Floating Action Button (FAB) ..o ssessessessesssssssssaens 375

45.4 The SNACKDAT ... e 376
45.5 Creating the EXample PIOJECt.........ccviuiuciiicicicieieiiecicisesesese e ss s sssassssasens 377
45.6 RevIieWIng the PrOJECT ..o saees 377
45.7 Removing Navigation FEatures...........ooiiiieieieiciiiicicees s 378
45.8 Changing the Floating Action BUttOnc.ccccucucuiriurinieniineiniese e sseeseseessesssessaens 378
45.9 Adding an Action to the Snackbar ... 380
45.10 SUIMNIMATY «.cuiiiiiiiiiite ettt s bbb sesaas 380
46. Creating a Tabbed Interface using the TabLayout COmpPONentccecevevensesrcsuesensensessessesessessessenne 381
46.1 An Introduction to the VIEWPAZEI2ccovuvveriereeriiriceireentieeneeseeneseesenesensesesesseseasesens 381
46.2 An Overview of the TabLayout COMPONENLcevmiveeermiereecriireeerieneeneeeeseneeensensesensessesensens 381
46.3 Creating the TabLayoutDemo PrOJECt........cveueureerirreceierecrnieneeereeneeneesesessseesenesensesessesens

46.4 Creating the FIrst FIagment.......oocirevceiireerninieireeeiseeseeeeeeseesesensesessessssssessessssesessesens
46.5 Duplicating the Fragments........c.occcuveurecurcrrecnrennee

46.6 Adding the TabLayout and ViewPager2
46.7 Performing the Initialization Tasks
46.8 Testing the Application.........ccocuueee.

xi

Table of Contents

47. Working with the RecyclerView and CardView Widgets

46.9 Customizing the TabLayouLt.........cccveeiurierirriernirreereireeeeeeeneeeeeessssesesssessesessssessesssseseses
46.10 SUIMIMATY «.oviiiiiiiicc bbb bbb bbb bbb bbb

47.1 An Overview of the RecyclerView
47.2 An Overview of the CardViewcceveureuence
47.3 SUIMIMATY ..ttt ettt s s

48. An Android RecyclerView and CardView Tutorial..........ccocevvirineisnnininisensnnnenisninnnenencscsnsenes

48.1 Creating the CardDemOo PIOJECt.......cccciurierirreeriiniciiineerieeeentesesessasesessaessessesensesssssseseses
48.2 Modifying the Basic Views ACtiVity PrOJECtcouveuiurecrniureemirricnnieneerieeeeneeeeeeneneeseneeees
48.3 Designing the CardVIeW LaYOULcovuvveuerreernierecriericnieeeeneeseseneasesesseessessessssesssssseseses
48.4 Adding the ReCYCIEIVIEW......cucueueeieeceiiicieireeeieeeeeteeenti e ese s s s s sssassaesssanes
48.5 Adding the IMage FILEs........cceureeuiureceiirieiiirieeeireeeeiseeesseseeeneesesessasesessasssesssssssesssasssesnsses
48.6 Creating the RecyclerVIew Adapter.........occcureriurecrnirnecriereeneireeneaseeseeeesesssensesesssseseses
48.7 Initializing the RecyclerView Component
48.8 Testing the Application.........ccocveeeeverreecercrrenenncs
48.9 Responding to Card Selections..........cccecereuene.
48.10 SUMMATY ..ocuviiiiiiiiiiicrnes

49. A Layout Editor Sample Data Tutorialccccoeevevirnernininncninsennininiicsinicseseneesscsessessesesseene

49.1 Adding Sample Data to @ PrOJECtccccucuriiuiiuiiniineiircciceieicieceeieeisesesesesssssessese e sees
49.2 Using Custom Sample DAtc.cccccuuiueimrimnimnieniiineiieseseisese e ssessessesssssesssssssssesssssesssssessees
49.3 SUIMMATY ..ttt bbbt et n s s

50. Working with the AppBar and Collapsing Toolbar Layouts...........cccevcvuerucrensenseniscsensensessessessessesenses 415

51. An Android Studio Primary/Detail Flow Tutorial

50.1 The Anatomy Of AN APPBAT ..ottt sese e sese st s nsenenes
50.2 The EXAMPLE PIOJECToucviueiiieecieireieeetreieeetreeeeetreeenetsesenessesessessesessessesessessesessessesessessesessessenes
50.3 Coordinating the RecyclerView and TOOIDArccccveerrieeenerniecineinicereeereeeennenenenenes
50.4 Introducing the Collapsing Toolbar Layoutc.ccccveeeeeureeeererreeeeserneeemenneseeensesensessesensensenes
50.5 Changing the Title and Scrim Color
50.6 SUMMATY ...

51.1 The Primary/Detail FLOW.........ocociiiiiiiriiiicsiicsise e ssesssssssssessse s sesesssnes
51.2 Creating a Primary/Detail FLOW ACHVILYcccouuiuiuiiiriiiineieciciceeecceieescnsisesssesesseseseenes
51.3 Adding the Primary/Detail FIow ACHVItY......cccooviuriuiiiriiiiireicicisccieicceieeiciesesessesesseseseenes
51.4 Modifying the Primary/Detail Flow Template...........cocveuneuniuncuncinceneicinieeninessessesersseseneenes
51.5 Changing the Content Model..........ccccocuiiiininininiicece e sesssesesseaes
51.6 Changing the Detail Pane ...
51.7 Modifying the ItemDetailFragment Classccccoceeuriuniurerniincencieieicieieeeesesesesssesesssesesseenes
51.8 Modifying the ItemListFragment ClLass...........ccoeuuriuriuriuniincrneencincieneneieieesesssesesssesesssesesseenes
51.9 Adding Manifest PErMISSIONS.c.ccucuuuicimimimiiiisiiseisese s ssessessesssssssesesesessssesssses
51.10 Running the ApPliCAtioNc.cucucucucuciriuiiiiiriesisese et ssess s
5111 SUMMATY oottt bbbt

52. AN OVErview Of ANAIOid SEIVICES.....uuueerrervreerrrrrreeiessrsreeesssseessssssseessssssssssssssssssssssssssssssssssesssssssssssssse

xii

52.1 INEENE SEIVICE c..uvriirietictct ittt st a s
52.2 Bound Service
52.3 The Anatomy of a Service
52.4 Controlling Destroyed Service Restart Options
52.5 Declaring a Service in the Manifest File..........ccocveninieenienernecneneeneeeneeeesennenenennenee

Table of Contents

52.6 Starting a Service Running on System Startup.........ccccovvvniiiiiinnnicne, 435
52.7 SUIMIMATY ..ottt bbb bbb 436
53. An Overview of Android INLENtSceeeuieniieninenintiiinieintiensesnsesstesestsetesessssessssessssesessesessssenes 437
53.1 AN OVErview Of INENLScocuuiiciciciciciciiciccei et ss s 437
53.2 EXPIICIE INTENES ..ttt tseb st seb sttt bttt bt 437
53.3 Returning Data from an ACHVILY ..o 438
53.4 TMPLCIE INTENES cuvvreveenierrineirereicireieeetset et ses sttt seb ettt st sttt et eas 439
53.5 USING INtEN FILETS.......cviiiiiicicicicieicii it sse s s s s 440
53.6 Automatic Link Veriflcation ... ssessessesssssessscsns 440
53.7 Manually Enabling Linksccccociiiiiiiinicscsesise e ssssessessesssssesssennns 443
53.8 Checking Intent Availability ..o 444
53.9 SUMIMATY ..ottt bbbt 445
54. Android Explicit Intents — A Worked Example..........ccoccevuivviineriininnenncininneniciinesecsenesscstessessesnes 447
54.1 Creating the Explicit Intent Example Application........c.ceceeureurecunerrencrnernenemnenneenrernesennerseenne

54.2 Designing the User Interface Layout for MainActivity........cccccoevviririnnnnnce
54.3 Creating the Second Activity Class.........c.oceeerreueenerreeemrerrereenenrenemrerrenensensesennes
54.4 Designing the User Interface Layout for SecondActivity
54.5 Reviewing the Application Manifest File

54.6 Creating the Intent.......ccocveeverreeenerreeenerreeenennenee
54.7 Extracting Intent Data
54.8 Launching SecondActivity as @ Sub-ACtVItY.......cccveurererriurercirerrencrnerneenereeeneeeeeesseenereeaenne
54.9 Returning Data from a Sub-ACHVILY.......cocveverriurercinerecrerecrereeeeeereee e reesenne
54.10 Testing the APPLCAtION.c.cccuiurercirireeeirerrecireieeeresee e sesesseseesnns
54.11 SUMMATY ..ottt bbb bbb

55. Android Implicit Intents — A Worked EXampleccccocevuerrinrerninsinncsinsennucninenscsessessscsesssessessesses 455
55.1 Creating the Android Studio Implicit Intent Example Projectcccceeueucueivirenininennas 455
55.2 Designing the User INterface ..o ssssessessesssssesesenes 455
55.3 Creating the IMPlicit INENtc.cuciiieicieiciicee e 456
55.4 Adding a Second Matching ACHVILYc.ccccuruuiuiniiniiniinenirccsc e 457
55.5 Adding the Web View to the Ul.......c.cccciiiiinininiicicisee e ssessessesssssesesenns 457
55.6 Obtaining the Intent URL..........ccccociiiriiiininiiseseisesise e s ssessessesssssssscses 458
55.7 Modifying the MyWebView Project Manifest Fileccocvinineincincincineicicieceiecnceeinennns 459
55.8 Installing the MyWebView Package on a Device..........cocviuriuniencincincrncincieicicieeeineeisinesenens 460
55.9 Testing the APPLCAtION.........ccucuciciciicicieiiiiieeieci et sse s 461
55.10 Manually Enabling the LinkK ..o 461
55.11 Automatic Link Verification ..o ssessessesssssesssssnns 463
55.12 SUIMMATY c..cuiiiiiiiiiiii ettt 465

56. Android Broadcast Intents and Broadcast RECEIiVers..........ouvuiieririeinicnniieniiciincnscnncesceneseans 467
56.1 An Overview of Broadcast INTENTS........cccveureveureurercrrerneerreineeinerneensenseeneseeseasesseseasessesensessesenne
56.2 An Overview of Broadcast RECEIVETSc.ceuurecirerreeeniineeinereennenneeneseesensesseseasessesensessesenne
56.3 Obtaining Results from a Broadcast...........ccocuvurercenerrercenernenernerneennerneeneseeenessesensessesessessesenne
56.4 Sticky Broadcast INTENLSc.cccueerecueieencirerrieirerectreieeeneiseessessese e sseseasesesessessesesseseesnns
56.5 The Broadcast Intent EXample........ccc.cveueineeininicininceeineneeiriceesecietseeiessesetessesessesesesssseseseeenes
56.6 Creating the Example Application........c.ccocceeveuneeee

56.7 Creating and Sending the Broadcast Intent
56.8 Creating the Broadcast Receiver
56.9 Registering the Broadcast Receiver...

xiii

Table of Contents

56.10 Testing the Broadcast EXAMPLEcccvvuevcrreeemcrrieeenernieeneneeeeenseseeessesensesseseesessesessessesensessenes 473
56.11 Listening for System Broadcasts.........c..ceereeecrreeeneineeemnerneieeernereienserenesseseesessesessessesensessenes 473
56.12 SUMMATY ..ot 474
57. Android Local Bound Services — A Worked Example..........ccocvvivruininrensucninenncnensenscnensecsscsessnenes 475
57.1 Understanding Bound SErvices...........c.ccuiiininiineiniiscescie e esesseesesssssesssesssesesssesessssnes 475
57.2 Bound Service Interaction OPLONSc.eueureueeeereveeeereserneeseseeessesesessesessessesesessesessessesessesseses 475
57.3 A Local Bound Service EXamPIe.......cocueueueureveineireeeineireeeineineeeieisesetetsesessessesessessesesessesesessenes 475
57.4 Adding a Bound Service to the Project ... 476
57.5 Implementing the BINder ..o 476
57.6 Binding the Client to the SEIVICe ... 479
57.7 Completing the EXamPple..........cocuiuiuiiiciiiiiiiiincsesescse e ssessssesssssssssesssesessesessenes 480
57.8 Testing the APPLICAtION.......c.ccuiuiicicicicicicicciciesi e 481
57.9 SUIMIMATY ..ottt bbb 481
58. Android Remote Bound Services - A Worked Examplecccccevureeiinnincnninnenncnnenncccnnenseccscsennnes 483

58.1 Client to Remote Service Communication
58.2 Creating the Example Application
58.3 Designing the User Interface.......c.ccocoeceeurerence.

58.4 Implementing the Remote Bound Service.......cc.coeeuvvurucunneee
58.5 Configuring a Remote Service in the Manifest File
58.6 Launching and Binding to the Remote Service..........ccceune....

58.7 Sending a Message to the RemOte SEIVICEcocuueuerreeeenerreeeeerreeeeerreeeeetreeeeenseseeensesenenenes
58.8 SUMMATIY ..ottt bbb s

59. An Overview of Java Threads, Handlers and EXECULOLSccccerrreereerrreeeeecerseeeeessssseeecssssnseessssssseessnns 489

59.1 The Application Main TRIead.......oeveereeeeneireeeeneirereieireeeieireieeeiseseteesesesetsesesessesessetsesesessenes
59.2 Thread Handlers..........cciiiiiiiiiicii s ssssssssssss s ssssnns
59.3 A Threading EXAMPLecoouriuiiiiniiciiiciciiiicicesiese et ssesss s
59.4 BUIlding the APDc.cuiuiiiiinciciccici et
59.5 Creating @ New Thread..........ccoccccuiciiciiiiiiiesisesese e sssaesss s sseses
59.6 Implementing a Thread Handler.....................
59.7 Passing a Message to the Handler
59.8 Java Executor CONCUrrencyoeecececnee.
59.9 Working with Runnable Tasks
59.10 Shutting down an Executor Service...............
59.11 Working with Callable Tasks and Futures
59.12 Handling a Futture Result ..o
59.13 Scheduling Tasksccciuiiriiincincieiciciiiiiciresi e
59.14 SUMMATY ...oveieiiiiiiit ettt bbb

60. Making Runtime Permission Requests in Android..........ccocevevivuiseisnneninisensnnnenininnenensncnsen 501

60.1 Understanding Normal and Dangerous Permissions............cceeveeeererreeerreereeeeserreveesersenensensenee 501
60.2 Creating the Permissions EXample Project...........cccvereernerrereenerneecenerneeemenneneesenneseesensesensennenee 503
60.3 Checking for @ PErMISSIONc.cueveueeerreeeeerreeeeetreeeeetreseeenseeenessesessessesessessesessessesessessessssessenes 503
60.4 Requesting Permission at RUNtIME.........cocooiiiiiiiiiiiiiiic s 505
60.5 Providing a Rationale for the Permission ReqUeStccccveuevverreucercrreeeenerneeeeenreeeeenrerenennenes 506
60.6 Testing the Permissions App.........cecceeeveemeerecreereemeeseennenns

60.7 SUMMATY ...

61. An Android Notifications Tutorial

Xiv

Table of Contents

61.1 An Overview of Notiflcations.........ccuuuiiniiiiiii s 509
61.2 Creating the NotifyDemo ProOJeCtccccveueueeeireueenerreeeeerneeeneirenenetseneesessesensessesensessesessessesennes 511
61.3 Designing the User INEIfaceccveueueeerrieeineireeceerreieeenreeenetsesenetseseesessesessessesensessesessessesenses 511
61.4 Creating the SEcOnd ACHIVILYcvveverreeeeeirieeeeireeietreeeerrere et ssese e sesensessesessessesenses 511
61.5 Creating a Notification Chanmelccocvceeneeencireenerneeeeeecreeeeeeeessesensesseseesessesenses 512
61.6 Requesting Notification Permission ... 513
61.7 Creating and Issuing a NOtIfICationccccvceeeureeeecrrieenerreeereeeetreeeeenseeeeessesensesseseesessesennes 516
61.8 Launching an Activity from a NOtifICationcccecureeeererreemnerreemneireeereeenenseseeesseseeensesennes 518
61.9 Adding Actions t0 @ NOtHICAIONcuevevereeeeeireeeeerreeeeetreeeetrere et sesensessesensessesenses 520
61.10 Bundled NOtIfiCAtions.........ceviviiiiiiiiiiiii s 521
61,11 SUMMATY ..ottt bbb bbb bbb 523
62. An Android Direct Reply Notification Tutorialcecceevveerernininncncnsenncninnennncsensensscsenseessesennee 525
62.1 Creating the DirectReply Project ... ssecsesse s 525
62.2 Designing the User INTerfacecocviuuiincincineincicicieinieiccisesese e 525
62.3 Requesting Notification PermiSSionc.ccccuueecieinimneuniniineiseesesseisesesessessessessesssssesssssns 526
62.4 Creating the Notification Channel............cccococuuininininininineie e 527
62.5 Building the RemoteInput ODJect ... seessesse s 528
62.6 Creating the Pendinglntent................
62.7 Creating the Reply Action..............
62.8 Receiving Direct Reply Input
62.9 Updating the Notification
62.10 SUIMIMATY ..ottt e
63. Foldable Devices and Multi-Window SUPPOTItccccovriuiisiireriiinninnniceinenncstneseessesssesessssssessesaes 537
63.1 Foldables and Multi-Window SUPPOTT.......c.cveueurirecurineecireiecirieeeiseeeetseesesseeestsesesessesessssesesees 537
63.2 Using a Foldable EMUIAtOr.........c.oceveirieeeirrieeeeircctreeienneeenetsesensetseseesessesessessesensessesensessesennes 538
63.3 Entering Multi-Window MOdEcoeeiieiiinieinerrieeeneeeinereeetseeeeensesessesseseesessesessessesenses 539
63.4 Enabling and using Freeform SUPPOITccocreueencrreeenerreeeneireeeeetreeeeenseneeensesensesseseesessesennes 540
63.5 Checking for Freeform SUPPOIT........c.vceeeureeeeerreuceerreeeeeireeeeetsesensetsesessessesensessesessessesensessesenses 540
63.6 Enabling Multi-Window SUpport in an APcccveeerreeeeerreremerrememersesemsessesemsesseseesessesenses 540
63.7 Specifying Multi-Window AtIIDULESc..cevverreeeecrreeeeerreeeireeeeetreeeeesseeensesseseesessesensessesenses 541
63.8 Detecting Multi-Window Mode in an ACHVItYc.occeveureeemerreemnerreeeerreenenseeeeenseseeensenennes 542
63.9 Receiving Multi-Window NOHACAIONScocureeeecrreeeeerrieeeireeencireeeeerrenenesseseesessesensessesenses 542
63.10 Launching an Activity in Multi-Window Modecceeereencineeencrneeenenneeeeerneneeenseeennes 543
63.11 Configuring Freeform Activity Size and POSItION........cvceveureeerncireeenerreeeerreeeeireneeenrenennes 543
63.12 SUIMMATY ..ttt bbb bbb bbb 544
64. An Overview of Android SQLite DatabDasescccceeeerreeereerrreeeeeeirseereessssneeeessssseeeesssssesessssssssessssssssesns 545
64.1 Understanding Database Tables.............cocvuuvcincueiiieinieniiiiseeese e ssessessessessesessss 545
64.2 Introducing Database SChema ..o 545
64.3 Columns and Datad TYPES ..c.c.eevcereeeereereeeeeirereieereseietseseseesesesessesessessesessessesessessesessessesessessesesns 545
64.4 Database ROWS ..ot 546
64.5 Introducing Primary Keysc.cccviuriuniincincineiieieieieieeeicssise e ssessssesssssns 546
64.6 WHAt 1S SQLIE? w..coucviuieeeieireeeictretetetsetetet sttt sebe st sebetse bbbt bbbt st bbb sebessetsesesacs 546
64.7 Structured Query Language (SQL)cccuvcuuneuueiimeiniiniiiiiseissese e ssessessesssssesssssns 546
64.8 Trying SQLite on an Android Virtual Device (AVD)cccocviniuniinerniincrneeercicieienisiaeeenens 547
64.9 The Android ROom Persistence LiDIary.......cccvecereeeneineeeencirereencineeeieireeeeseeseseesessesessesseseene 548
64.10 SUIMMATY ..ottt bbb 549
65. The Android Room Persistence LiDrary ... 551

Table of Contents

65.1 Revisiting Modern App ArChiteCtUreccueuevcureeeererreeeneirereeerrereeenrerenenseseesessesessessesensessenes
65.2 Key Elements of Room Database Persistence
65.2.1 RepOSitory ..o
65.2.2 Room Database
65.2.3 Data Access Object (DAO)cccovveuereneen.
65.2.4 Entitiescocvvvviivviccicicniccnas
65.2.5 SQLite Database
65.3 Understanding ENtities.......ccocveeeerreeeerreeecrneeeireeeieineeeeenseseeessesessessesessessesessessesessessesessessenes
65.4 Data ACCESS ODJECESuvuriueerrreecieireieeerrereeetreaeeessese s s s st sesessessesessessesessessesessessesessesenes
65.5 The ROOIM Database........c.ceueureeeeneeriueeerrieeeeineieeeseeeiensesenessesessessesessessesessessessssessesessessesessesseses
65.6 THhe REPOSILOTYccvucvrieerereecirerreeeietreieeserreaeesetseaeesessesessessese s ssesesse s ssessesessessesessessesessessesessessenes
65.7 In-MemoOry Databasesccc.vceecureeenerreieeeireeieireeieneeeenseseee s ssesessessesessessesessessenes
65.8 Database INSPECLOTc.ouveueuriiueiricieirecieirtet ettt ettt sese st eae s eeb et ae s bbbt bbb eanen
65.9 SUIMMATY ..ot bbb

66. An Android TableLayout and TableRow Tutorialccccoceruerirrerrucncnsenscninnicnscssinneescnessecscsesseene

66.1 The TableLayout and TableROW Layout VIEWS......c.cccveveueureeeeneerereineerereeeesesesessesesseesesesseesenes
66.2 Creating the Room Database PIOJECtccocuiuiuiiiiiriiniinciiicicicieecceiieiscsesesesssesessesesenaes
66.3 Converting to a LinearLayout...........ccccceuvvueurennes
66.4 Adding the TableLayout to the User Interface....
66.5 Configuring the TableROWScccccucuuriuriurinnncn.
66.6 Adding the Button Bar to the Layout
66.7 Adding the RecyclerView........cccccoecviriuriuninnn.
66.8 Adjusting the Layout Margins ... ssessessesssssssssesssssesssssessssses
66.9 SUIMIMATY ..ottt et

67. An Android Room Database and Repository Tutorial

67.1 About the ROOMDEMO PrOJECt.......cuevueieeeeeireeeieireicieirieeeeireeeeeteseeenseseesessesessessesessessesensessenes
67.2 Modifying the Build CONfiGUIAtion.........c.cecueueecrreeeererrieeeenreteeerrereiensereesenseseesessesessessesensessenes
67.3 BUilding the ENtItY ..ot nsesessessesensessesessessesessessesensesenes
67.4 Creating the Data ACCESS ODJECT.....couirriuiirrieeeeireeceireeeeereieeereseeensese s ssesessessesessessenes
67.5 Adding the ROOM Database.......c..cvveuerreeeecirieemniirieeieeieieieeseeensese s esessesessessesensessenes
67.6 Adding the Repositoryccoceeeuvervevcurerrennnne
67.7 Adding the ViewModelccocovveernirrencrnernenecn.
67.8 Creating the Product Item Layout
67.9 Adding the RecyclerView Adapter...................
67.10 Preparing the Main Activityc.ccocceceeurereneen.
67.11 Adding the Button Listeners..........c.ccocveueueen.
67.12 Adding LiveData Observersc.ccocvereueen.
67.13 Initializing the ReCYCIEIVIEW.......c.vuevirieeeireeecireiceteeeetreeeee et nsese s ssesessessesensessenes
67.14 Testing the ROOMDEIMO APDccvreumirreueeeirireeeirieeeetsereeesseseesessesessessesessessesessessesessessesessessenes
67.15 Using the Database INSPECTOrcceueeeeerrieeenerreeeieireeenenreeeeesseseesessesensesseseesessesessessesessessenes
67.16 SUMMATY ..ottt

68. Accessing Cloud Storage using the Android Storage Access Framework...........ccoccvveevuceevsecscnensucnne 585

68.1 The Storage Access FrameworK ...
68.2 Working with the Storage Access Framework
68.3 Filtering Picker File LIStINGScccecueurieieiiiiiiniisisessise e ssessssessssssesesssesessesessenes
68.4 Handling Intent Results.........cccccccovuriuririuninnn.

68.5 Reading the Content of a File
68.6 Writing Content t0 a FIle ...

Xvi

Table of Contents

68.7 Deleting @ File ...ttt ssese s ssesessessese s sesessessesensessesensessesennes 589
68.8 Gaining Persistent Access t0 @ File.......ccovuueiinieincirieneneereeetreeereeesseeeeenseseesensenennes 589
68.9 SUMMIATY ..ot 589
69. An Android Storage Access Framework EXample........c.ccocceviveinininnecninnenncninninnncncnnennscseneesesennee 591
69.1 About the Storage Access Framework EXample..........cccovuriiiininiincincincineencicieienenecsenens 591
69.2 Creating the Storage Access Framework Example.........cccocecvininiinciniincincincinciciciececeenenns 591
69.3 Designing the User INterface ..o 591
69.4 Adding the Activity LaUNCRers.........cocvcuiiniicincicicicieisiec et ssesse s 592
69.5 Creating a New Storage File...........coiiiniinciieicieceieicise e sse s ssessssses 594
69.6 Saving t0 @ SOrage File........cooiiiiiiiiiciiiciccic e 594
69.7 Opening and Reading a Storage Filecccuciiirinininininiiccccceeieeeseciesnesineis 596
69.8 Testing the Storage Access APPLICAtIONc.cucuuueciciuriniiniiiiiseeese et 597
69.9 SUIMMIATY ...ttt 598
70. Video Playback on Android using the VideoView and MediaController Classes........c..cecceurrurreruennes 599
70.1 Introducing the Android VideoView Class..............

70.2 Introducing the Android MediaController Class....
70.3 Creating the Video Playback Example...................
70.4 Designing the VideoPlayer Layout
70.5 Downloading the Video File..............
70.6 Configuring the VideoView........ccccocveeererrereercnnenee

70.7 Adding the MediaController to the Video VIEW........ccccvuveecrrirrencmnernencrnerneennerneeenenneenereenenne
70.8 Setting up the OnPreparedLIStENeTrc.vcuveveuiurerceriireeereireerereeerereeenereeasessesesessesessessesenne
70.9 SUIMIMATY c.oovniiiiiiiiiiii bbb bbbt

71. Android Picture-in-Picture MOdE........cccceerveeeeerrreeeeeisreeeeesssseeeeessssseeeessssssesessssssesssssssasessssssssessssssssssns 605

71.1 Picture-in-Picture FEAtUIEScouiuiiiitiiiititct s
71.2 Enabling Picture-in-Picture Mode.........c.ccvcuvuvciueieieiniiiiniiinessise et ssessessessessesessses
71.3 Configuring Picture-in-Picture PAarameterscccccueeeirinineineenerseeserseeesesesessesssssesenens
71.4 Entering Picture-in-Picture Modec.ccvcuvuvcuneucieieininiiincisessese et ssessessesssssessssss
71.5 Detecting Picture-in-Picture Mode Changes
71.6 Adding Picture-in-Picture Actions...

71.7 SUIMIMATY ..ottt bbb bbb
72. An Android Picture-in-Picture Tutorial...........ccoceveviviiiniieniiieniiciniiiceicecenscssesseeseseseseans 611
72.1 Adding Picture-in-Picture Support to the Manifest...........cocveuveeerrerrercrnerrcrcmnernencnnernecnnerneenne 611
72.2 Adding a Picture-in-Picture BUTON ..o nesesensesesenseseesenne 611
72.3 Entering Picture-in-Picture MOdecc.ouvveuerercineinencnneineeinerneeenenneesesseseasessesessessesessessesenne 612
72.4 Detecting Picture-in-Picture Mode Changesc.ccocvureeerrerrercmnernenernernenennenneenresseenserseenne 613
72.5 Adding a Broadcast RECEIVETccccuuercureurereineirecineineetreseeeresesessessesesessese e ssesessesesensessesnns 613
72.6 Adding the PiP ACHON......cvieveiiericirceetreieereneereiseee e seese s s nseseesnns 614
72.7 Testing the Picture-in-Picture ACONc.ccoeureurercererneceneineerereeneneeeneseeeneseesenessesesseseesenne 617
72.8 SUIMIMATY ..ottt bbb bbb bbb bbb bbb bbb 618
73. Android Audio Recording and Playback using MediaPlayer and MediaRecorderc.ceeeuunenec. 619
73.1 Playing AUAIO ...ttt

73.2 Recording Audio and Video using the MediaRecorder Class
73.3 About the EXample Projectccveureeninecenienicineinecineiseesneesesesseesesessesseaens
73.4 Creating the AudioApp Project
73.5 Designing the User INTerface ..o sssssessssnes

xvii

Table of Contents

73.6 Checking for Microphone Availabilityc.ccccoereueeneiriemnerrieeenernencereeeeneeeenseeeeensesenenenes
73.7 InitialiZing the ACHVILYcccveurieeieirieetreeectreectreieeteee e ssese e ssese e ssesessessesensesenes
73.8 Implementing the recordAudio() Method......
73.9 Implementing the stopAudio() Method..........
73.10 Implementing the playAudio() method........
73.11 Configuring and Requesting Permissions
73.12 Testing the Application........c.ceeevveuvercurerrennne
73.13 SUMMATY ..ot

74. Working with the Google Maps Android API in Android Studiocceevivenenennisisensenenncnnenenes

74.1 The Elements of the Google Maps Android APcccocviiiviveineicinininieinessseesesenseenes
74.2 Creating the Google Maps PrOJECt........cc.ccuvuiiuniuniiniireiiisciescic e seecssisesssesesesesssesesssesessenes
74.3 Creating a Google Cloud Billing ACCOUNLcceuuiuiiiriiniircieicieieie e
74.4 Creating a New Google Cloud Projectccceuiiuiiriiniincineiciseieienseiesiseeisesesesesssesesssesesssenes
74.5 Enabling the Google Maps SDK ..o ssessessesssssssssesssesesssesessssses
74.6 Generating a Google Maps APT Key......c.cccouiiininiininiincicicise e esecieiseesesesasesssesesssssessenes
74.7 Adding the API Key to the Android Studio Project ...
74.8 Testing the APPLICAtION. ..ottt
74.9 Understanding Geocoding and Reverse Geocoding
74.10 Adding a Map to an Application...................
74.11 Requesting Current Location Permission
74.12 Displaying the User’s Current Location.........
74.13 Changing the Map Type......ccccccovuverirruninnenn.
74.14 Displaying Map Controls to the USer ..o
74.15 Handling Map Gesture INteraction..........cccuiuiuriuniureunienereesceeienensesseesesssssssssesssesesssesessssne
74.15.1 Map Z00ming GESLUIES.........cceuuevvimiviiiiniiiiciis st ssaes
74.15.2 Map Scrolling/Panning GeStUIES ..o ssssssssessssnns
74.15.3 Map Tilt GESTUIES......cuereeicirereecireieeeiretsee ettt ettt seens
74.15.4 Map Rotation GESTUIES........c.cccciiiiuiiiiriiiriniiiccee st
74.16 Creating Map MArkers..........ocucucuviiiciiiicisiesse e
74.17 Controlling the Map Camera ... ssessssesssssesssesssesesssssessssses
74.18 SUMIMATY ...oeeieiiiiiii ettt bbb

75. Printing with the Android Printing Frameworkcccovvevinirninninininnnnnninincnnnenensncnsen

75.1 The Android Printing ArchiteCtUreccocveeecureeeererreeeeenreieeerreeeeerrese e esenseseesessesensessenes 645

75.2 The Print Service Plugins..........cececveuvecrrerrenecn.

75.3 Google Cloud Print........coceceeuveuvecrnervcncerernennne

75.4 Printing to Google Drive.......c..ccoceeneuvevcrrerrennn.

75.5Save as PDF ...

75.6 Printing from Android Devices

75.7 Options for Building Print Support into Android APps........ccecveeeeveureeeeneereeenerreeeereenenensennenee 648
75.7.1 Image Printing ... 648
75.7.2 Creating and Printing HTML CONENtovcurerrcrerercreeenereeenerresenseresensenesenensesenenens 649
75.7.3 Printing @ Web Page........ccouvvcuiurecrniirecieeceeeeieiene e ssesessessesessessesessesesssnesnens 650
75.7.4 Printing a Custom DOCUMENt ..o 651

75.8 SUIMIMATY ..ot bbb bbb 651

76. An Android HTML and Web Content Printing EXampleccccoecevvinvenncninnenscnsennnncncnsecnscseneenes

76.1 Creating the HTML Printing Example Applicationc.ccecuecucucucininenininesieserseesenseenes 653
76.2 Printing Dynamic HTML Content..................
76.3 Creating the Web Page Printing Example

Xviii

Table of Contents

76.4 Removing the Floating Action BUttoncc.ocueeecucureciniinencinernecnneneeereeeenensesensessesenseseesenne 656
76.5 Removing Navigation Features............ccoiiiiianens 656
76.6 Designing the User Interface LayOuLc.ccecueurecurerneceneunencinerneennenseeneseesensessesessessesensessesenne 658

76.7 Accessing the WebView from the Main ACHVILY ..c..c.oecueureecinerrercrnerneenerrcenneneeneneeenereenenne 658
76.8 Loading the Web Page into the WebVIeWc.cccuvevvcinirencinernccnneecreeenneseenenseseneseenenne 659

76.9 Adding the Print Menu OPtion.......cceecureeeereureurercinerneeenerneessesseessessesesessesessessesessessesessessesenns 660
76.10 SUMMATY ..ottt bbb bbb 662
77. A Guide to Android Custom Document Printing.......c.ccoccevererrinrinncncnsenncncnsenscsensessscsesseessesesnes 663
77.1 An Overview of Android Custom Document Printingcoceevcevceveuveenceneuciniecncnininnas 663
77.1.1 Custom Print AdQpPLers.......ccveeecueerecuneereeeneesieiseeeeesseseee s ssesessessesessessesessessessssesseseens 663
77.2 Preparing the Custom Document Printing Project..........coovnuvincuncinciscenceneicceieenceeninns 664
77.3 Creating the Custom Print Adapter ... ssessesse s 665
77.4 Implementing the onLayout() Callback Method.........ccocoourininiiniincincinciscicciciciecrceenenns 666
77.5 Implementing the onWrite() Callback Methodcccocviuiniiniiincincinciscisccccciececeenenns 669
77.6 Checking a Page is in RANGEccviuiuiiiircicicieieiciicieeeeeicisise s sse s s ssssssnns 671
77.7 Drawing the Content on the Page Canvas ... 672
77.8 Starting the Print JOD ...t
77.9 Testing the Application
77.10 SUMMATIY ...cooviiiiiiiiiccecerceenas
78. An Introduction to Android App Links
78.1 An Overview of Android APP LinKSc.cveeuenecinineeininieiriceesecietseeietseeeessesessesesesssseseseeenes 677
78.2 ApP LinK INtent FIETScccueureiueiriiieirecieirccineecisieeci sttt sseseae st aseae et saeseseeasaes 677
78.3 Handling App LinK INTENTSc.ceevverieeeerrerreeireirecirerseeeneeeesseseesessessesesessesessessesessessesessessesenns 678
78.4 Associating the App With @ WEDbSIte........c.oceveeuriurerciniirecrrcrerccrceeetce e 678
78.5 SUIMIMATY ..ottt bbb bbbt 679
79. An Android Studio App Links TUtorialccceveviiinrrnininneinininnincnineencninsesesessscsessessesesnee 681
79.1 About the EXamPle APP c.cocveeeiiireeeineireeeieireeeieineseietseeeeeisesesessesessetsesessessesessessesessessesessessesesnes 681
79.2 The Database SChemac.ceiiiiiinicscicceicici et 681
79.3 Loading and Running the Project ...t ssessessesssssesesssns 681
79.4 Adding the URL Mapping........ccceceeuiureuiencincesemeimenensisisesasesssssessssse e ssessssssssssssssssnns 683
79.5 Adding the Intent Filter.........ccooiiiiiniiiciicccce s 686
79.6 Adding Intent Handling Code..........couuiiniincincinciciciinieiicisesise et ssessessesssssesassanns 687
79.7 TeStING the APP ..ottt 689
79.8 Creating the Digital Asset Links File........cococviinieiiiiniiiiniccccceeceieciecieeicis 689
79.9 Testing the APP LiNK......ccoiiiiiiiicisciccie et sae s 690
79.10 SUIMIMATY ..ottt 690
80. An Android Biometric Authentication Tutorial...........ccocecveviieiieniniinicenieccccnaas 691
80.1 An Overview of Biometric Authentication............ccoceivininininiiiinns 691
80.2 Creating the Biometric Authentication Projectcocvecreerreireeeenerreeeeserreneeerseseeensenennes 691
80.3 Configuring Device Fingerprint Authenticationccc.ecreeenerreeenerreemnerneeeserseneesersenennes 692
80.4 Adding the Biometric Permission to the Manifest File........c.coceverenirnencnecencrnecnerreennes 692
80.5 Designing the User INEIfaceceveueueeiureeererreececrreeeeenneeenesseseesessesensessesessessesessessesessessesense
80.6 Adding a Toast Convenience Methodccocueererreeererneemnerneeeeireeeereeeesseneeesseseeessesennes
80.7 Checking the Security Settings..........coeeevevevecrennee
80.8 Configuring the Authentication Callbacks
80.9 Adding the CancellationSignal..........cccccvvurvcrneeee

80.10 Starting the Biometric Prompt....

Xix

Table of Contents

80.11 Testing the PrOJECt.....c.ccveecrreeeeeireeeeerreeeieinerenetreeeeetsesenessese e ssesessessesessessesessessesessessesessessenes
80.12 SUMMATY c.viiiiiiiiii bbb s
81. Creating, Testing, and Uploading an Android App Bundle

81.1 The Release Preparation Process

81.2 Android App Bundles.........cocveeeneureceniineceniinicineenecineeseeneees
81.3 Register for a Google Play Developer Console Account
81.4 Configuring the App in the COonsSoleccocuiiiiinininciecise s
81.5 Enabling Google Play App SIgNiNg........ccccciiiniiniiriniincieiseise e isesseiseessesesesesssesesssesessssses
81.6 Creating @ Keystore File ...
81.7 Creating the Android App Bundle.........c.cccciiiiiiniiincicisccccceecesessese e
81.8 Generating Test APK FILES ..ottt
81.9 Uploading the App Bundle to the Google Play Developer Console.............cccveuviurerniurcuncenee 706
81.10 Exploring the App Bundle ... 707
81.11 Managing TESErSccccuviiiiiiiiiiiiiti s 708
81.12 Rolling the App Out fOr TESHING........c.ccuerriuiiiiriiriiretse et 708
81.13 Uploading New App Bundle ReVISIONS...........ccewuiuviuriiiinereencincicieicieiseeisesesisesssesessseseseenes 709
81.14 Analyzing the App Bundle File ... 710
8115 SUMMATY ..ottt 711
82. An Overview of Android In-App Billingcccevvereruiruirnsninisininnininininnenininseenssseene 713
82.1 Preparing a Project for In-App PUurchasingcccecveverreeeenernercenerneeeenenneneesenneneesennesensensenes 713
82.2 Creating In-App Products and SubScriptionsc.ceceveureeeenerneecinerreeenneineenerreeesenrenenennenee 713
82.3 Billing Client InitialiZation.........ccocveeererreeeererreeeeneireeeieireeeeenreeeeenseseeessesensessesessessesessessesessessenes 714
82.4 Connecting to the Google Play Billing Library........ccocceceereeeenerreeeenerreeeeneeneneesenreneesensenensensenee 715
82.5 Querying Available PrOAUCLS........c.ocevverreeeecireeeecireeeietreeeetrereeeneseeensese s ssessesessessesensensenes
82.6 Starting the Purchase PrOCESS.........oceeureueeerreeeeeirieeieireeeeteeeeesseseesessesessessesessessesessessesensessenes
82.7 Completing the PUICRASEccvcviueiciriiecirecctreccteeeeteeeee et ssese e sesesses s nsesenes
82.8 Querying Previous PUIChAses.oceueureueecrreeeecireecietreeeeneeeeetseseesensesensensesessessesessessesensessenes
82.9 SUMMATY ..o

83. An Android In-App Purchasing Tutorial

83.1 About the In-App Purchasing Example Project....
83.2 Creating the InAppPurchase Project...........ccccouc..c.
83.3 Adding Libraries to the Project........ccccceceuuce.
83.4 Designing the User Interface..........ccccecvvueunce.
83.5 Adding the App to the Google Play StOre..........cccovuuiuriuniunciniincineieieicieieeieesesisessesessseseneenes
83.6 Creating an IN-App ProdUuCt ..o
83.7 ENabling LiCense TESLEIScecucuiucuumriimiiiiiiseisisessse s ss s sssssssssssesssssessssessssnes
83.8 Initializing the Billing CHENLcccuiiieiciiiiirirircese et
83.9 QUErying the PrOQUC.........c.oiuiuiiciciciciciciicciciest et
83.10 Launching the PUrchase FIOW ..o csecieiseiscsesssesssesessesessenes
83.11 Handling Purchase UPdates ... ssesseesesssssesasesssesessssessssnes
83.12 Consuming the PrOAUCT ...t
83.13 Restoring a Previous PUIChase ...
83.14 TeStING the APP..ccciuiiieiiiiiieiie et
83.15 TrOUDIESNOOINGcuvieeiiicii et
83,16 SUMMATY ...coueiiiiit bbb

84. Creating and Managing Overflow Menus on Android
84.1 The OVerflow MenU.......c.occeueureeemeurecrirreeneereenieeesenesensenesns

Table of Contents

84.2 Creating an OVEIfloW MENUccvcueeeeeirieeenerneieictreeeeensenenesseseesesseseesessesessessesessessesessessesesses 733
84.3 Displaying an OVerfloW MENU........cccveueueureueererreeeenerreeeeennenenensesenesseseesessesessessesssessesessessesesses 734
84.4 Responding to Menu Item Selections..........cocuiiiiinininii e 734

84.5 Creating Checkable Item GIOUPS.........ccveueueeerreeeeerreeeeerrenensessesensessesensessesessessesessessesensessesenses 735
84.6 Menus and the Android Studio Menu EdItOr.......c.c.vveeireeecireeeencineeeerreeneerenenenseseeensenennes 736
84.7 Creating the Example Project.........ccuiiiiiiicc s 737
84.8 Designing the MENU.......ccccvcueercrreeernerrereeerrereeenseseesesseaeesessesensessesessessesessessesessessesessessessssessesesss 737
84.9 Modifying the onOptionsItemSelected() Method.......cccveeverreeeeeireeenerreeenerreeeerreeeeenrenennes 739
84.10 Testing the APPLICAtION.....c.vcvcrrieereireeeeeirecereeeet et sese e sese e sesessessesensessesenses 740
84.11 SUIMMATY ..ttt bbb bbb bbb bbb 741
85. Working with Material Design 3 Themingc.cceccvverveeninsinnerninsinncninninneninennncsesessscsessesesesee 743
85.1 Material Design 2 vs. Material DeSig 3ccccuocueueurinimnininiineiniesesceseneeesessessessesssssessssnns 743
85.2 Understanding Material Design Themingc.cccccueiriuririuniineinieserseesenseeesessessensesasssssesssns 743
85.3 Material Design 3 TREmMINGcc.ccviuiiiiiiieicieieieiciecieeeeeiesise et sa s 743
85.4 Building a Custom TREME..........cc.cciuiiiiiincicicicieie et sae s ssesassaes 745
85.5 SUMMATY ...ttt 746
86. A Material Design 3 Theming and Dynamic Color Tutorial..........cccevcvurrerrnrenisnisnsnsesesncsnnsensenennes 747
86.1 Creating the ThemeDemo Project
86.2 Designing the User Interface..............
86.3 Building a New Theme....................
86.4 Adding the Theme t0 the PrOJECtc.oeiieeeeniireecencireieeireeeirenenetreseeesseseeessesensessesessensesennes
86.5 Enabling Dynamic Color Support
86.6 Previewing Dynamic COlOTS........oueuureueeerrieemnennieceetreeeeensesensessesemsessesensessesessessesessessesessesseserses
86.7 SUMMATY ..ottt bbb
87. An Overview of Gradle in Android Studio..........cceeveererinrireniiieniienineinicetcenseeee e eesenes 755
87.1 An OVerview of Gradlecoiiiiiniiiincincicicicieie et 755
87.2 Gradle and Android StUAIO ... 755
87.2.1 Sensible Defaults ..o 755
87.2.2 DEPENAEIICIES.eueeeereieereiriecieireicitisese ettt e sttt 755
87.2.3 BUIld VATTANTS ... 756
87.2.4 MANIfest ENIIESuvuiuiuieiiiiiieeiceiesc e sa s 756
87.2.5 APK SIGNING....oimiiiiriiiiiiccit s 756
87.2.6 PrOGUATd SUPPOIL....eueueuieieciieiecitiricieieeaeieesese it ssess e ese bbb ens 756
87.3 The Property and Settings Gradle Build File.........ccccceoiiiiniininincninccccicccececeenenns 756
87.4 The Top-level Gradle Build File.......ccoeireueiniirieeincirieeicreeicreieecineeeeciseeeeetsesesetsesesessesennes 757
87.5 Module Level Gradle Build Files...........ococuveuiveiiiiiiiiniiiisesesccieeeescseesesaessessesencnns 758
87.6 Configuring Signing Settings in the Build File.........cccccoouiiiiinininiiiniiccccieecececncns 760
87.7 Running Gradle Tasks from the Command LiNecccooceeeiniuniincrncinerneenceneicecieneiecnen 761
87.8 SUMMIATY ...ttt 762
IAEX vttt bbb e bbb s s b e bbb bbb aee 763

XXi

Chapter 1

1. Introduction

Fully updated for Android Studio Hedgehog (2023.1.1) and the new UI, this book teaches you how to develop
Android-based applications using the Java programming language.

This book begins with the basics and outlines how to set up an Android development and testing environment,
followed by an overview of areas such as tool windows, the code editor, and the Layout Editor tool. An
introduction to the architecture of Android is followed by an in-depth look at the design of Android applications
and user interfaces using the Android Studio environment.

Chapters also cover the Android Architecture Components, including view models, lifecycle management,
Room database access, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the
ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers,
and direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App Links, Gradle build configuration, in-app
billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some Java programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.payloadbooks.com/product/hedgehogjava
The steps to load a project from the code samples into Android Studio are as follows:
1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at info@payloadbooks.com.

https://www.payloadbooks.com/product/hedgehogjava

Introduction

1.3 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.payloadbooks.com/hedgehogjava

If you find an error not listed in the errata, please let us know by emailing our technical support team at info@
payloadbooks.com. They are there to help you and will work to resolve any problems you may encounter.

https://www.payloadbooks.com/hedgehogjava

Chapter 2

2. Setting up an Android Studio
Development Environment

Before any work can begin on developing an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE), including the Android Software Development Kit (SDK) and the
Open]DK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements

Android application development may be performed on any of the following system types:
« Windows 8/10/11 64-bit

« macOS 10.14 or later running on Intel or Apple silicon

« Chrome OS device with Intel i5 or higher

o Linux systems with version 2.31 or later of the GNU C Library (glibc)

o Minimum of 8GB of RAM

« Approximately 8GB of available disk space

« 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package

Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Hedgehog 2023.1.1
using the Android API 34 SDK (UpsideDownCake), which, at the time of writing, are the latest stable releases.

Android Studio is, however, subject to frequent updates, so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page, which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio, there may be differences
between this book and the software. A web search for “Android Studio Hedgehog” should provide the option to
download the older version if these differences become a problem. Alternatively, visit the following web page to
find Android Studio Hedgehog 2023.1.1 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

Setting up an Android Studio Development Environment

2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is performed.

2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation to
meet your requirements in terms of the file system location into which Android Studio should be installed and
whether or not it should be made available to other system users. When prompted to select the components to
install, ensure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11, this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS

Android Studio for macOS is downloaded as a disk image (.dmg) file. Once the android-studio-<version>-mac.
dmg file has been downloaded, locate it in a Finder window and double-click on it to open it, as shown in Figure
2-1:

Figure 2-1

To install the package, drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

4

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed, and execute the following command:

tar xvfz /<path to package>/android-studio-<version>-linux.tar.gz

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Therefore,

assuming that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory,
and execute the following command:

./studio.sh

2.4 The Android Studio setup wizard

If you have previously installed an earlier version of Android Studio, the first time this new version is launched,
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have
settings from a previous version and would like to import them into the latest installation, select the appropriate
option and location. Alternatively, indicate that you do not need to import any previous settings and click the
OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2

If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select
the Standard installation option before clicking Next.

Setting up an Android Studio Development Environment

Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click the Finish
button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen using your chosen Ul theme:

Figure 2-4
2.5 Installing additional Android SDK packages

The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

Setting up an Android Studio Development Environment

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Settings dialog
will appear as shown in Figure 2-5:

Figure 2-5

Google pairs each release of Android Studio with a maximum supported Application Programming Interface
(API) level of the Android SDK. In the case of Android Studio Hedgehog, this is Android UpsideDownCake
(API Level 34). This information can be confirmed using the following link:

https://developer.android.com/studio/releases#api-level-support

Immediately after installing Android Studio for the first time, it is likely that only the latest supported version
of the Android SDK has been installed. To install older versions of the Android SDK, select the checkboxes
corresponding to the versions and click the Apply button. The rest of this book assumes that the Android
UpsideDownCake (API Level 34) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo).
This ensures that the apps run on a wide range of Android devices. Within the list of SDK versions, enable
the checkbox next to Android 8.0 (Oreo) and click the Apply button. Click the OK button to install the SDK
in the resulting confirmation dialog. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

https://developer.android.com/studio/releases#api-level-support

Setting up an Android Studio Development Environment

Figure 2-6

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

« Android SDK Build-tools

« Android Emulator

« Android SDK Platform-tools
» Google Play Services

« Intel x86 Emulator Accelerator (HAXM installer)”

Google USB Driver (Windows only)
o Layout Inspector image server for API 31-34

"Note that the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based
Macs.

If any of the above packages are listed as Not Installed or requiring an update, select the checkboxes next to those
packages and click the Apply button to initiate the installation process. If the HAXM emulator settings dialog
appears, select the recommended memory allocation:

Setting up an Android Studio Development Environment

Figure 2-8

Once the installation is complete, review the package list and ensure that the selected packages are listed as
Installed in the Status column. If any are listed as Not installed, make sure they are selected and click the Apply
button again.

2.6 Installing the Android SDK Command-line Tools

Android Studio includes tools that allow some tasks to be performed from your operating system command
line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab, and locate the
Android SDK Command-line Tools (latest) package as shown in Figure 2-9:

Figure 2-9
If the command-line tools package is not already installed, enable it and click Apply, followed by OK to complete
the installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add
them to the system’s PATH environment variable.

Setting up an Android Studio Development Environment

Regardless of your operating system, you will need to configure the PATH environment variable to include the
following paths (where <path_to_android_sdk_installation> represents the file system location into which you
installed the Android SDK):

<path to android sdk installation>/sdk/cmdline-tools/latest/bin
<path to android sdk installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:

Figure 2-10

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1

1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from
the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of
icons, select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it, and click
the Edit... button. Using the New button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the following
entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin
C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering ¢md into the Run
dialog. Within the Command Prompt window, enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command-line options when executed.
Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:

10

Setting up an Android Studio Development Environment

'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10

Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.3 Windows 11

Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux

This configuration can be achieved on Linux by adding a command to the .bashrc file in your home directory
(specifics may differ depending on the particular Linux distribution in use). Assuming that the Android SDK
bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file would read as
follows:

export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS

Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:

/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory, it will be necessary to use the sudo command when creating the file.
For example:

sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management

Android Studio is a large and complex software application with many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded, it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

11

Setting up an Android Studio Development Environment

Figure 2-11

To view and modify the current memory configuration, select the File -> Settings... main menu option (Android
Studio -> Settings... on macOS) and, in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure
2-12 below:

Figure 2-12

When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the
currently loaded project. On the other hand, when a project is built and run from within Android Studio,
several background processes (referred to as daemons) perform the task of compiling and running the app.
When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an
open project, select the Tools -> SDK Manager... menu option from the main menu.

2.8 Updating Android Studio and the SDK

From time to time, new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

12

Setting up an Android Studio Development Environment

2.9 Summary

Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). This chapter covers the steps necessary to install these packages on Windows,
macO§, and Linux.

13

Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have explained how to configure an environment suitable for developing
Android applications using the Android Studio IDE. Before moving on to slightly more advanced topics, now
is a good time to validate that all required development packages are installed and functioning correctly. The
best way to achieve this goal is to create an Android application and compile and run it. This chapter will cover
creating an Android application project using Android Studio. Once the project has been created, a later chapter
will explore using the Android emulator environment to perform a test run of the application.

3.1 About the Project

The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also use one of the most basic Android Studio project templates. This simplicity allows us to introduce some key
aspects of Android app development without overwhelming the beginner by introducing too many concepts,
such as the recommended app architecture and Android architecture components, at once. When following
the tutorial in this chapter, rest assured that the techniques and code used in this initial example project will be
covered in much greater detail later.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

15

Creating an Example Android App in Android Studio

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity

The next step is to define the type of initial activity to be created for the application. Options are available to
create projects for Phone and Tablet, Wear OS, Television, or Automotive. A range of different activity types is
available when developing Android applications, many of which will be covered extensively in later chapters.
For this example, however, select the Phone and Tablet option from the Templates panel, followed by the option
to create an Empty Views Activity. The Empty Views Activity option creates a template user interface consisting
of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name uniquely identifies the application within the Android application ecosystem. Although this
can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your
domain name followed by the application’s name. For example, if your domain is www.mycompany.com, and the
application has been named AndroidSample, then the package name might be specified as follows:

com.mycompany.androidsample

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your

home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This minimum SDK will be used in most projects
created in this book unless a necessary feature is only available in a more recent version. The objective here is to

16

Creating an Example Android App in Android Studio

build an app using the latest Android SDK while retaining compatibility with devices running older versions of
Android (in this case, as far back as Android 8.0). The text beneath the Minimum SDXK setting will outline the
percentage of Android devices currently in use on which the app will run. Click on the Help me choose button
(highlighted in Figure 3-3) to see a full breakdown of the various Android versions still in use:

Figure 3-3

Finally, change the Language menu to Java and select Kotlin DSL (build.gradle.kts) as the build configuration
language before clicking Finish to create the project.

3.5 Enabling the New Android Studio UI

Android Studio is transitioning to a new, modern user interface that is not enabled by default in the Hedgehog
version. If your installation of Android Studio resembles Figure 3-4 below, then you will need to enable the new
UI before proceeding:

Figure 3-4

Enable the new UI by selecting the File -> Settings... menu option (Android Studio -> Settings... on macOS) and
selecting the New UT option under Appearance and Behavior in the left-hand panel. From the main panel, turn
on the Enable new UI checkbox before clicking Apply, followed by OK to commit the change:

17

Creating an Example Android App in Android Studio

Figure 3-5

When prompted, restart Android Studio to activate the new user interface.

3.6 Moditying the Example Application

Once Android Studio has restarted, the main window will reappear using the new UI and containing our
AndroidSample project as illustrated in Figure 3-6 below:

Figure 3-6

The newly created project and references to associated files are listed in the Project tool window on the left side
of the main project window. The Project tool window has several modes in which information can be displayed.
By default, this panel should be in Android mode. This setting is controlled by the menu at the top of the panel
as highlighted in Figure 3-7. If the panel is not currently in Android mode, use the menu to switch mode:

18

Creating an Example Android App in Android Studio

Figure 3-7
3.7 Moditying the User Interface

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the Project tool window file hierarchy. Once located in the Project tool window,
double-click on the file to load it into the user interface Layout Editor tool, which will appear in the center panel
of the Android Studio main window:

Figure 3-8
In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A range of other
19

Creating an Example Android App in Android Studio

device options are available by clicking on this menu.

Use the System UI Mode button () to turn Night mode on and off for the device screen layout. To change
the orientation of the device representation between landscape and portrait, use the drop-down menu showing

the icon.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user
interface components that may be used to construct a user interface, such as buttons, labels, and text fields.
However, it should be noted that not all user interface components are visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel, which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-9:

Figure 3-9

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to ensure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a
U-shaped icon. When disabled, the icon appears with a diagonal line through it (Figure 3-10). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-10

The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns, with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-11, for example, the Button view is currently selected within the Buttons category:

20

Creating an Example Android App in Android Studio

Figure 3-11

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-12

The next step is to change the text currently displayed by the Button component. The panel located to the right
of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected
component in the layout. Within this panel, locate the text property in the Common Attributes section and
change the current value from “Button” to “Convert’, as shown in Figure 3-13:

21

Creating an Example Android App in Android Studio

Figure 3-13

The second text property with a wrench next to it allows a text property to be set, which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing how a visual component and the layout
will behave with different settings without running the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer Constraints
button (Figure 3-14) to add any missing constraints to the layout:

Figure 3-14

It is important to explain the warning button in the top right-hand corner of the Layout Editor tool, as indicated
in Figure 3-15. This warning indicates potential problems with the layout. For details on any problems, click on
the button:

Figure 3-15
When clicked, the Problems tool window (Figure 3-16) will appear, describing the nature of the problems:

Figure 3-16
This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected

22

Creating an Example Android App in Android Studio

within the layout file. In our example, only the following problem is listed:
button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:

Hardcoded string "Convert", should use @string resource
The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This I18N message informs us that a potential issue exists concerning the future internationalization of the
project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an “N”
and has 18 letters in between). The warning reminds us that attributes and values such as text strings should be
stored as resources wherever possible when developing Android applications. Doing so enables changes to the
appearance of the application to be made by modifying resource files instead of changing the application source
code. This can be especially valuable when translating a user interface to a different spoken language. If all of the
text in a user interface is contained in a single resource file, for example, that file can be given to a translator, who
will then perform the translation work and return the translated file for inclusion in the application. This enables
multiple languages to be targeted without the necessity for any source code changes to be made. In this instance,
we are going to create a new resource named convert_string and assign to it the string “Convert”

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-17:

Figure 3-17

After selecting this option, the Extract Resource panel (Figure 3-18) will appear. Within this panel, change the
resource name field to convert_string and leave the resource value set to Convert before clicking on the OK
button:

Figure 3-18

23

Creating an Example Android App in Android Studio

The next widget to be added is an EditText widget, into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars” Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout, as shown in Figure 3-19:

Figure 3-19

Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

Figure 3-20
Repeat the steps to set the id of the TextView widget to textView, if necessary.

Add any missing layout constraints by clicking on the Infer Constraints button. At this point, the layout should
resemble that shown in Figure 3-21:

24

Creating an Example Android App in Android Studio

Figure 3-21
3.8 Reviewing the Layout and Resource Files

Before moving on to the next step, we will look at some internal aspects of user interface design and resource
handling. In the previous section, we changed the user interface by modifying the activity_main.xml file using
the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a user-friendly way to edit the
underlying XML content of the file. In practice, there is no reason why you cannot modify the XML directly to
make user interface changes, and, in some instances, this may actually be quicker than using the Layout Editor
tool. In the top right-hand corner of the Layout Editor panel are the View Modes buttons marked A through C
in Figure 3-22 below:

Figure 3-22

By default, the editor will be in Design mode (button C), whereby only the visual representation of the layout is
displayed. In Code mode (A), the editor will display the XML for the layout, while in Split mode (B), both the
layout and XML are displayed, as shown in Figure 3-23:

25

Creating an Example Android App in Android Studio

Figure 3-23

The button to the left of the View Modes button (marked B in Figure 3-22 above) is used to toggle between Code
and Split modes quickly.

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button, and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although complexity and content vary, all user
interface layouts are structured in this hierarchical, XML-based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel, with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="match parent"
tools:context=".MainActivity"
android:background="#££2438" >

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the layout color changes in real-time to match the new setting in the XML file. Note also that a small
red square appears in the XML editor’s left margin (also called the gutter) next to the line containing the color
setting. This is a visual cue to the fact that the color red has been set on a property. Clicking on the red square
will display a color chooser allowing a different color to be selected:

26

Creating an Example Android App in Android Studio

Figure 3-24

Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently, the XML should read as follows:
<resources>
<string name="app name">AndroidSample</string>
<string name="convert string">Convert</string>
<string name="dollars hint">dollars</string>
</resources>

To demonstrate resources in action, change the string value currently assigned to the convert_string resource to
“Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file in the editor
panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor
tool in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights, and
then press Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml
file and take you to the line in that file where this resource is declared. Use this opportunity to revert the string
resource to the original “Convert” text and to add the following additional entry for a string resource that will
be referenced later in the app code:
<resources>

<string name="app name">AndroidSample</string>

<string name="convert string">Convert</string>

<string name="dollars hint">dollars</string>

<string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor by clicking on the Open editor
link in the top right-hand corner of the editor window. This will display the Translation Editor in the main panel
of the Android Studio window:

27

Creating an Example Android App in Android Studio

Figure 3-25

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.9 Adding Interaction

The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button, the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can
be implemented in several ways and is covered in a later chapter entitled “An Overview and Example of Android
Event Handling”. Return the layout editor to Design mode, select the Button widget in the layout editor, refer to
the Attributes tool window, and specify a method named convertCurrency as shown below:

Figure 3-26

Next, double-click on the MainActivity.java file in the Project tool window (app -> java -> <package name> ->
MainActivity) to load it into the code editor and add the code for the convertCurrency method to the class file so
that it reads as follows, noting that it is also necessary to import some additional Android packages:

package com.ebookfrenzy.androidsample;
import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.TextView;

28

Creating an Example Android App in Android Studio

import java.util.Locale;
public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity main);

public void convertCurrency (View view) {

EditText dollarText = findViewById(R.id.dollarText) ;
TextView textView = findViewById (R.id.textView) ;

if ('dollarText.getText().toString().equals("")) {

float dollarValue = Float.parseFloat(dollarText.getText () .toString())
float euroValue = dollarValue * 0.85F;
textView.setText (String. format (Locale.ENGLISH,"%$.2f", euroValue))

} else {
textView.setText (R.string.no_value_ string) ;

}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewByld, passing through the id assigned within the layout file. A check is then made to ensure
that the user has entered a dollar value, and if so, that value is extracted, converted from a String to a floating
point value, and converted to euros. Finally, the result is displayed on the TextView widget.

If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters. In
particular, the topic of accessing widgets from within code using findByViewld and an introduction to an
alternative technique referred to as view binding will be covered in the chapter entitled “An Overview of Android
View Binding”.

3.10 Summary

While not excessively complex, several steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to ensure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly string values, and briefly touched on layouts. Next, we looked at the
underlying XML used to store Android application user interface designs.

Finally, an onClick event was added to a Button connected to a method implemented to extract the user input
from the EditText component, convert it from dollars to euros and then display the result on the TextView.

29

Creating an Example Android App in Android Studio

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

30

Chapter 20

20. Working with ConstraintLayout
Chains and Ratios in Android Studio

The previous chapters have introduced the key features of the ConstraintLayout class and outlined the best
practices for ConstraintLayout-based user interface design within the Android Studio Layout Editor. Although
the concepts of ConstraintLayout chains and ratios were outlined in the chapter entitled “A Guide to the Android
ConstraintLayout”, we have not yet addressed how to use these features within the Layout Editor. Therefore,
this chapter’s focus is to provide practical steps on how to create and manage chains and ratios when using the
ConstraintLayout class.

20.1 Creating a Chain

Chains may be implemented by adding a few lines to an activity’s XML layout resource file or by using some
chain-specific features of the Layout Editor.

Consider a layout consisting of three Button widgets constrained to be positioned in the top-left, top-center, and
top-right of the ConstraintLayout parent, as illustrated in Figure 20-1:

Figure 20-1
To represent such a layout, the XML resource layout file might contain the following entries for the button
widgets:
<Button
android:id="@+id/buttonl”
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginStart="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintStart toStartOf="parent"
app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button2"
android:layout width="wrap content"

android:layout height="wrap content"

177

Working with ConstraintLayout Chains and Ratios in Android Studio

android:layout marginkEnd="8dp"

android:layout marginStart="8dp"

android:layout marginTop="16dp"
android:text="Button"

app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toStartOf="@+id/button3”
app:layout constraintStart toEndOf="@+id/buttonl”
app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button3"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toEndOf="parent"
app:layout constraintTop toTopOf="parent" />

As currently configured, there are no bi-directional constraints to group these widgets into a chain. To address
this, additional constraints need to be added from the right-hand side of button1 to the left side of button2 and
from the left side of button3 to the right side of button2 as follows:
<Button

android:id="@+id/buttonl"

android:layout width="wrap content"

android:layout height="wrap content"

android:layout marginStart="8dp"

android:layout marginTop="16dp"

android:text="Button"

app:layout constraintHorizontal bias="0.5"

app:layout constraintStart toStartOf="parent"

app:layout constraintTop toTopOf="parent"

app:layout_constraintEnd toStartOf="@+id/button2" />

<Button
android:id="@+id/button2"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginStart="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toStartOf="@+id/button3”
app:layout constraintStart toEndOf="@+id/buttonl”

178

Working with ConstraintLayout Chains and Ratios in Android Studio

app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button3"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toEndOf="parent"
app:layout constraintTop toTopOf="parent"
app:layout constraintStart toEndOf="@+id/button2" />

With these changes, the widgets now have bi-directional horizontal constraints configured. This constitutes a
ConstraintLayout chain represented visually within the Layout Editor by chain connections, as shown in Figure
20-2 below. Note that the chain has defaulted to the spread chain style in this configuration.

Figure 20-2

A chain may also be created by right-clicking on one of the views and selecting the Chains -> Create Horizontal
Chain or Chains -> Create Vertical Chain menu options.

20.2 Changing the Chain Style

If no chain style is configured, the ConstraintLayout will default to the spread chain style. The chain style can be
altered by right-clicking any of the widgets in the chain and selecting the Cycle Chain Mode menu option. Each
time the menu option is clicked, the style will switch to another setting in the order of spread, spread inside, and
packed.

Alternatively, the style may be specified in the Attributes tool window unfolding the layout_constraints property
and changing either the horizontal_chainStyle or vertical_chainStyle property depending on the orientation of
the chain:

Figure 20-3

179

Working with ConstraintLayout Chains and Ratios in Android Studio

20.3 Spread Inside Chain Style

Figure 20-4 illustrates the effect of changing the chain style to the spread inside chain style using the above
techniques:

Figure 20-4
20.4 Packed Chain Style

Using the same technique, changing the chain style property to packed causes the layout to change, as shown in
Figure 20-5:

Figure 20-5
20.5 Packed Chain Style with Bias

The positioning of the packed chain may be influenced by applying a bias value. The bias can be between 0.0 and
1.0, with 0.5 representing the parent’s center. Bias is controlled by selecting the chain head widget and assigning
a value to the layout_constraintHorizontal_bias or layout_constraintVertical_bias attribute in the Attributes
panel. Figure 20-6 shows a packed chain with a horizontal bias setting of 0.2:

Figure 20-6
20.6 Weighted Chain

The final area of chains to explore involves weighting the individual widgets to control how much space each
widget in the chain occupies within the available space. A weighted chain may only be implemented using
the spread chain style, and any widget within the chain that responds to the weight property must have the
corresponding dimension property (height for a vertical chain and width for a horizontal chain) configured
for match constraint mode. Match constraint mode for a widget dimension may be configured by selecting the
widget, displaying the Attributes panel, and changing the dimension to match_constraint (equivalent to 0dp).
In Figure 20-7, for example, the layout_width constraint for a button has been set to match_constraint (0dp) to
indicate that the width of the widget is to be determined based on the prevailing constraint settings:

180

Working with ConstraintLayout Chains and Ratios in Android Studio

Figure 20-7

Assuming that the spread chain style has been selected and all three buttons have been configured such that the
width dimension is set to match the constraints, the widgets in the chain will expand equally to fill the available
space:

Figure 20-8

The amount of space occupied by each widget relative to the other widgets in the chain can be controlled by
adding weight properties to the widgets. Figure 20-9 shows the effect of setting the layout_constraintHorizontal_
weight property to 4 on buttonl, and to 2 on both button2 and button3:

Figure 20-9
As a result of these weighting values, button1 occupies half of the space (4/8), while button2 and button3 each
occupy one-quarter (2/8) of the space.

20.7 Working with Ratios

ConstraintLayout ratios allow one widget dimension to be sized relative to the widget’s other dimension (also
referred to as aspect ratio). For example, an aspect ratio setting could be applied to an ImageView to ensure that
its width is always twice its height.

181

Working with ConstraintLayout Chains and Ratios in Android Studio

A dimension ratio constraint is configured by setting the constrained dimension to match constraint mode
and configuring the layout_constraintDimensionRatio attribute on that widget to the required ratio. This ratio
value may be specified as a float value or a width:height ratio setting. The following XML excerpt, for example,
configures a ratio of 2:1 on an ImageView widget:
<ImageView

android:layout width="0dp"

android:layout height="100dp"

android:i1d="@+id/imageView"

app:layout constraintDimensionRatio="2:1" />

The above example demonstrates how to configure a ratio when only one dimension is set to match constraint. A
ratio may also be applied when both dimensions are set to match constraint mode. This involves specifying the
ratio preceded with either an H or a W to indicate which of the dimensions is constrained relative to the other.

Consider, for example, the following XML excerpt for an ImageView object:
<ImageView
android:layout width="0dp"
android:layout height="0dp"
android:1d="@+id/imageView"
app:layout constraintBottom toBottomOf="parent"
app:layout constraintRight toRightOf="parent"
app:layout constraintLeft toLeftOf="parent"
app:layout constraintTop toTopOf="parent"

app:layout constraintDimensionRatio="W,1:3" />

In the above example, the height will be defined subject to the constraints applied to it. In this case, constraints
have been configured such that it is attached to the top and bottom of the parent view, essentially stretching the
widget to fill the entire height of the parent. On the other hand, the width dimension has been constrained to
be one-third of the ImageView’s height dimension. Consequently, whatever size screen or orientation the layout
appears on, the ImageView will always be the same height as the parent and the width one-third of that height.

The same results may also be achieved without manually editing the XML resource file. Whenever a widget
dimension is set to match constraint mode, a ratio control toggle appears in the Inspector area of the property
panel. Figure 20-10, for example, shows the layout width and height attributes of a button widget set to match
constraint mode and 100dp respectively, and highlights the ratio control toggle in the widget sizing preview:

Figure 20-10

By default, the ratio sizing control is toggled off. Clicking on the control enables the ratio constraint and displays
an additional field where the ratio may be changed:

182

Working with ConstraintLayout Chains and Ratios in Android Studio

Figure 20-11
20.8 Summary

Both chains and ratios are powerful features of the ConstraintLayout class intended to provide additional
options for designing flexible and responsive user interface layouts within Android applications. As outlined in
this chapter, the Android Studio Layout Editor has been enhanced to make it easier to use these features during
the user interface design process.

183

Chapter 25

25. A Guide to Using Apply Changes
in Android Studio

Now that some of the basic concepts of Android development using Android Studio have been covered, this is
a good time to introduce the Android Studio Apply Changes feature. As all experienced developers know, every
second spent waiting for an app to compile and run is better spent writing and refining code.

25.1 Introducing Apply Changes

In early versions of Android Studio, each time a change to a project needed to be tested, Android Studio would
recompile the code, convert it to Dex format, generate the APK package file, and install it on the device or
emulator. Having performed these steps, the app would finally be launched and ready for testing. Even on a
fast development system, this process takes considerable time to complete. It is not uncommon for it to take a
minute or more for this process to complete for a large application.

Apply Changes, in contrast, allows many code and resource changes within a project to be reflected nearly
instantaneously within the app while it is already running on a device or emulator session.

Consider, for example, an app being developed in Android Studio which has already been launched on a device
or emulator. If changes are made to resource settings or the code within a method, Apply Changes will push
the updated code and resources to the running app and dynamically “swap” the changes. The changes are then
reflected in the running app without the need to build, deploy and relaunch the entire app. This often allows
changes to be tested in a fraction of the time without Apply Changes.

25.2 Understanding Apply Changes Options

Android Studio provides three options for applying changes to a running app in the form of Run App, Apply
Changes and Restart Activity and Apply Code Changes. These options can be summarized as follows:

o Run App - Stops the currently running app and restarts it. If no changes have been made to the project since
it was last launched, this option will restart the app. If, on the other hand, changes have been made to the
project, Android Studio will rebuild and re-install the app onto the device or emulator before launching it.

« Apply Code Changes - This option can be used when the only changes made to a project involve modifications
to the body of existing methods or when a new class or method has been added. When selected, the changes
will be applied to the running app without needing to restart the app or the currently running activity. This
mode cannot, however, be used when changes have been made to any project resources, such as a layout file.
Other restrictions include removing methods, changing a method signature, renaming classes, and other
structural code changes. It is also impossible to use this option when changes have been made to the project
manifest.

o Apply Changes and Restart Activity - When selected, this mode will dynamically apply any code or resource
changes made within the project and restart the activity without re-installing or restarting the app. Unlike the
Apply Code changes option, this can be used when changes have been made to the code and resources of the
project. However, the same restrictions involving some structural code changes and manifest modifications

apply.

211

A Guide to Using Apply Changes in Android Studio

25.3 Using Apply Changes

When a project has been loaded into Android Studio but is not yet running on a device or emulator, it can be
launched as usual using either the run (marked A in Figure 25-1) or debug (B) button located in the toolbar:

Figure 25-1

After the app has launched and is running, a stop button (marked A in Figure 25-2) will appear, and the Apply
Changes and Restart Activity (B) and Apply Code Changes (C) buttons will be enabled:

Figure 25-2

If the changes cannot be applied when one of the Apply Changes buttons is selected, Android Studio will display
a message indicating the failure and an explanation. Figure 25-3, for example, shows the message displayed by
Android Studio when the Apply Code Changes option is selected after a change has been made to a resource file:

Figure 25-3

In this situation, the solution is to use the Apply Changes and Restart Activity option (for which alink is provided).
Similarly, the following message will appear when an attempt to apply changes that involve the removal of a
method is made:

Figure 25-4

In this case, the only option is to click on the Run App button to re-install and restart the app. As an alternative
to manually selecting the correct option, Android Studio may be configured to automatically fall back to
performing a Run App operation.

212

A Guide to Using Apply Changes in Android Studio

25.4 Configuring Apply Changes Fallback Settings

The Apply Changes fallback settings are located in the Android Studio Settings dialog. Within the Settings
dialog, select the Build, Execution, Deployment entry in the left-hand panel, followed by Deployment, as shown
in Figure 25-5:

Figure 25-5

Once the required options have been enabled, click on Apply, followed by the OK button to commit the changes
and dismiss the dialog. After these defaults have been enabled, Android Studio will automatically re-install and
restart the app when necessary.

25.5 An Apply Changes Tutorial
Launch Android Studio, select the New Project option from the welcome screen, and choose the Basic Views

Activity template within the resulting new project dialog before clicking the Next button.

Enter ApplyChanges into the Name field and specify com.ebookfrenzy.applychanges as the package name. Before
clicking the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

25.6 Using Apply Code Changes
Begin by clicking the run button and selecting an emulator or physical device as the run target. After clicking the

run button, track the time before the example app appears on the device or emulator.

Once running, click on the action button (the button displaying an envelope icon in the screen’s lower right-hand
corner). Note that a Snackbar instance appears, displaying text which reads “Replace with your own action”, as
shown in Figure 25-6:

Figure 25-6

Once the app is running, the Apply Changes buttons should have been enabled, indicating that certain project
changes can be applied without reinstalling and restarting the app. To see this in action, edit the MainActivity.
java file, locate the onCreate method, and modify the action code so that a different message is displayed when
the action button is selected:

213

A Guide to Using Apply Changes in Android Studio

binding.fab.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick(View view) {
Snackbar.make (view, "Apply Changes is Amazing!", Snackbar.LENGTH LONG)

.setAction ("Action", null).show();

)

With the code change implemented, click the Apply Code Changes button and note that a message appears
within a few seconds indicating the app has been updated. Tap the action button and note that the new message
is now displayed in the Snackbar.

25.7 Using Apply Changes and Restart Activity

Any resource change will require the use of the Apply Changes and Restart Activity option. Within Android
Studio, select the app -> res -> layout -> fragment_first.xml layout file. With the Layout Editor tool in Design
mode, select the default TextView component and change the text property in the attributes tool window to
“Hello Android”

Ensure that the fallback options outlined in “Configuring Apply Changes Fallback Settings” above are turned
off before clicking on the Apply Code Changes button. Note that the request fails because this change involves
project resources. Click on the Apply Changes and Restart Activity button and verify that the activity restarts and
displays the new text on the TextView widget.

25.8 Using Run App

As previously described, removing a method requires the complete re-installation and restart of the running
app. To experience this, edit the MainActivityjava file and add a new method after the onCreate method as
follows:

public void demoMethod () {
}

Use the Apply Code Changes button and confirm that the changes are applied without re-installing the app.

Next, delete the new method and verify that clicking on either of the two Apply Changes buttons will result in
the request failing. The only way to run the app after such a change is to click the Run App button.

25.9 Summary

Apply Changes is a feature of Android Studio designed to significantly accelerate the code, build and run cycle
performed when developing an app. The Apply Changes feature can push updates to the running application, in
many cases, without reinstalling or restarting the app. Apply Changes provides several different levels of support
depending on the nature of the modification being applied to the project.

214

Chapter 32

32. Modern Android App
Architecture with Jetpack

For many years, Google did not recommend a specific approach to building Android apps other than to provide
tools and development kits while letting developers decide what worked best for a particular project or individual
programming style. That changed in 2017 with the introduction of the Android Architecture Components,
which, in turn, became part of Android Jetpack when it was released in 2018.

This chapter provides an overview of the concepts of Jetpack, Android app architecture recommendations, and
some key architecture components. Once the basics have been covered, these topics will be covered in more
detail and demonstrated through practical examples in later chapters.

32.1 What is Android Jetpack?

Android Jetpack consists of Android Studio, the Android Architecture Components, the Android Support
Library, and a set of guidelines recommending how an Android App should be structured. The Android
Architecture Components are designed to make it quicker and easier to perform common tasks when developing
Android apps while also conforming to the key principle of the architectural guidelines.

While all Android Architecture Components will be covered in this book, this chapter will focus on the key
architectural guidelines and the ViewModel, LiveData, and Lifecycle components while introducing Data
Binding and Repositories.

Before moving on, it is important to understand that the Jetpack approach to app development is optional.
While highlighting some of the shortcomings of other techniques that have gained popularity over the years,
Google stopped short of completely condemning those approaches to app development. Google is taking the
position that while there is no right or wrong way to develop an app, there is a reccommended way.

32.2 The “Old” Architecture

In the chapter entitled “Creating an Example Android App in Android Studio”, an Android project was created
consisting of a single activity that contained all of the code for presenting and managing the user interface
together with the back-end logic of the app. Until the introduction of Jetpack, the most common architecture
followed this paradigm with apps consisting of multiple activities (one for each screen within the app), with each
activity class to some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example, an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

32.3 Modern Android Architecture

At the most basic level, Google now advocates single-activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept referred to as “separation of concerns”). One of the keys to this approach

265

Modern Android App Architecture with Jetpack

is the ViewModel component.

32.4 The ViewModel Component

The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the
code responsible for displaying and managing the user interface and interacting with the operating system.
When designed this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data those controllers need.

The ViewModel only knows about the data model and corresponding logic. It knows nothing about the user
interface and does not attempt to directly access or respond to events relating to views within the user interface.
When a Ul controller needs data to display, it asks the ViewModel to provide it. Similarly, when the user enters
data into a view within the user interface, the UI controller passes it to the ViewModel for handling.

This separation of responsibility addresses the issues relating to the lifecycle of UI controllers. Regardless of how
often the UT controller is recreated during the lifecycle of an app, the ViewModel instances remain in memory,
thereby maintaining data consistency. For example, a ViewModel used by an activity will remain in memory
until the activity finishes, which, in the single activity app, is not until the app exits.

Figure 32-1
32.5 The LiveData Component

Consider an app that displays real-time data, such as the current price of a financial stock. The app could
use a stock price web service to continuously update the data model within the ViewModel with the latest
information. This real-time data is of use only if it is displayed to the user promptly. There are only two ways that
the UI controller can ensure that the latest data is displayed in the user interface. One option is for the controller
to continuously check with the ViewModel to determine if the data has changed since it was last displayed.
However, the problem with this approach is that it could be more efficient. To maintain the real-time nature of
the data feed, the UI controller would have to run on a loop, continuously checking for the data to change.

A better solution would be for the UI controller to receive a notification when a specific data item within a
ViewModel changes. This is made possible by using the LiveData component. LiveData is a data holder that
allows a value to become observable. In basic terms, an observable object can notify other objects when changes
to its data occur, thereby solving the problem of ensuring that the user interface always matches the data within
the ViewModel.

This means, for example, that a UI controller interested in a ViewModel value can set up an observer, which will,
in turn, be notified when that value changes. In our hypothetical application, for example, the stock price would

266

Modern Android App Architecture with Jetpack

be wrapped in a LiveData object within the ViewModel, and the UI controller would assign an observer to the
value, declaring a method to be called when the value changes. When triggered by data change, this method will
read the updated value from the ViewModel and use it to update the user interface.

Figure 32-2

A LiveData instance may also be declared as mutable, allowing the observing entity to update the underlying
value held within the LiveData object. The user might, for example, enter a value in the user interface that needs
to overwrite the value stored in the ViewModel.

Another of the key advantages of using LiveData is that it is aware of the lifecycle state of its observers. If,
for example, an activity contains a LiveData observer, the corresponding LiveData object will know when the
activity’s lifecycle state changes and respond accordingly. If the activity is paused (perhaps the app is put into the
background), the LiveData object will stop sending events to the observer. Suppose the activity has just started
or resumes after being paused. In that case, the LiveData object will send a LiveData event to the observer so
that the activity has the most up-to-date value. Similarly, the LiveData instance will know when the activity is
destroyed and remove the observer to free up resources.

So far, we've only talked about UI controllers using observers. In practice, however, an observer can be used
within any object that conforms to the Jetpack approach to lifecycle management.

32.6 ViewModel Saved State

Android allows the user to place an active app in the background and return to it after performing other tasks
on the device (including running other apps). When a device runs low on resources, the operating system will
rectify this by terminating background app processes, starting with the least recently used app. However, when
the user returns to the terminated background app, it should appear in the same state as when it was placed in
the background, regardless of whether it was terminated. In terms of the data associated with a ViewModel, this
can be implemented using the ViewModel Saved State module. This module allows values to be stored in the
app’s saved state and restored in case of system-initiated process termination. This topic will be covered later in
the “An Android ViewModel Saved State Tutorial” chapter.

32.7 LiveData and Data Binding

Android Jetpack includes the Data Binding Library, which allows data in a ViewModel to be mapped directly to
specific views within the XML user interface layout file. In the AndroidSample project created earlier, code had
to be written to obtain references to the EditText and TextView views and to set and get the text properties to

267

Modern Android App Architecture with Jetpack

reflect data changes. Data binding allows the LiveData value stored in the ViewModel to be referenced directly
within the XML layout file avoiding the need to write code to keep the layout views updated.

Figure 32-3

Data binding will be covered in greater detail, starting with the chapter “An Overview of Android Jetpack Data
Binding”.

32.8 Android Lifecycles

The duration from when an Android component is created to the point that it is destroyed is called the lifecycle.
During this lifecycle, the component will change between different lifecycle states, usually under the operating
systemy’s control and in response to user actions. An activity, for example, will begin in the initialized state before
transitioning to the created state. Once the activity runs, it will switch to the started state, from which it will cycle
through various states, including created, started, resumed, and destroyed.

Many Android Framework classes and components allow other objects to access their current state. Lifecycle
observers may also be used so that an object receives a notification when the lifecycle state of another object
changes. The ViewModel component uses this technique behind the scenes to identify when an observer
has restarted or been destroyed. This functionality is not limited to Android framework and architecture
components. It may also be built into any other classes using a set of lifecycle components included with the
architecture components.

Objects that can detect and react to lifecycle state changes in other objects are said to be lifecycle-aware. In
contrast, objects that provide access to their lifecycle state are called lifecycle owners. The chapter entitled
“Working with Android Lifecycle-Aware Components” will cover Lifecycles in greater detail.

32.9 Repository Modules

If a ViewModel obtains data from one or more external sources (such as databases or web services, it is important
to separate the code involved in handling those data sources from the ViewModel class. Failure to do this would,
after all, violate the separation of concerns guidelines. To avoid mixing this functionality with the ViewModel,
Google’s architecture guidelines recommend placing this code in a separate Repository module.

A repository is not an Android architecture component but a Java class created by the app developer that is
responsible for interfacing with the various data sources. The class then provides an interface to the ViewModel,
allowing that data to be stored in the model.

268

Modern Android App Architecture with Jetpack

Figure 32-4
32.10 Summary

Until recently, Google has tended not to recommend any particular approach to structuring an Android app.
That has now changed with the introduction of Android Jetpack, consisting of tools, components, libraries, and
architecture guidelines. Google now recommends that an app project be divided into separate modules, each
responsible for a particular area of functionality, otherwise known as “separation of concerns”.

In particular, the guidelines recommend separating the view data model of an app from the code responsible
for handling the user interface. In addition, the code responsible for gathering data from data sources such as
web services or databases should be built into a separate repository module instead of being bundled with the
view model.

Android Jetpack includes the Android Architecture Components, designed to make developing apps that
conform to the recommended guidelines easier. This chapter has introduced the ViewModel, LiveData, and
Lifecycle components. These will be covered in more detail, starting with the next chapter. Other architecture
components not mentioned in this chapter will be covered later in the book.

269

Chapter 34

34. An Android Jetpack LiveData
Tutorial

The previous chapter began building an app to conform to the recommended Jetpack architecture guidelines.
These initial steps involved implementing the data model for the app user interface within a ViewModel instance.

This chapter will further enhance the app design using the LiveData architecture component. Once LiveData
support has been added to the project in this chapter, the next chapters (starting with “An Overview of Android
Jetpack Data Binding”) will use the Jetpack Data Binding library to eliminate even more code from the project.

34.1 LiveData - A Recap

LiveData was previously introduced in the “Modern Android App Architecture with Jetpack” chapter. As described
earlier, the LiveData component can be used as a wrapper around data values within a view model. Once
contained in a LiveData instance, those variables become observable to other objects within the app, typically
Ul controllers such as Activities and Fragments. This allows the UTI controller to receive a notification whenever
the underlying LiveData value changes. An observer is set up by creating an instance of the Observer class and
defining an onChange() method to be called when the LiveData value changes. Once the Observer instance has
been created, it is attached to the LiveData object via a call to the LiveData object’s observe() method.

LiveData instances can be declared mutable using the MutableLiveData class, allowing both the ViewModel and
UI controller to change the underlying data value.

34.2 Adding LiveData to the ViewModel

Launch Android Studio, open the ViewModelDemo project created in the previous chapter, and open the
MainViewModel.java file, which should currently read as follows:

package com.ebookfrenzy.viewmodeldemo;
import androidx.lifecycle.ViewModel;
public class MainViewModel extends ViewModel ({

private static final Float rate = 0.74F;
private String dollarText = "";

private Float result = OF;

public void setAmount (String wvalue) {
this.dollarText = value;

result = Float.parseFloat (dollarText) *rate;

public Float getResult ()
{
279

An Android Jetpack LiveData Tutorial

return result;

}

This stage in the chapter aims to wrap the result variable in a MutableLiveData instance (the object will need
to be mutable so that the value can be changed each time the user requests a currency conversion). Begin by
modifying the class so that it now reads as follows, noting that an additional package needs to be imported when
making use of LiveData:

package com.ebookfrenzy.viewmodeldemo;

import androidx.lifecycle.MutablelLiveData;

import androidx.lifecycle.ViewModel;
public class MainViewModel extends ViewModel ({

private static final Float rate = 0.74F;

private String dollarText = "";

privateFloat—resutt—0F;

final private MutableliveData<Float> result = new MutableLiveData<>() ;

public void setAmount (String value) {
this.dollarText = value;

result = Float.parseFloat (dollarText) *rate;

public Float getResult()
{

return result;

}

Now that the result variable is contained in a mutable LiveData instance, both the setAmount() and getResult()
methods must be modified. In the case of the setAmount() method, a value can no longer be assigned to the
result variable using the assignment (=) operator. Instead, the LiveData setValue() method must be called,
passing through the new value as an argument. As currently implemented, the getResult() method is declared to
return a Float value and must be changed to return a MutableLiveData object. Making these remaining changes
results in the following class file:

package com.ebookfrenzy.viewmodeldemo;

import androidx.lifecycle.MutableLiveData;

import androidx.lifecycle.ViewModel;
public class MainViewModel extends ViewModel ({

private static final Float rate = 0.74F;
private String dollarText = "";
final private MutablelLiveData<Float> result = new MutablelLiveData<>();

280

An Android Jetpack LiveData Tutorial

public void setAmount (String wvalue) {
this.dollarText = value;
resutt—Ftoat-parseFtoattdottarfext)y*rate;
result.setValue (Float.parseFloat (dollarText) *rate) ;

public MutablelLiveData<Float> getResult()
{

return result;

)
34.3 Implementing the Observer

Now that the conversion result is contained within a LiveData instance, the next step is configuring an observer
within the UI controller, which, in this example, is the FirstFragment class. Locate the FirstFragment.java class
(app -> java -> <package name> -> FirstFragment), double-click on it to load it into the editor, and modify the
onViewCreated() method to create a new Observer instance named resultObserver:

package com.ebookfrenzy.viewmodeldemo;

import androidx.lifecycle.Observer;

@QOverride
public void onViewCreated (@NonNull View view, @Nullable Bundle
savedInstanceState) {

super.onViewCreated (view, savedInstanceState);

binding.resultText.setText (String.format (Locale.ENGLISH,"%.2f",
viewModel.getResult()));

final Observer<Float> resultObserver = new Observer<Float>() {
@Override
public void onChanged (@Nullable final Float result) {
binding.resultText.setText (String.format (Locale.ENGLISH,
"%.2f", result));

}

The resultObserver instance declares the onChanged() method which, when called, is passed the current result
value, which it then converts to a string and displays on the resultText TextView object. The next step is to add
the observer to the result LiveData object, a reference that can be obtained via a call to the getResult() method of
the ViewModel object. Since updating the result TextView is now the responsibility of the onChanged() callback

281

An Android Jetpack LiveData Tutorial

method, the existing lines of code to perform this task can now be deleted:

@Override
public void onViewCreated (@NonNull View view, @Nullable Bundle
savedInstanceState) {

super.onViewCreated (view, savedInstanceState);

final Observer<Float> resultObserver = new Observer<Float>() {
@Override
public void onChanged(@Nullable final Float result) {
binding.resultText.setText (String.format (Locale.ENGLISH,
"%.2f", result));

}i
viewModel.getResult () .observe (getViewLifecycleOwner () , resultObserver) ;

binding.convertButton.setOnClickListener (v -> {
if (!binding.dollarText.getText ().toString().equals("")) {
viewModel.setAmount (String.format (Locale.ENGLISH, "%s"

binding.dollarText.getText ()));

2 V4 =] hl =T i S N WA Y
rewMoger.getnesutrc () /))
} else {
binding.resultText.setText ("No Value");

|
}

Compile and run the app, enter a value into the dollar field, click on the Convert button, and verify that the
converted euro amount appears on the TextView. This confirms that the observer received notification that the
result value had changed and called the onChanged() method to display the latest data.

Note in the above implementation of the on ViewCreated() method that the line of code responsible for displaying
the current result value each time the method was called was removed. This was originally put in place to ensure
that the displayed value was recovered if the Fragment was recreated for any reason. Because LiveData monitors
the lifecycle status of its observers, this step is no longer necessary. When LiveData detects that the UI controller
was recreated, it automatically triggers any associated observers and provides the latest data. Verify this by
rotating the device while a euro value is displayed on the TextView object and confirming that the value is not
lost.

Before moving on to the next chapter, close the project, copy the ViewModelDemo project folder, and save it as
ViewModelDemo_LiveData to be used later when saving the ViewModel state.

282

An Android Jetpack LiveData Tutorial

34.4 Summary

This chapter demonstrated the use of the Android LiveData component to ensure that the data displayed to
the user always matches that stored in the ViewModel. This relatively simple process consisted of wrapping a
ViewModel data value within a LiveData object and setting up an observer within the UI controller subscribed
to the LiveData value. Each time the LiveData value changes, the observer is notified, and the onChanged()
method is called and passed the updated value.

Adding LiveData support to the project has gone some way towards simplifying the design of the project.
Additional and significant improvements are also possible using the Data Binding Library, details of which will
be covered in the next chapter.

283

Chapter 42

42. An Introduction to MotionLayout

The MotionLayout class provides an easy way to add animation effects to the views of a user interface layout.
This chapter will begin by providing an overview of MotionLayout and introduce the concepts of MotionScenes,
Transitions, and Keyframes. Once these basics have been covered, the next two chapters (entitled “An Android
MotionLayout Editor Tutorial” and “A MotionLayout KeyCycle Tutorial”) will provide additional detail and
examples of MotionLayout animation in action through the creation of example projects.

42.1 An Overview of MotionLayout

MotionLayout is a layout container, the primary purpose of which is to animate the transition of views within
a layout from one state to another. MotionLayout could, for example, animate the motion of an ImageView
instance from the top left-hand corner of the screen to the bottom right-hand corner over a specified time.
In addition to the position of a view, other attribute changes may also be animated, such as the color, size, or
rotation angle. These state changes can also be interpolated (such that a view moves, rotates, and changes size
throughout the animation).

The motion of a view using MotionLayout may be performed in a straight line between two points or
implemented to follow a path comprising intermediate points at different positions between the start and end
points. MotionLayout also supports using touches and swipes to initiate and control animation.

MotionLayout animations are declared entirely in XML and do not typically require writing code. These XML
declarations may be implemented manually in the Android Studio code editor, visually using the MotionLayout
editor, or combining both approaches.

42.2 MotionLayout

When implementing animation, the ConstraintLayout container typically used in a user interface must first be
converted to a MotionLayout instance (a task which can be achieved by right-clicking on the ConstraintLayout
in the layout editor and selecting the Convert to MotionLayout menu option). MotionLayout also requires at
least version 2.0.0 of the ConstraintLayout library.

Unsurprisingly since it is a subclass of ConstraintLayout, MotionLayout supports all of the layout features of the
ConstraintLayout. Therefore, a user interface layout can be similarly designed when using MotionLayout for
views that do not require animation.

For views that are to be animated, two ConstraintSets are declared, defining the appearance and location of the
view at the start and end of the animation. A transition declaration defines keyframes to apply additional effects
to the target view between these start and end states and click and swipe handlers used to start and control the
animation.

The start and end ConstraintSets and the transitions are declared within a MotionScene XML file.

42.3 MotionScene

As we have seen in earlier chapters, an XML layout file contains the information necessary to configure the
appearance and layout behavior of the static views presented to the user, and this is still the case when using
MotionLayout. For non-static views (in other words, the views that will be animated), those views are still
declared within the layout file, but the start, end, and transition declarations related to those views are stored
in a separate XML file referred to as the MotionScene file (so called because all of the declarations are defined

337

An Introduction to MotionLayout

within a MotionScene element). This file is imported into the layout XML file and contains the start and end
ConstraintSets and Transition declarations (a single file can contain multiple ConstraintSet pairs and Transition
declarations, allowing different animations to be targeted to specific views within the user interface layout).

The following listing shows a template for a MotionScene file:

<?xml version="1.0" encoding="utf-8"?>

<MotionScene
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:motion="http://schemas.android.com/apk/res-auto">

<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
</KeyFrameSet>

</Transition>

<ConstraintSet android:id="Q@+id/start">
</ConstraintSet>

<ConstraintSet android:id="@+id/end">
</ConstraintSet>

</MotionScene>

In the above XML, ConstraintSets named start and end (though any name can be used) have been declared,
which, at this point, are yet to contain any constraint elements. The Transition element defines that these
ConstraintSets represent the animation start and end points and contain an empty KeyFrameSet element ready
to be populated with additional animation keyframe entries. The Transition element also includes a millisecond
duration property to control the running time of the animation.

ConstraintSets do not have to imply the motion of a view. It is possible to have the start and end sets declare the
same location on the screen and then use the transition to animate other property changes, such as scale and
rotation angle.

ConstraintSets do not have to imply the motion of a view. It is possible, for example, to have the start and end
sets declare the same location on the screen and then use the transition to animate other property changes, such
as scale and rotation angle.

42 .4 Configuring ConstraintSets

The ConstraintSets in the MotionScene file allow the full set of ConstraintLayout settings to be applied to a view
regarding positioning, sizing, and relation to the parent and other views. In addition, the following attributes
may also be included within the ConstraintSet declarations:

o alpha
« visibility
« elevation

« rotation
338

An Introduction to MotionLayout
e rotationX
o rotationY
« translationX

translationY

translationZ

« scaleX
o scaleY

For example, to rotate the view by 180° during the animation, the following could be declared within the start
and end constraints:
<ConstraintSet android:id="@+id/start">

<Constraint

motion:layout constraintStart toStartOf="parent"
android:rotation="0">
</Constraint>
</ConstraintSet>

<ConstraintSet android:id="Q@+id/end">

<Constraint

motion:layout constraintBottom toBottomOf="parent"
android:rotation="180">
</Constraint>
</ConstraintSet>

The above changes tell MotionLayout that the view is to start at 0° and then, during the animation, rotate a full
180° before coming to rest upside-down.

42.5 Custom Attributes

In addition to the standard attributes listed above, it is possible to specify a range of custom attributes (declared
using CustomAttribute). In fact, just about any property available on the view type can be specified as a
custom attribute for inclusion in an animation. To identify the attribute’s name, find the getter/setter name
from the documentation for the target view class, remove the get/set prefix, and lower the case of the first
remaining character. For example, to change the background color of a Button view in code, we might call the
setBackgroundColor() setter method as follows:

myButton.setBackgroundColor (Color.RED)

When setting this attribute in a constraint set or keyframe, the attribute name will be backgroundColor. In
addition to the attribute name, the value must also be declared using the appropriate type from the following
list of options:

« motion:customBoolean - Boolean attribute values.

339

An Introduction to MotionLayout

« motion:customColorValue - Color attribute values.

o motion:customDimension - Dimension attribute values.

« motion:customFloatValue - Floating point attribute values.
« motion:customIntegerValue - Integer attribute values.

» motion:customStringValue - String attribute values

For example, a color setting will need to be assigned using the customColorValue type :
<CustomAttribute
motion:attributeName="backgroundColor"

motion:customColorValue="#43CC76" />

The following excerpt from a MotionScene file, for example, declares start and end constraints for a view in
addition to changing the background color from green to red:

<ConstraintSet android:id="@+id/start">
<Constraint
android:layout width="wrap content"
android:layout height="wrap content"
motion:layout editor absoluteX="21dp"
android:id="@+id/button"
motion:layout constraintTop toTopOf="parent"
motion:layout constraintStart toStartOf="parent" >
<CustomAttribute
motion:attributeName="backgroundColor"
motion:customColorValue="#33CC33" />
</Constraint>
</ConstraintSet>

<ConstraintSet android:id="@+id/end">
<Constraint
android:layout width="wrap content"
android:layout height="wrap content"
motion:layout editor absolutey="21dp"
android:id="@+id/button"
motion:layout constraintEnd toEndOf="parent"
motion:layout constraintBottom toBottomOf="parent" >
<CustomAttribute
motion:attributeName="backgroundColor"
motion:customColorValue="#F80A1F" />
</Constraint>
</ConstraintSet>

340

An Introduction to MotionLayout

42.6 Triggering an Animation

Without some event to tell MotionLayout to start the animation, none of the settings in the MotionScene file will
affect the layout (except that the view will be positioned based on the setting in the start ConstraintSet).

The animation can be configured to start in response to either screen tap (OnClick) or swipe motion (OnSwipe)
gesture. The OnClick handler causes the animation to start and run until completion, while OnSwipe will
synchronize the animation to move back and forth along the timeline to match the touch motion. The OnSwipe
handler will also respond to “flinging” motions on the screen. The OnSwipe handler also provides options
to configure how the animation reacts to dragging in different directions and the side of the target view to
which the swipe is to be anchored. This allows, for example, left-ward dragging motions to move a view in the
corresponding direction while preventing an upward motion from causing a view to move sideways (unless, of
course, that is the required behavior).

The OnSwipe and OnClick declarations are contained within the Transition element of a MotionScene file.
In both cases, the view id must be specified. For example, to implement an OnSwipe handler responding to
downward drag motions anchored to the bottom edge of a view named button, the following XML would be
placed in the Transition element:

<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
</KeyFrameSet>
<OnSwipe
motion: touchAnchorId="@+id/button"
motion:dragDirection="dragDown"
motion:touchAnchorSide="bottom" />
</Transition>

Alternatively, to add an OnClick handler to the same button:
<OnClick motion:targetId="@id/button"
motion:clickAction="toggle" />

In the above example, the action has been set to foggle mode. This mode and the other available options can be
summarized as follows:

o toggle - Animates to the opposite state. For example, if the view is currently at the transition start point, it will
transition to the end point, and vice versa.

o jumpToStart - Changes immediately to the start state without animation.
« jumpToEnd - Changes immediately to the end state without animation.
« transitionToStart - Transitions with animation to the start state.

« transitionToEnd - Transitions with animation to the end state.

341

An Introduction to MotionLayout

42.7 Arc Motion

By default, a movement of view position will travel in a straight line between the start and end points. To change
the motion to an arc path, use the pathMotionArc attribute as follows within the start constraint, configured with
either a startHorizontal or startVertical setting to define whether the arc is to be concave or convex:
<ConstraintSet android:id="@+id/start">
<Constraint

android:layout width="wrap content"

android:layout height="wrap content"

motion:layout editor absoluteX="21ldp"

android:id="@+id/button"

motion:layout constraintTop toTopOf="parent"

motion:layout constraintStart toStartOf="parent"

motion:pathMotionArc="startVertical" >

Figure 42-1 illustrates startVertical and startHorizontal arcs in comparison to the default straight line motion:

Figure 42-1
42.8 Keyframes

All of the ConstraintSet attributes outlined so far only apply to the start and end points of the animation. In other
words, if the rotation property were set to 180° on the end point, the rotation would begin when the animation
starts and complete when the end point is reached. It is not, therefore, possible to configure the rotation to reach
the full 180° at a point 50% of the way through the animation and then rotate back to the original orientation by
the end. Fortunately, this type of effect is available using Keyframes.

Keyframes are used to define intermediate points during the animation at which state changes are to occur.
Keyframes could, for example, be declared such that the background color of a view is to have transitioned to
blue at a point 50% of the way through the animation, green at the 75% point, and then back to the original color
by the end of the animation. Keyframes are implemented within the Transition element of the MotionScene file
embedded into the KeyFrameSet element.

MotionLayout supports several types of Keyframe which can be summarized as follows:

42.8.1 Attribute Keyframes

Attribute Keyframes (declared using KeyAttribute) allow view attributes to be changed at intermediate points
in the animation timeline. KeyAttribute supports the attributes listed above for ConstraintSets combined with
the ability to specify where the change will take effect in the animation timeline. For example, the following

342

An Introduction to MotionLayout

Keyframe declaration will gradually cause the button view to double in size horizontally (scaleX) and vertically
(scaleY), reaching full size at 50% through the timeline. For the remainder of the timeline, the view will decrease
in size to its original dimensions:
<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
<KeyAttribute
motion:motionTarget="@+id/button"
motion: framePosition="50"
android:scaleX="2.0" />
<KeyAttribute
motion:motionTarget="@+id/button"
motion: framePosition="50"
android:scaley="2.0" />
</KeyFrameSet>

42.8.2 Position Keyframes

Position keyframes (KeyPosition) modify the path followed by a view as it moves between the start and
end locations. By placing key positions at different points on the timeline, a path of just about any level of
complexity can be applied to an animation. Positions are declared using x and y coordinates combined with
the corresponding points in the transition timeline. These coordinates must be declared relative to one of the
following coordinate systems:

o parentRelative - The x and y coordinates are relative to the parent container where the coordinates are
specified as a percentage (represented as a value between 0.0 and 1.0):

Figure 42-2

343

An Introduction to MotionLayout

o deltaRelative - Instead of relative to the parent, the x and y coordinates are relative to the start and end
positions. For example, the start point is (0, 0) the end point (1, 1). Keep in mind that the x and y coordinates
can be negative values):

Figure 42-3

« pathRelative - The x and y coordinates are relative to the path, where the straight line between the start and
end points serves as the graph’s X-axis. Once again, coordinates are represented as a percentage (0.0 to 1.0).
This is similar to the deltaRelative coordinate space but takes into consideration the angle of the path. Once
again coordinates may be negative:

Figure 42-4

344

An Introduction to MotionLayout

As an example, the following ConstraintSets declare start and end points on either side of a device screen. By
default, a view transition using these points would move in a straight line across the screen, as illustrated in
Figure 42-5:

Figure 42-5

Suppose, however, that the view is required to follow a path similar to that shown in Figure 42-6 below:

Figure 42-6
To achieve this, keyframe position points could be declared within the transition as follows:
<KeyPosition
motion:motionTarget="@+id/button”
motion:framePosition="25"
motion:keyPositionType="pathRelative"
motion:percentY="0.3"

motion:percentX="0.25"/>

<KeyPosition
motion:motionTarget="@+id/button"
motion:framePosition="75"
motion:keyPositionType="pathRelative"
motion:percentY="-0.3"

motion:percentX="0.75"/>

The above elements create keyframe position points 25% and 75% through the path using the pathRelative
coordinate system. The first position is placed at coordinates (0.25, 0.3) and the second at (0.75, -0.3). These
position keyframes can be visualized as illustrated in Figure 42-7 below:

345

An Introduction to MotionLayout

Figure 42-7
42.9 Time Linearity

Without additional settings, the animations outlined above will be performed at a constant speed. To vary
the animation speed (for example, so that it accelerates and then decelerates), the transition easing attribute
(transitionEasing) can be used within a ConstraintSet or Keyframe.

For complex easing requirements, the linearity can be defined by plotting points on a cubic Bézier curve, for
example:

motion:layout constraintBottom toBottomOf="parent"
motion:transitionEasing="cubic(0.2, 0.7, 0.3, 1)"
android:rotation="360">

If you are unfamiliar with Bézier curves, consider using the curve generator online at the following URL:
https://cubic-bezier.com/

For most requirements, however, easing can be specified using the built-in standard, accelerate and decelerate
values:

motion:layout constraintBottom toBottomOf="parent"
motion:transitionEasing="decelerate"

android:rotation="360">

42.10 KeyTrigger

The trigger keyframe (KeyTrigger) allows a method on a view to be called when the animation reaches a
specified frame position within the animation timeline. This also takes into consideration the direction of the

346

https://cubic-bezier.com/

An Introduction to MotionLayout

animations. For example, different methods can be called depending on whether the animation runs forward or
backward. Consider a button that is to be made visible when the animation moves beyond 20% of the timeline.
The KeyTrigger would be implemented within the KeyFrameSet of the Transition element as follows using the
onPositiveCross property:

<KeyFrameSet>
<KeyTrigger
motion: framePosition="20"
motion:onPositiveCross="show"

motion:motionTarget="@id/button"/>

Similarly, if the same button is to be hidden when the animation is reversed and drops below 10%, a second key
trigger could be added using the onNegativeCross property:
<KeyTrigger

motion:framePosition="10"

motion:onNegativeCross="show"

motion:motionTarget="Q@id/button2"/>

If the animation is using toggle action, use the onCross property:
<KeyTrigger
motion:framePosition="10"
motion:onCross="show"

motion:motionTarget="@id/button2"/>

42.11 Cycle and Time Cycle Keyframes

While position keyframes can be used to add intermediate state changes into the animation, this would
quickly become cumbersome if large numbers of repetitive positions and changes needed to be implemented.
For situations where state changes need to be performed repetitively with predictable changes, MotionLayout
includes the Cycle and Time Cycle keyframes. The chapter entitled “A MotionLayout KeyCycle Tutorial” will
cover this topic in detail.

42.12 Starting an Animation from Code

So far in this chapter, we have only looked at controlling an animation using the OnSwipe and OnClick handlers.
It is also possible to start an animation from within code by calling methods on the MotionLayout instance. The
following code, for example, runs the transition from start to end with a duration of 2000ms for a layout named
motionLayout:

motionLayout.setTransitionDuration (2000) ;

motionLayout.transitionToEnd () ;
In the absence of additional settings, the start and end states used for the animation will be those declared in the

Transition declaration of the MotionScene file. To use specific start and end constraint sets, reference them by id
in a call to the setTransition() method of the MotionLayout instance:

motionLayout.setTransition (R.id.myStart, R.id.myEnd) ;

motionLayout.transitionToEnd () ;

To monitor the state of an animation while it is running, add a transition listener to the MotionLayout instance
347

An Introduction to MotionLayout

as follows:

motionLayout.setTransitionListener (transitionListener);

MotionLayout.TransitionListener transitionListener =
new MotionLayout.TransitionListener () {
@Override
public void onTransitionStarted(MotionLayout motionLayout,
int startId, int endId) {
// Called when the transition starts

@Override
public void onTransitionChange (MotionLayout motionLayout, int startId,
int endId, float progress) {
// Called each time a property changes. Track progress value to find

// current position

@Override
public void onTransitionCompleted(MotionLayout motionLayout, int currentId) {

// Called when the transition is complete

@Override
public void onTransitionTrigger (MotionLayout motionLayout, int triggerId,
boolean positive, float progress) {

// Called when a trigger keyframe threshold is crossed

i
42.13 Summary

MotionLayout is a subclass of ConstraintLayout designed specifically to add animation effects to the views in
user interface layouts. MotionLayout works by animating the transition of a view between two states defined
by start and end constraint sets. Additional animation effects may be added between these start and end points
using keyframes.

Animations may be triggered via OnClick or OnSwipe handlers or programmatically via method calls on the
MotionLayout instance.

348

Chapter 64

64. An Overview of Android SQLite
Databases

Mobile applications that do not need to store at least some persistent data are few and far between. The use of
databases is an essential aspect of most applications, ranging from almost entirely data-driven applications to
those that need to store small amounts of data, such as the prevailing game score.

The importance of persistent data storage becomes even more evident when considering the transient lifecycle
of the typical Android application. With the ever-present risk that the Android runtime system will terminate
an application component to free up resources, a comprehensive data storage strategy to avoid data loss is a key
factor in designing and implementing any application development strategy.

This chapter will cover the SQLite database management system bundled with the Android operating system
and outline the Android SDK classes that facilitate persistent SQLite-based database storage within an Android
application. Before delving into the specifics of SQLite in the context of Android development, however, a brief
overview of databases and SQL will be covered.

64.1 Understanding Database Tables

Database Tables provide the most basic level of data structure in a database. Each database can contain multiple
tables, each designed to hold information of a specific type. For example, a database may contain a customer
table that contains the name, address, and telephone number of each of the customers of a particular business.
The same database may also include a products table used to store the product descriptions with associated
product codes for the items sold by the business.

Each table in a database is assigned a name that must be unique within that particular database. A table name,
once assigned to a table in one database, may not be used for another table except within the context of another
database.

64.2 Introducing Database Schema

Database Schemas define the characteristics of the data stored in a database table. For example, the table schema
for a customer database table might define the customer name as a string of no more than 20 characters long and
the customer phone number is a numerical data field of a certain format.

Schemas are also used to define the structure of entire databases and the relationship between the various tables
in each database.

64.3 Columns and Data Types

It is helpful at this stage to begin viewing a database table as similar to a spreadsheet where data is stored in rows
and columns.

Each column represents a data field in the corresponding table. For example, a table’s name, address, and
telephone data fields are all columns.

Each column, in turn, is defined to contain a certain type of data. Therefore, a column designed to store numbers
would be defined as containing numerical data.

545

An Overview of Android SQLite Databases
64.4 Database Rows

Each new record saved to a table is stored in a row. Each row, in turn, consists of the columns of data associated
with the saved record.

Once again, consider the spreadsheet analogy described earlier in this chapter. Each entry in a customer table
is equivalent to a row in a spreadsheet, and each column contains the data for each customer (name, address,
telephone, etc.). When a new customer is added to the table, a new row is created, and the data for that customer
is stored in the corresponding columns of the new row.

Rows are also sometimes referred to as records or entries, and these terms can generally be used interchangeably.

64.5 Introducing Primary Keys

Each database table should contain one or more columns that can be used to identify each row in the table
uniquely. This is known in database terminology as the Primary Key. For example, a table may use a bank
account number column as the primary key. Alternatively, a customer table may use the customer’s social
security number as the primary key.

Primary keys allow the database management system to uniquely identify a specific row in a table. Without
a primary key, retrieving or deleting a specific row in a table would not be possible because there can be no
certainty that the correct row has been selected. For example, suppose a table existed where the customer’s last
name had been defined as the primary key. Imagine the problem if more than one customer named “Smith” were
recorded in the database. Without some guaranteed way to identify a specific row uniquely, ensuring the correct
data was being accessed at any given time would be impossible.

Primary keys can comprise a single column or multiple columns in a table. To qualify as a single column primary
key, no two rows can contain matching primary key values. When using multiple columns to construct a primary
key, individual column values do not need to be unique, but all the columns’ values combined must be unique.

64.6 What is SQLite?

SQLite is an embedded, relational database management system (RDBMS). Most relational databases (Oracle,
SQL Server, and MySQL being prime examples) are standalone server processes that run independently and
cooperate with applications requiring database access. SQLite is referred to as embedded because it is provided in
the form of a library that is linked into applications. As such, there is no standalone database server running in
the background. All database operations are handled internally within the application through calls to functions
in the SQLite library.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

SQLite is written in the C programming language, so the Android SDK provides a Java-based “wrapper” around
the underlying database interface. This consists of classes that may be utilized within an application’s Java or
Kotlin code to create and manage SQLite-based databases.

For additional information about SQLite, refer to https://www.sqlite.org.

64.7 Structured Query Language (SQL)

Data is accessed in SQLite databases using a high-level language known as Structured Query Language. This is
usually abbreviated to SQL and pronounced sequel. SQL is a standard language used by most relational database
management systems. SQLite conforms mostly to the SQL-92 standard.

546

http://www.sqlite.org

An Overview of Android SQLite Databases

SQL is a straightforward and easy-to-use language designed specifically to enable the reading and writing of
database data. Because SQL contains a small set of keywords, it can be learned quickly. In addition, SQL syntax is
more or less identical between most DBMS implementations, so having learned SQL for one system, your skills
will likely transfer to other database management systems.

While some basic SQL statements will be used within this chapter, a detailed overview of SQL is beyond the
scope of this book. However, many other resources provide a far better overview of SQL than we could ever hope
to provide in a single chapter here.

64.8 Trying SQLite on an Android Virtual Device (AVD)

For readers unfamiliar with databases and SQLite, diving right into creating an Android application that
uses SQLite may seem intimidating. Fortunately, Android is shipped with SQLite pre-installed, including an
interactive environment for issuing SQL commands from within an adb shell session connected to a running
Android AVD emulator instance. This is a useful way to learn about SQLite and SQL and an invaluable tool for
identifying problems with databases created by applications running in an emulator.

To launch an interactive SQLite session, begin by running an AVD session. This can be achieved within Android
Studio by launching the Android Virtual Device Manager (Tools -> AVD Manager), selecting a previously
configured AVD, and clicking on the start button.

Once the AVD is up and running, open a Terminal or Command-Prompt window and connect to the emulator
using the adb command-line tool as follows (note that the —e flag directs the tool to look for an emulator with
which to connect, rather than a physical device):

adb —-e shell

Once connected, the shell environment will provide a command prompt at which commands may be entered.
Begin by obtaining superuser privileges using the su command:

Generic x86:/ su

root@android:/ #

If a message indicates that superuser privileges are not allowed, the AVD instance likely includes Google Play

support. To resolve this, create a new AVD and, on the “Choose a device definition” screen, select a device that
does not have a marker in the “Play Store” column.

The data in SQLite databases are stored in database files on the file system of the Android device on which the
application is running. By default, the file system path for these database files is as follows:

/data/data/<package name>/databases/<database filename>.db

For example, if an application with the package name com.example. MyDBApp creates a database named
mydatabase.db, the path to the file on the device would read as follows:

/data/data/com.example.MyDBApp/databases/mydatabase.db

For this exercise, therefore, change directory to /data/data within the adb shell and create a sub-directory
hierarchy suitable for some SQLite experimentation:

cd /data/data

mkdir com.example.dbexample

cd com.example.dbexample

mkdir databases

cd databases

With a suitable location created for the database file, launch the interactive SQLite tool as follows:

root@android:/data/data/databases # sglite3 ./mydatabase.db
547

An Overview of Android SQLite Databases

sqlite3 ./mydatabase.db
SQLite version 3.8.10.2 2015-05-20 18:17:19
Enter ".help" for usage hints.

sglite>

At the sqlite> prompt, commands may be entered to perform tasks such as creating tables and inserting and
retrieving data. For example, to create a new table in our database with fields to hold ID, name, address, and
phone number fields, the following statement is required:

create table contacts (_id integer primary key autoincrement, name text, address

text, phone text);

Note that each row in a table should have a primary key that is unique to that row. In the above example, we have
designated the ID field as the primary key, declared it as being of type integer, and asked SQLite to increment
the number automatically each time a row is added. This is a common way to ensure that each row has a unique
primary key. On most other platforms, the primary key’s name choice is arbitrary. In the case of Android,
however, the key must be named _id for the database to be fully accessible using all Android database-related
classes. The remaining fields are each declared as being of type text.

To list the tables in the currently selected database, use the .tables statement:
sglite> .tables

contacts

To insert records into the table:

sglite> insert into contacts (name, address, phone) wvalues ("Bill Smith", "123
Main Street, California™, "123-555-2323");

sglite> insert into contacts (name, address, phone) wvalues ("Mike Parks", "10
Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:

sglite> select * from contacts;

1|Bill Smith|123 Main Street, Californial|l23-555-2323

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:

sglite> select * from contacts where name="Mike Parks";

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:

sglite> .exit

When running an Android application in the emulator environment, any database files will be created on the
emulator’s file system using the previously discussed path convention. This has the advantage that you can

connect with adb, navigate to the location of the database file, load it into the sqlite3 interactive tool, and perform
tasks on the data to identify possible problems occurring in the application code.

It is also important to note that while connecting with an adb shell to a physical Android device is possible, the
shell is not granted sufficient privileges by default to create and manage SQLite databases. Therefore, database
problem debugging is best performed using an AVD session.

64.9 The Android Room Persistence Library

As previously mentioned, SQLite is written in the C programming language, while Android applications are
primarily developed using Java or Kotlin. To bridge this “language gap” in the past, the Android SDK included

548

An Overview of Android SQLite Databases

a set of classes that provide a layer on top of the SQLite database management system. Although available in
the SDK, use of these classes still involved writing a considerable amount of code and did not take advantage of
the new architecture guidelines and features such as LiveData and lifecycle management. The Android Jetpack
Architecture Components include the Room persistent library to address these shortcomings. This library
provides a high-level interface on top of the SQLite database system, making it easy to store data locally on
Android devices with minimal coding while also conforming to the recommendations for modern application
architecture.

The next few chapters will provide an overview and tutorial on SQLite database management using the Room
persistence library.

64.10 Summary

SQLite is a lightweight, embedded relational database management system included in the Android framework
and provides a mechanism for implementing organized persistent data storage for Android applications. When
combined with the Room persistence library, Android provides a modern way to implement data storage from
within an Android app.

This chapter provided an overview of databases in general and SQLite in particular within the context of
Android application development. The next chapters will provide an overview of the Room persistence library,
after which we will work through the creation of an example application.

549

Chapter 65

65. The Android Room Persistence
Library

Included with the Android Architecture Components, the Room persistence library is designed to make it easier
to add database storage support to Android apps in a way consistent with the Android architecture guidelines.
With the basics of SQLite databases covered in the previous chapter, this chapter will explore the basic concepts
behind Room-based database management, the key elements that work together to implement Room support
within an Android app, and how these are implemented in terms of architecture and coding. Having covered
these topics, the next two chapters will put this theory into practice with an example Room database project.

65.1 Revisiting Modern App Architecture

The chapter entitled “Modern Android App Architecture with Jetpack” introduced the concept of modern app
architecture and stressed the importance of separating different areas of responsibility within an app. The
diagram illustrated in Figure 65-1 outlines the recommended architecture for a typical Android app:

Figure 65-1

With the top three levels of this architecture covered in some detail in earlier chapters of this book, it is time to
explore the repository and database architecture levels in the context of the Room persistence library.

65.2 Key Elements of Room Database Persistence

Before going into greater detail later in the chapter, it is first worth summarizing the key elements involved in
working with SQLite databases using the Room persistence library:

551

The Android Room Persistence Library

65.2.1 Repository

As previously discussed, the repository module contains all of the code necessary for directly handling all data
sources used by the app. This avoids the need for the UI controller and ViewModel to contain code directly
accessing sources such as databases or web services.

65.2.2 Room Database

The room database object provides the interface to the underlying SQLite database. It also provides the repository
with access to the Data Access Object (DAO). An app should only have one room database instance, which may
be used to access multiple database tables.

65.2.3 Data Access Object (DAO)

The DAO contains the SQL statements required by the repository to insert, retrieve and delete data within
the SQLite database. These SQL statements are mapped to methods which are then called from within the
repository to execute the corresponding query.

65.2.4 Entities

An entity is a class that defines the schema for a table within the database, defines the table name, column names,
and data types, and identifies which column is to be the primary key. In addition to declaring the table schema,
entity classes contain getter and setter methods that provide access to these data fields. The data returned to
the repository by the DAO in response to the SQL query method calls will take the form of instances of these
entity classes. The getter methods will then be called to extract the data from the entity object. Similarly, when
the repository needs to write new records to the database, it will create an entity instance, configure values on
the object via setter calls, then call insert methods declared in the DAO, passing through entity instances to be
saved.

65.2.5 SQLite Database

The SQLite database is responsible for storing and providing access to the data. The app code, including the
repository, should never directly access this underlying database. All database operations are performed using a
combination of the room database, DAOs, and entities.

The architecture diagram in Figure 65-2 illustrates how these different elements interact to provide Room-based
database storage within an Android app:

Figure 65-2

552

The Android Room Persistence Library
The numbered connections in the above architecture diagram can be summarized as follows:

1. The repository interacts with the Room Database to get a database instance which, in turn, is used to obtain
references to DAO instances.

2. 'The repository creates entity instances and configures them with data before passing them to the DAO for
use in search and insertion operations.

3. The repository calls methods on the DAO passing through entities to be inserted into the database and
receives entity instances back in response to search queries.

4. 'When a DAO has results to return to the repository, it packages them into entity objects.
5. The DAO interacts with the Room Database to initiate database operations and handle results.

6. The Room Database handles all low-level interactions with the underlying SQLite database, submitting
queries and receiving results.

With a basic outline of the key elements of database access using the Room persistent library covered, it is time
to explore entities, DAOs, room databases, and repositories in more detail.

65.3 Understanding Entities

Each database table will have associated with it an entity class. This class defines the schema for the table and
takes the form of a standard Java class interspersed with some special Room annotations. An example Java class
declaring the data to be stored within a database table might read as follows:

public class Customer ({

private int id;
private String name;

private string address;

public Customer (String name, String address) {
this.id = id;
this.name = name;

this.address = address;

public int getId() {
return this.id;

}
public String getName () {

return this.name;

public int getAddress () {

return this.address;

public void setId(int id) {

553

The Android Room Persistence Library

this.id = id;

public void setName (String name) {

this.name = name;

public void setAddress (int quantity) {

this.address = address;

}

As currently implemented, the above code declares a basic Java class containing several variables representing
database table fields and a collection of getter and setter methods. This class, however, is not yet an entity. To
make this class into an entity and to make it accessible within SQL statements, some Room annotations need to
be added as follows:

@Entity (tableName = "customers")

public class Customer {

@PrimaryKey (autoGenerate = true)
@NonNull
@ColumnInfo (name = "customerId")

private int id;

@ColumnInfo (name = "customerName")

private String name;

private String address;

public Customer (String name, String address) {
this.id = id;

this.name = name;

this.address = address;

public int getId() {

return this.id;

public String getName () {

return this.name;

public String getAddress () {

return this.address;

554

The Android Room Persistence Library

public void setId(@NonNull int id) {
this.id = id;

public void setName (String name) {

this.name = name;

public void setAddress (int quantity) {

this.address = address;

}

The above annotations begin by declaring that the class represents an entity and assigns a table name of
“customers”. This is the name by which the table will be referenced in the DAO SQL statements:

@Entity(tableName = "customers")

Every database table needs a column to act as the primary key. In this case, the customer id is declared as the
primary key. Annotations have also been added to assign a column name to be referenced in SQL queries and to
indicate that the field cannot be used to store null values. Finally, the id value is configured to be auto-generated.
This means the system automatically generates the id assigned to new records to avoid duplicate keys:

@PrimaryKey (autoGenerate = true)
@NonNull
@ColumnInfo (name = "customerId")

private int id;

A column name is also assigned to the customer name field. Note, however, that no column name was assigned
to the address field. This means that the address data will still be stored within the database but is not required
to be referenced in SQL statements. If a field within an entity is not required to be stored within a database, use
the @Ignore annotation:

@Ignore

private String myString;

Finally, the setter method for the id variable is modified to prevent attempts to assign a null value:
public void setId(@NonNull int id) {

this.id = id;
}

Annotations may also be included within an entity class to establish relationships with other entities using a
relational database concept referred to as foreign keys. Foreign keys allow a table to reference the primary key
in another table. For example, a relationship could be established between an entity named Purchase and our
existing Customer entity as follows:
@Entity (foreignKeys = {@ForeignKey(entity = Customer.class,

parentColumns = "customerId",

childColumns = "buyerId",

onDelete = ForeignKey.CASCADE,

onUpdate = ForeignKey.RESTRICT})

public class Purchase {
555

The Android Room Persistence Library

@PrimaryKey (autoGenerate = true)
@ColumnInfo (name = "purchaseId")

private int purchaseld;

@ColumnInfo (name = "buyerId")

private int buyerId;

}

Note that the foreign key declaration also specifies the action to be taken when a parent record is deleted or
updated. Available options are CASCADE, NO_ACTION, RESTRICT, SET_DEFAULT, and SET_NULL.

65.4 Data Access Objects

A Data Access Object allows access to the data stored within a SQLite database. A DAO is declared as a standard
Java interface with additional annotations that map specific SQL statements to methods that the repository may
then call.

The first step is to create the interface and declare it as a DAO using the @Dao annotation:
@Dhao
public interface CustomerDao {

}

Next, entries are added consisting of SQL statements and corresponding method names. The following
declaration, for example, allows all of the rows in the customers table to be retrieved via a call to a method
named getAllCustomers():
@Dao
public interface CustomerDao {
QQuery ("SELECT * FROM customers")
LiveData<List<Customer>> getAllCustomers () ;
}
The getAllCustomers() method returns a List object containing a Customer entity object for each record retrieved

from the database table. The DAO is also using LiveData so that the repository can observe changes to the
database.

Arguments may also be passed into the methods and referenced within the corresponding SQL statements.
Consider the following DAO declaration, which searches for database records matching a customer’s name
(note that the column name referenced in the WHERE condition is the name assigned to the column in the
entity class):

@Query ("SELECT * FROM customers WHERE name = :customerName")

List<Customer> findCustomer (String customerName) ;

In this example, the method is passed a string value which is, in turn, included within an SQL statement by
prefixing the variable name with a colon (:).

A basic insertion operation can be declared as follows using the @Insert convenience annotation:

@Insert

void addCustomer (Customer customer);

This is referred to as a convenience annotation because the Room persistence library can infer that the Customer

556

The Android Room Persistence Library

entity passed to the addCustomer() method is to be inserted into the database without the need for the SQL
insert statement to be provided. Multiple database records may also be inserted in a single transaction as follows:

@Insert

public void insertCustomers (Customer... customers) ;

The following DAO declaration deletes all records matching the provided customer name:

@Query ("DELETE FROM customers WHERE name = :name")

void deleteCustomer (String name) ;

As an alternative to using the @Query annotation to perform deletions, the @Delete convenience annotation
may also be used. In the following example, all of the Customer records that match the set of entities passed to
the deleteCustomers() method will be deleted from the database:

@Delete

public void deleteCustomers (Customer... customers) ;

The @Update convenience annotation provides similar behavior when updating records:
@Update

public void updateCustomers (Customer... customers) ;

The DAO methods for these types of database operations may also be declared to return an int value indicating
the number of rows affected by the transaction, for example:

@Delete

public int deleteCustomers (Customer... customers);

65.5 The Room Database

The Room database class is created by extending the RoomDatabase class and acts as a layer on top of the
actual SQLite database embedded into the Android operating system. The class is responsible for creating and
returning a new room database instance and providing access to the database’s associated DAO instances.

The Room persistence library provides a database builder for creating database instances. Each Android app
should only have one room database instance, so it is best to implement defensive code within the class to
prevent more than one instance from being created.

An example Room Database implementation for use with the example customer table is outlined in the following
code listing:

import android.content.Context;

import android.arch.persistence.room.Database;

import android.arch.persistence.room.Room;

import android.arch.persistence.room.RoomDatabase;

@Database (entities = {Customer.class}, version = 1)

public class CustomerRoomDatabase extends RoomDatabase {
public abstract CustomerDao customerDao () ;
private static CustomerRoomDatabase INSTANCE;

static CustomerRoomDatabase getDatabase (final Context context) {
if (INSTANCE == null) {

557

The Android Room Persistence Library

synchronized (CustomerRoomDatabase.class) {
if (INSTANCE == null) {
INSTANCE = Room.databaseBuilder (
context.getApplicationContext (),
CustomerRoomDatabase.class, "customer database")
Lbuild () ;

}
return INSTANCE;

}

Important areas to note in the above example are the annotation above the class declaration declaring the entities
with which the database is to work, the code to check that an instance of the class has not already been created
and the assignment of the name “customer_database” to the instance.

65.6 The Repository

The repository is responsible for getting a Room Database instance, using that instance to access associated
DAOs, and then making calls to DAO methods to perform database operations. A typical constructor for a
repository designed to work with a Room Database might read as follows:

public class CustomerRepository ({

private CustomerDao customerDao;

private CustomerRoomDatabase db;

public CustomerRepository (Application application) {
db = CustomerRoomDatabase.getDatabase (application);

customerDao = db.customerDao () ;

}

Once the repository can access the DAO, it can call the data access methods. The following code, for example,
calls the getAllCustomers() DAO method:
private LiveData<List<Customer>> allCustomers;

allCustomers = customerDao.getAllCustomers () ;

When calling DAO methods, it is important to note that unless the method returns a LiveData instance (which
automatically runs queries on a separate thread), the operation cannot be performed on the app’s main thread.
Attempting to do so will cause the app to crash with the following diagnostic output:

Cannot access database on the main thread since it may potentially lock the UI
for a long period of time

Since some database transactions may take a longer time to complete, running the operations on a separate
thread avoids the app appearing to lock up. As will be demonstrated in the chapter entitled “An Android Room
Database and Repository Tutorial”, this problem can be easily resolved by making use of Java threads (for more
information or a reminder of how to use threads, refer back to the chapter entitled “An Overview of Java Threads,

558

The Android Room Persistence Library

Handlers and Executors”).

65.7 In-Memory Databases

The examples outlined in this chapter use a SQLite database that exists as a database file on the persistent storage
of an Android device. This ensures that the data persists even after the app process is terminated.

The Room database persistence library also supports in-memory databases. These databases reside entirely

in memory and are lost when the app terminates. The only change necessary to work with an in-memory

database is to call the Room.inMemoryDatabaseBuilder() method of the Room Database class instead of Room.

databaseBuilder(). The following code shows the difference between the method calls (note that the in-memory

database does not require a database name):

// Create a file storage based database

INSTANCE = Room.databaseBuilder (context.getApplicationContext (),
CustomerRoomDatabase.class, "customer database")
.build();

// Create an in-memory database

INSTANCE = Room.inMemoryDatabaseBuilder (context.getApplicationContext (),
CustomerRoomDatabase.class)
build();

65.8 Database Inspector

Android Studio includes a Database Inspector tool window which allows the Room databases associated with
running apps to be viewed, searched, and modified, as shown in Figure 65-3:

Figure 65-3
The Database Inspector will be covered in the chapter “An Android Room Database and Repository Tutorial”.

65.9 Summary

The Android Room persistence library is bundled with the Android Architecture Components and acts as an
abstract layer above the lower-level SQLite database. The library is designed to make it easier to work with
databases while conforming to the Android architecture guidelines. This chapter has introduced the elements
that interact to build Room-based database storage into Android app projects, including entities, repositories,
data access objects, annotations, and Room Database instances.

With the basics of SQLite and the Room architecture component covered, the next step is to create an example
app that puts this theory into practice. Since the user interface for the example application will require a forms-
based layout, the next chapter, entitled “An Android TableLayout and TableRow Tutorial”, will detour slightly
from the core topic by introducing the basics of the TableLayout and TableRow views.

559

Chapter 68

68. Accessing Cloud Storage using the
Android Storage Access Framework

Recent years have seen the wide adoption of remote storage services (otherwise known as “cloud storage”) to
store user files and data. Driving this growth are two key factors. One is that most mobile devices now provide
continuous, high speed internet connectivity, thereby making the transfer of data fast and affordable. The second
factor is that, relative to traditional computer systems (such as desktops and laptops) these mobile devices are
constrained in terms of internal storage resources. A high specification Android tablet today, for example,
typically comes with 128Gb of storage capacity. When compared with a mid-range laptop system with a 750Gb
disk drive, the need for the seamless remote storage of files is a key requirement for many mobile applications
today.

In recognition of this fact, Google introduced the Storage Access Framework as part of the Android 4.4 SDK.
This chapter will provide a high level overview of the storage access framework in preparation for the more
detail oriented tutorial contained in the next chapter, entitled “An Android Storage Access Framework Example”.

68.1 The Storage Access Framework

From the perspective of the user, the Storage Access Framework provides an intuitive user interface that
allows the user to browse, select, delete and create files hosted by storage services (also referred to as document
providers) from within Android applications. Using this browsing interface (also referred to as the picker), users
can, for example, browse through the files (such as documents, audio, images and videos) hosted by their chosen
document providers. Figure 68-1, for example, shows the picker user interface displaying a collection of files
hosted by a document provider service:

Figure 68-1

585

Accessing Cloud Storage using the Android Storage Access Framework

Document providers can range from cloud-based services to local document providers running on the same
device as the client application. At the time of writing, the most prominent document providers compatible
with the Storage Access Framework are Box and, unsurprisingly, Google Drive. It is highly likely that other
cloud storage providers and application developers will soon also provide services that conform to the Android
Storage Access Framework.

In addition to cloud based document providers the picker also provides access to internal storage on the device,
providing a range of file storage options to the application user.

Through a set of Intents, Android application developers can incorporate these storage capabilities into
applications with just a few lines of code. A particularly compelling aspect of the Storage Access Framework from
the point of view of the developer is that the underlying document provider selected by the user is completely
transparent to the application. Once the storage functionality has been implemented using the framework
within an application, it will work with all document providers without any code modifications.

68.2 Working with the Storage Access Framework

Android includes a set of Intents designed to integrate the features of the Storage Access Framework into
Android applications. These intents display the Storage Access Framework picker user interface to the user and
return the results of the interaction to the application via a call to the onActivityResult() method of the activity
that launched the intent. When the onActivityResult() method is called, it is passed the Uri of the selected file
together with a value indicating the success or otherwise of the operation.

The Storage Access Framework intents can be summarized as follows:

o ACTION_OPEN_DOCUMENT - Provides the user with access to the picker user interface so that files
may be selected from the document providers configured on the device. Selected files are passed back to the
application in the form of Uri objects.

o ACTION_CREATE_DOCUMENT - Allows the user to select a document provider, a location on that
provider’s storage and a file name for a new file. Once selected, the file is created by the Storage Access
Framework and the Uri of that file returned to the application for further processing.

68.3 Filtering Picker File Listings

The files listed within the picker user interface when an intent is started may be filtered using a variety of options.
Consider, for example, the following code to configure an ACTION_OPEN_DOCUMENT intent:

Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT);

When launched, the above intent will cause the picker user interface to be displayed, allowing the user to browse
and select any files hosted by available document providers. Once a file has been selected by the user, a reference
to that file will be provided to the application in the form of a Uri object. The application can then open the
file using the openFileDescriptor(Uri, String) method. There is some risk, however, that not all files listed by a
document provider can be opened in this way. The exclusion of such files within the picker can be achieved by
modifying the intent using the CATEGORY_OPENABLE option. For example:

Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT);
intent.addCategory (Intent.CATEGORY_ OPENABLE) ;

When the intent is now displayed, files which cannot be opened using the openFileDescriptor() method will be
listed but not selectable by the user.

Another useful approach to filtering allows the files available for selection to be restricted by file type. This
involves specifying the types of the files the application is able to handle. An image editing application might,
for example, only want to provide the user with the option of selecting image files from the document providers.

586

Accessing Cloud Storage using the Android Storage Access Framework

This is achieved by configuring the intent object with the MIME types of the files that are to be selectable by
the user. The following code, for example, specifies that only image files are suitable for selection in the picker:

intent.addCategory (Intent.CATEGORY OPENABLE) ;
intent.setType ("image/*") ;

This could be further refined to limit selection to JPEG images:
intent.setType ("image/jpeg") ;

Alternatively, an audio player app might only be able to handle audio files:

intent.setType ("audio/*") ;
The audio app might be limited even further in only supporting the playback of MP4 based audio files:
intent.setType ("audio/mp4") ;

A wide range of MIME type settings are available for use when working with the Storage Access Framework, the
more common of which can be found listed online at:

https://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types

68.4 Handling Intent Results

Since we are launching intents which will return a result, the registerForActivityResult() method (covered in the
chapter entitled “Android Explicit Intents — A Worked Example”) needs to be used to create a launcher and declare
alambda to handle the returned data, for example:
ActivityResultLauncher<Intent> startOpenForResult = registerForActivityResult (
new ActivityResultContracts.StartActivityForResult (),
new ActivityResultCallback<ActivityResult>() {
@Override
public void onActivityResult (ActivityResult result) {
if (result.getResultCode() == Activity.RESULT OK) {
Intent data = result.getDatal();

// Read file content from Uri here

|

Once declared, the intent can be configured and launched as follows:
Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT);
intent.addCategory (Intent.CATEGORY OPENABLE) ;
intent.setType ("text/plain");

startOpenForResult.launch (intent) ;

68.5 Reading the Content of a File

The exact steps required to read the content of a file hosted by a document provider will depend to a large extent
on the type of the file. The steps to read lines from a text file, for example, differ from those for image or audio
files.

An image file can be assigned to a Bitmap object by extracting the file descriptor from the Uri object and then
decoding the image into a BitmapFactory instance. For example:
ParcelFileDescriptor pFileDescriptor =

getContentResolver () .openFileDescriptor (uri, "r");

587

Accessing Cloud Storage using the Android Storage Access Framework

FileDescriptor fileDescriptor =

pFileDescriptor.getFileDescriptor () ;
Bitmap image = BitmapFactory.decodeFileDescriptor (fileDescriptor);
pFileDescriptor.close() ;

myImageView.setImageBitmap (image) ;

« »

Note that the file descriptor is opened in “r” mode. This indicates that the file is to be opened for reading. Other
options are “w” for write access and “rwt” for read and write access, where existing content in the file is truncated
by the new content.

Reading the content of a text file requires slightly more work and the use of an InputStream object. The following
code, for example, reads the lines from a text file:

InputStream inputStream = getContentResolver ().openlnputStream(uri);

BufferedReader reader = new BufferedReader (new InputStreamReader (
inputStream)) ;

String readline;

while ((readline = reader.readLine()) != null) {
// Do something with each line in the file

}

inputStream.close () ;

68.6 Writing Content to a File

Writing to an open file hosted by a document provider is similar to reading with the exception that an output
stream is used instead of an input stream. The following code, for example, writes text to the output stream of
the storage based file referenced by the specified Uri:
try{

ParcelFileDescriptor pFileDescriptor = this.getContentResolver() .

openFileDescriptor (uri, "w");

FileOutputStream fileOutputStream =
new FileOutputStream(pFileDescriptor.getFileDescriptor());

String textContent = "Some sample text";
fileOutputStream.write (textContent.getBytes ());
fileOutputStream.close () ;
pFileDescriptor.close();

} catch (FileNotFoundException e) {
e.printStackTrace() ;

} catch (IOException e) {

e.printStackTrace () ;

588

Accessing Cloud Storage using the Android Storage Access Framework

First, the file descriptor is extracted from the Uri, this time requesting write permission to the target file. The
file descriptor is subsequently used to obtain a reference to the file’s output stream. The content (in this example,
some text) is then written to the output stream before the file descriptor and output stream are closed.

68.7 Deleting a File

Whether a file can be deleted from storage depends on whether or not the files document provider supports
deletion of the file. Assuming deletion is permitted, it may be performed on a designated Uri as follows:
if (DocumentsContract.deleteDocument (getContentResolver (), uri))
// Deletion was successful
else
// Deletion failed

68.8 Gaining Persistent Access to a File

When an application gains access to a file via the Storage Access Framework, the access will remain valid until
the Android device on which the application is running is restarted. Persistent access to a specific file can be
obtained by “taking” the necessary permissions for the Uri. The following code, for example, persists read and
write permissions for the file referenced by the fileUri Uri instance:
final int takeFlags = intent.getFlags()

& (Intent.FLAG GRANT READ URI PERMISSION

| Intent.FLAG GRANT WRITE URI PERMISSION) ;

getContentResolver () .takePersistableUriPermission (fileUri, takeFlags);

Once the permissions for the file have been taken by the application, and assuming the Uri has been saved by the
application, the user should be able to continue accessing the file after a device restart without the user having
to reselect the file from the picker interface.

If, at any time, the persistent permissions are no longer required, they can be released via a call to the
releasePersistableUriPermission() method of the content resolver:
final int releaseFlags = intent.getFlags/()

& (Intent.FLAG GRANT READ URI PERMISSION

| Intent.FLAG GRANT WRITE URI PERMISSION);

getContentResolver () .releasePersistableUriPermission (fileUri,

releaseFlags);

68.9 Summary

It is interesting to consider how perceptions of storage have changed in recent years. Once synonymous with
high capacity internal hard disk drives, the term “storage” is now just as likely to refer to storage space hosted
remotely in the cloud and accessed over an internet connection. This is increasingly the case with the wide
adoption of resource constrained, “always-connected” mobile devices with minimal internal storage capacity.

The Android Storage Access Framework provides a simple mechanism for both users and application developers
to seamlessly gain access to files stored in the cloud. Through the use of a set of intents and a built-in user
interface for selecting document providers and files, comprehensive cloud based storage can now be integrated
into Android applications with a minimal amount of coding.

589

Index

Symbols

<application> 434

<fragment> 247

<fragment> element 247
<menu> 733

<receiver> 468

<service> 434, 478, 485
.well-known folder 441, 464, 678

A

AbsoluteLayout 126
ACCESS_COARSE_LOCATION permission 502
ACCESS_FINE_LOCATION permission 502
acknowledgePurchase() method 717
ACTION_CREATE_DOCUMENT 594
ACTION_CREATE_INTENT 594
ACTION_DOWN 222
ACTION_MOVE 222
ACTION_OPEN_DOCUMENT intent 586
ACTION_POINTER_DOWN 222
ACTION_POINTER_UP 222
ACTION_UP 222
ACTION_VIEW 459
Active / Running state 100
Activity 87,103

adding views in Java code 203

class 103

creation 16

Entire Lifetime 107

Foreground Lifetime 107

lifecycle methods 106

lifecycles 97

returning data from 438

state change example 111

state changes 103

states 100
Visible Lifetime 107
Activity Lifecycle 99
Activity Manager 86
ActivityResultLauncher 439
Activity Stack 99
Actual screen pixels 194
adb
command-line tool 63
connection testing 69
device pairing 67
enabling on Android devices 63
Linux configuration 66
list devices 63
macOS configuration 64
overview 63
restart server 64
testing connection 69
WiFi debugging 67
Windows configuration 65
Wireless debugging 67
Wireless pairing 67
addCategory() method 467
addMarker() method 642
addView() method 197
ADD_VOICEMAIL permission 502
android
checkableBehavior 735
exported 435
gestureColor 240
layout_behavior property 417
onClick 249
orderInCategory 734
process 435, 485
uncertainGestureColor 240
Android
Activity 87
architecture 83

events 215

763

Index

intents 88

onClick Resource 215

runtime 84

SDK Packages 6
android.app 84
Android Architecture Components 265
android.content 84
android.content.Intent 437

android.database 84

Android Debug Bridge. See ADB
Android Development

System Requirements 3
Android Devices

designing for different 125
android.graphics 84
android.hardware 84
android.intent.action 473
android.intent.action.BOOT_COMPLETED 435
android.intent.action.MAIN 459
android.intent.category. LAUNCHER 459
Android Libraries 84
android.media 85
Android Monitor tool window 36
Android Native Development Kit 85
android.net 85
android.opengl 84
android.os 85
android.permission.RECORD_AUDIO 621
android.print 85
Android Project

create new 15
android.provider 85
Android SDK Location

identifying 10
Android SDK Manager 8, 10
Android SDK Packages

version requirements 8
Android SDK Tools

command-line access 9

Linux 11

macOS 11

Windows 7 10

764

Windows 8 10

Android Software Stack 83

Android Storage Access Framework 586

Android Studio
changing theme 61
downloading 3
Editor Window 56
installation 4
Linux installation 5
macOS installation 4
Navigation Bar 55
Project tool window 56
setup wizard 5
Status Bar 56
Toolbar 55
Tool window bars 56
tool windows 56
updating 12
Welcome Screen 53
Windows installation 4

android.text 85

android.util 85

android.view 85

android.view.View 128

android.view.ViewGroup 125, 128

Android Virtual Device. See AVD

overview 31

Android Virtual Device Manager 31

android.webkit 85
android.widget 85
AndroidX libraries 756
API Key 633
APK analyzer 710
APK file 703
APK File
analyzing 710
APK Signing 756
APK Wizard dialog 702
app
showAsAction 734
App Architecture
modern 265

AppBar

anatomy of 415
appbar_scrolling_view_behavior 417
App Bundles 699

creating 703

overview 699

revisions 709

uploading 706
AppCompatActivity class 104
App Inspector 57
Application

stopping 36
Application Context 89
Application Framework 85
Application Manifest 89
Application Resources 89
App Link

Adding Intent Filter 686

Digital Asset Links file 678, 441

Intent Filter Handling 687

Intent Filters 677

Intent Handling 678

Testing 690

URL Mapping 683
App Links 677

auto verification 440

autoVerify 441

overview 677
Apply Changes 211

Apply Changes and Restart Activity 211

Apply Code Changes 211

fallback settings 213

options 211

Run App 211

tutorial 213
applyToActivitiesIfAvailable() method 751
Architecture Components 265
ART 84
assetlinks.json , 678, 441
Attribute Keyframes 342
Audio

supported formats 619

Index
Audio Playback 619
Audio Recording 619
Autoconnect Mode 159
Automatic Link Verification 440, 463
autoVerify 441, 686
AVD
cold boot 48
command-line creation 31
creation 31
device frame 40
Display mode 50
launch in tool window 40
overview 31
quickboot 48
Resizable 50
running an application 34
Snapshots 47
standalone 37
starting 33

Startup size and orientation 34

B

Background Process 98
Barriers 152
adding 171
constrained views 152
Baseline Alignment 151
beginTransaction() method 248
BillingClient 718
acknowledgePurchase() method 717
consumeAsync() method 717
getPurchaseState() method 717
initialization 714, 724
launchBillingFlow() method 716
queryProductDetailsAsync() method 716
queryPurchasesAsync() method 718
BillingResult 731
getDebugMessage() 731
Binding Expressions 289
one-way 289
two-way 290
BIND_JOB_SERVICE permission 435

765

Index

bindService() method 433, 475, 480

Biometric Authentication 691
callbacks 695
overview 691
tutorial 691
Biometric Prompt 696
BitmapFactory 587
black activity 16
Blank template 129
Blueprint view 157
BODY_SENSORS permission 502
Bound Service 433,475
adding to a project 476
Implementing the Binder 476
Interaction options 475
BoundService class 477
Broadcast Intent 467
example 470
overview 88, 467
sending 470
Sticky 469
Broadcast Receiver 467
adding to manifest file 472
creation 471
overview 88, 468
BroadcastReceiver class 468
BroadcastReceiver superclass 471
BufferedReader object 597
Build tool window 58
Build Variants , 58
tool window 58
Bundle class 120
Bundled Notifications 521

C

Calendar permissions 502
CALL_PHONE permission 502
CAMERA permission 502
Camera permissions 502
CameraUpdateFactory class
methods 643
CancellationSignal 696

766

Canvas class 672
CardView
layout file 395
responding to selection of 403
CardView class 395
CATEGORY_OPENABLE 586
C/C++ Libraries 85
Chain bias 180
chain head 150
chains 150
Chains
creation of 177
Chain style
changing 179
chain styles 150
CheckBox 125
checkSelfPermission() method 506
Circle class 629
Code completion 74
Code Editor
basics 71
Code completion 74
Code Generation 77
Code Reformatting 79
Document Tabs 72
Editing area 72
Gutter Area 72
Live Templates 80
Splitting 74
Statement Completion 76
Status Bar 73
Code Generation 77
Code Reformatting 79
code samples
download 1
cold boot 48
CollapsingToolbarLayout
example 418
introduction 418
parallax mode 418
pin mode 418

setting scrim color 421

setting title 421
with image 418
Color class 673
COLOR_MODE_COLOR 648, 668
COLOR_MODE_MONOCHROME 648, 668
Common Gestures 229
detection 229
Component tree 20
Constraint Bias 149
adjusting 163
ConstraintLayout
advantages of 155
Availability 156
Barriers 152
Baseline Alignment 151
chain bias 180
chain head 150
chains 150
chain styles 150
Constraint Bias 149
Constraints 147
conversion to 175
convert to MotionLayout 349
deleting constraints 162
guidelines 169
Guidelines 152
manual constraint manipulation 159
Margins 148, 163
Opposing Constraints 148, 165
overview of 147
Packed chain 151, 180
ratios 155, 181
Spread chain 150
Spread inside 180
Spread inside chain 150
tutorial 185
using in Android Studio 157
Weighted chain 150, 180
Widget Dimensions 151, 167
Widget Group Alignment 173
ConstraintLayout chains

creation of 177

Index
in layout editor 177
ConstraintLayout Chain style
changing 179
Constraints
deleting 162
ConstraintSet
addToHorizontalChain() method 200
addToVerticalChain() method 200
alignment constraints 199
apply to layout 198
applyTo() method 198
centerHorizontally() method 199
centerVertically() method 199
chains 199
clear() method 200
clone() method 199
connect() method 198
connect to parent 198
constraint bias 199
copying constraints 199
create 198
create connection 198
createHorizontalChain() method 199
createVerticalChain() method 199
guidelines 200
removeFromHorizontalChain() method 200
removeFromVerticalChain() method 200
removing constraints 200
rotation 201
scaling 200
setGuidelineBegin() method 200
setGuidelineEnd() method 200
setGuidelinePercent() method 200
setHorizonalBias() method 199
setRotationX() method 201
setRotationY() method 201
setScaleX() method 200
setScaleY () method 200
setTransformPivot() method 201
setTransformPivotX() method 201
setTransformPivotY () method 201
setVerticalBias() method 199

767

Index

sizing constraints 199

tutorial 203

view IDs 205
ConstraintSet class 197, 198
Constraint Sets 198
ConstraintSets

configuring 338
consumeAsync() method 717
ConsumeParams 729
ConsumeResponseListener 717
Contacts permissions 502
container view 125
Content Provider 86

overview 89
Context class 89

CoordinatorLayout 126, 417

createPrintDocumentAdapter() method 663

Custom Attribute 339

Custom Document Printing 651, 663

Custom Gesture
recognition 235

Custom Print Adapter
implementation 665

Custom Print Adapters 663

Custom Theme
building 745

Cycle Editor 367

Cycle Keyframe 347

Cycle Keyframes

overview 363

D

dangerous permissions
list of 502
Dark Theme 36
enable on device 36
Data Access Object (DAO) 552
Data Access Objects (DAO) 556
Database Inspector 559, 582
live updates 583
SQL query 583
Database Rows 546

768

Database Schema 545
Database Tables 545
Data binding
binding expressions 289
Data Binding 267
binding classes 288
enabling 294
event and listener binding 290
key components 285
overview 285
tutorial 293
with LiveData 267
DDMS 36
Debugging
enabling on device 63
debug keystore file 441, 464
DefaultLifecycleObserver 308, 311
deltaRelative 344
Density-independent pixels 193
Density Independent Pixels
converting to pixels 208
Device Definition
custom 143
Device File Explorer 58
device frame 40
Device Mirroring 69
enabling 69

device pairing 67

Digital Asset Links file 678, 441, 441

Direct Reply Input 532
document provider 585
dp 193

Dynamic Colors

applyToActivitiesIfAvailable() method 751

enabling in Android 751
Dynamic State 105
saving 119

E

Empty Process 99
Empty template 129

Emulator

battery 46

cellular configuration 46
configuring fingerprints 48
directional pad 46
extended control options 45
Extended controls 45
fingerprint 46

location configuration 46
phone settings 46
Resizable 50

resize 45

rotate 44

Screen Record 47
Snapshots 47

starting 33

take screenshot 44

toolbar 43

toolbar options 43

tool window mode 49
Virtual Sensors 47

zoom 44

enablePendingPurchases() method 717

enabling ADB support 63
ettings.gradle file 756
Event Handling 215

example 216
Event Listener 217
Event Listeners 216
Events

consuming 219
explicit

intent 88
explicit intent 437
Explicit Intent 437
Extended Control

options 45

F

Files

switching between 72
findPointerIndex() method 222
findViewBylId() 91

Index

Fingerprint

emulation 48
Fingerprint authentication

device configuration 692

permission 692

steps to implement 691
Fingerprint Authentication

overview 691

tutorial 691
FLAG_INCLUDE_STOPPED_PACKAGES 467
flexible space area 415
floating action button 16, 130

changing appearance of 378

margins 376

removing 131

sizes 376
Foldable Devices 108

multi-resume 108
Foldable Emulator 538
Foldables 537
Foreground Process 98
Forward-geocoding 635
Fragment

creation 245

event handling 249

XML file 246
FragmentActivity class 104
Fragment Communication 250
Fragments 245

adding in code 248

duplicating 384

example 253

overview 245
FragmentStateAdapter class 387
FrameLayout 126

G

Geocoder object 636

Geocoding 634

Gesture Builder Application 235
building and running 235

Gesture Detector class 229

769

Index

GestureDetectorCompat 232

instance creation 232
GestureDetectorCompat class 229
GestureDetector.OnDoubleTapListener 229, 230
GestureDetector.OnGestureListener 230
GestureLibrary 235
GestureOverlayView 235

configuring color 240

configuring multiple strokes 240
GestureOverlayView class 235
GesturePerformedListener 235
Gestures

interception of 241
Gestures File

creation 236

extract from SD card 236

loading into application 238
GET_ACCOUNTS permission 502
getAction() method 473
getDebugMessage() 731
getFromLocation() method 636
getld() method 198
getIntent() method 438
getltemId() method 735
getPointerCount() method 222
getPointerId() method 222
getPurchaseState() method 717
getService() method 480
GNU/Linux 84
Google Cloud

billing account 630

new project 631
Google Cloud Print 646
Google Drive 586

printing to 646
GoogleMap 629

map types 639
GoogleMap.MAP_TYPE_HYBRID 639
GoogleMap.MAP_TYPE_NONE 639
GoogleMap.MAP_TYPE_NORMAL 639
GoogleMap.MAP_TYPE_SATELLITE 639
GoogleMap.MAP_TYPE_TERRAIN 639

770

Google Maps Android API 629
Controlling the Map Camera 643
displaying controls 640
Map Markers 642
overview 629

Google Maps SDK 629
API Key 633
Credentials 633
enabling 632
Maps SDK for Android 633

Google Play App Signing 702

Google Play Console 722
Creating an in-app product 722
License Testers 723

Google Play Developer Console 700

Gradle
APK signing settings 760
Build Variants 756
command line tasks 761
dependencies 755
Manifest Entries 756
overview 755
sensible defaults 755

Gradle Build File
top level 757

Gradle Build Files
module level 758

gradle.properties file 756

GridLayout 126

GridLayoutManager 393

H

Handler class 484
HP Print Services Plugin 645
HTML printing 649
HTML Printing
example 653

I

IBinder 433, 477
IBinder object 475, 485
Image Printing 648

implicit
intent 88

implicit intent 437

Implicit Intent 439

Implicit Intents
example 455

importance hierarchy 97

in 193

INAPP 718

In-App Products 713

In-App Purchasing 721
acknowledgePurchase() method 717
BillingClient 714
BillingResult 731
consumeAsync() method 717
ConsumeParams 729
ConsumeResponseListener 717
Consuming purchases 728
enablePendingPurchases() method 717
getPurchaseState() method 717
launchBillingFlow() method 716
Libraries 721
newBuilder() method 714
onBillingServiceDisconnected() callback 726
onBillingServiceDisconnected() method 715
onBillingSetupFinished() listener 726
onProductDetailsResponse() callback 726
Overview 713
ProductDetail 716
ProductDetails 727
products 713
ProductType 718
ProductType.INAPP 718
ProductType.SUBS 718
Purchase Flow 727
PurchaseResponseListener 718
PurchasesUpdatedListener 717
PurchaseUpdatedListener 727
purchase updates 727
queryProductDetailsAsync() 726
queryProductDetailsAsync() method 716
queryPurchasesAsync() 729

Index
queryPurchasesAsync() method 718
runOnUiThread() 727
subscriptions 713
tutorial 721
In-Memory Database 559
Intent 88
explicit 88
implicit 88
Intent Availability
checking for 444
Intent. CATEGORY_OPENABLE 594
Intent Filters 440
App Link 677
Intents 437
ActivityResultLauncher 439
overview 437
registerForActivityResult() 452
Intent Service 433

Intent URL 458

J

Java Native Interface 85

Jetpack 265
overview 265

JobIntentService 433
BIND_JOB_SERVICE permission 435
onHandleWork() method 433

K

KeyAttribute 342
Keyboard Shortcuts 59
KeyCycle 363
Cycle Editor 367
tutorial 363
Keyframe 356
Keyframes 342
KeyFrameSet 372
KeyPosition 343
deltaRelative 344
parentRelative 343
pathRelative 344

Keystore File

771

Index

creation 702
KeyTimeCycle 363
keytool 441
KeyTrigger 346
Killed state 100

L

launchBillingFlow() method 716
layout_collapseMode

parallax 420

pin 420
layout_constraintDimentionRatio 182
layout_constraintHorizontal_bias 180
layout_constraintVertical_bias 180
layout editor

ConstraintLayout chains 177
Layout Editor 19, 185

Autoconnect Mode 159

code mode 136

Component Tree 134

design mode 133

device screen 134

example project 185

Inference Mode 159

palette 134

properties panel 134

Sample Data 142

Setting Properties 137

toolbar 134

user interface design 185

view conversion 141
Layout Editor Tool

changing orientation 20

overview 133
Layout Inspector 58
Layout Managers 125
LayoutResultCallback object 668
Layouts 125
layout_scrollFlags

enterAlwaysCollapsed mode 417

enterAlways mode 417

exitUntilCollapsed mode 417

772

scroll mode 417
Layout Validation 144
libc 85
License Testers 723
Lifecycle

awareness 307

components 268

owners 307

states and events 309

tutorial 311

Lifecycle- Aware Components 307

Lifecycle Methods 106
Lifecycle Observer 311
creatinga 311
Lifecycle Owner
creatinga 313
Lifecycles
modern 268
LinearLayout 126
LinearLayoutManager 393

LinearLayoutManager layout 402

Linux Kernel 84
list devices 63
LiveData 266, 279
adding to ViewModel 279
observer 281
tutorial 279
Live Templates 80
Local Bound Service 475
example 475
Location Manager 86
Location permission 502
Logcat
tool window 57
LogCat
enabling 115

M

MANAGE_EXTERNAL_STORAGE 503

adb enabling 503
testing 503
Manifest File

permissions 459
Maps 629
MapView 629

adding to a layout 636
Marker class 629
Master/Detail Flow

creation 424

two pane mode 423
match_parent properties 193
Material design 375
Material Design 2 743
Material Design 2 Theming 743
Material Design 3 743
Material Theme Builder 745
Material You 743
MediaController

adding to VideoView instance 603

MediaController class 600
methods 600
MediaPlayer class 619
methods 619
MediaRecorder class 619
methods 620
recording audio 620
Memory Indicator 73
Menu Editor 736
Menu Item Selections 734
Menus 733
menu editor 736
Messenger object 485
Microphone
checking for availability 622
Microphone permissions 502
mm 193
MotionEvent 221, 222, 243
getActionMasked() 222
MotionLayout 337
arc motion 342
Attribute Keyframes 342
ConstraintSets 338
Custom Attribute 358
Custom Attributes 339

Index

Cycle Editor 367

Editor 349

KeyAttribute 342

KeyCycle 363

Keyframes 342

KeyFrameSet 372

KeyPosition 343

KeyTimeCycle 363

KeyTrigger 346

OnClick 341, 354

OnSwipe 341

overview 337

Position Keyframes 343

previewing animation 354

Trigger Keyframe 346

Tutorial 349
MotionScene

ConstraintSets 338

Custom Attributes 339

file 338

overview 337

transition 338
moveCamera() method 643
multiple devices

testing app on 35
Multiple Touches

handling 222
multi-resume 108
Multi-Touch

example 222
Multi-touch Event Handling 221
Multi-Window

attributes 541
Multi-Window Mode

detecting 542

entering 539

launching activity into 543
Multi-Window Notifications 542
multi-window support 108
Multi-Window Support

enabling 540

My Location Layer 629

773

Index

N onBind() method 434, 475
onBindViewHolder() method 401
OnClick 341
onClickListener 216,217, 220
onClick() method 215

Navigation 317
adding destinations 326
overview 317

pass data with safeargs 333
onCreateContextMenuListener 216

onCreate() method 98, 106, 434

passing arguments 322

stack 317

. onCreateOptionsMenu() method 734
tutorial 323

- . onCreateView() method 107
Navigation Action
onDestroy() method 106, 434
onDoubleTap() method 229

onDown() method 229

triggering 321
Navigation Architecture Component 317

Navigation Component

. onFling() method 229
tutorial 323

o onFocusChangeListener 216
Navigation Controller

. OnFragmentInteractionListener
accessing 321

implementation 331
Navigation Graph 320, 324 P

onGesturePerformed() method 235
onHandleWork() method 434

adding actions 329

creatinga 324
- onKeyListener 216

Navigation Host 318
. onLayoutFailed() method 668
declaring 325

L tFinished thod 669
newBuilder() method 714 onLayoutFinished() metho
L onLongClickListener 216
normal permissions 501
. . onLongClick() method 219
Notification

LongP: thod 229
adding actions 520 onLongPress() metho
. onMapReady() method 638
Direct Reply Input 532
o . onOptionsltemSelected() method 735
issuing a basic 516

onOptionsltemsSelected() method 739
onPageFinished() callback 654
onPause() method 106

launch activity from a 518
PendingIntent 528

Reply Action 530

. . onProductDetailsResponse() callback 726
updating direct reply 533

. . onReceive() method 98, 468, 469, 471
Notifications

bundled 521 onRequestPermissionsResult() method 505, 626, 514, 526
undle

. onRestart() method 106
overview 509

. . onRestorelnstanceState() method 107
Notifications Manager 86
onResume() method 98, 106
[e) onSavelnstanceState() method 107
onScaleBegin() method 241
Observer
) .) onScaleEnd() method 241
implementing a LiveData 281

onScale() method 241
onAttach() method 250

onScroll() method 229
OnSeekBarChangeListener 260
onServiceConnected() method 475, 479, 486

onBillingServiceDisconnected() callback 726
onBillingServiceDisconnected() method 715

onBillingSetupFinished() listener 726

774

onServiceDisconnected() method 475, 479, 486
onShowPress() method 229
onSingleTapUp() method 229
onStartCommand() method 434
onStart() method 106
onStop() method 106
onTouchEvent() method 229, 241
onTouchListener 216
onTouch() method 221
onViewCreated() method 107
onViewStatusRestored() method 107
openFileDescriptor() method 586
OpenJDK 3
Overflow Menu 733

creation 733

displaying 734

overview 733

XML file 733
Overflow Menus

Checkable Item Groups 735

P

Package Explorer 18
Package Manager 86
PackageManager class 622
PackageManager. FEATURE_ MICROPHONE 622
PackageManager. PERMISSION_DENIED 503
PackageManager. PERMISSION_GRANTED 503
Package Name 16
Packed chain 151, 180
PageRange 670, 671
Paint class 673
parentRelative 343
parent view 127
pathRelative 344
Paused state 100
PdfDocument 651
PdfDocument.Page 663, 670
Pendinglntent class 528
Permission
checking for 503

permissions

Index

normal 501
Persistent State 105
Phone permissions 502
picker 585
Pinch Gesture

detection 241

example 241
Pinch Gesture Recognition 235
Position Keyframes 343
POST_NOTIFICATIONS permission 502, 526
PrintAttributes 668
PrintDocumentAdapter 651, 663
Printing

color 648

monochrome 648
Printing framework

architecture 645
Printing Framework 645
Print Job

starting 674
PrintManager service 655
Problems

tool window 58
process

priority 97

state 97
PROCESS_OUTGOING_CALLS permission 502
Process States 97
ProductDetail 716
ProductDetails 727
ProductType 718
Profiler

tool window 58
ProgressBar 125
proguard-rules.pro file 760
ProGuard Support 756
Project Name 16
Project tool window 18, 57
pt 193
PurchaseResponseListener 718
PurchasesUpdatedListener 717
PurchaseUpdatedListener 727

775

Index

putExtra() method 437, 467
px 194

Q

queryProductDetailsAsync() 726
queryProductDetailsAsync() method 716
queryPurchaseHistoryAsync() method 718
queryPurchasesAsync() 729
queryPurchasesAsync() method 718
quickboot snapshot 48

Quick Documentation 79

R

RadioButton 125
ratios 181
READ_CALENDAR permission 502
READ_CALL_LOG permission 502
READ_CONTACTS permission 502
READ_EXTERNAL_STORAGE permission 503
READ_PHONE_STATE permission 502
READ_SMS permission 502
RECEIVE_MMS permission 502
RECEIVE_SMS permission 502
RECEIVE_WAP_PUSH permission 502
Recent Files Navigation 60
RECORD_AUDIO permission 502
Recording Audio
permission 621
RecyclerView 393
adding to layout file 394
GridLayoutManager 393
initializing 402
LinearLayoutManager 393
StaggeredGridLayoutManager 393
RecyclerView Adapter
creation of 400
RecyclerView.Adapter 394, 400
getltemCount() method 394
onBindViewHolder() method 394
onCreateViewHolder() method 394
RecyclerView.ViewHolder
getAdapterPosition() method 404

776

registerForActivityResult() method 438, 452
registerReceiver() method 469
RelativeLayout 126
releasePersistableUriPermission() method 589
Release Preparation 699
Remote Bound Service 483
client communication 483
implementation 483
manifest file declaration 485
Remotelnput.Builder() method 528
Remotelnput Object 528
Remote Service
launching and binding 486
sending a message 487
Repository
tutorial 569
Repository Modules 268
Resizable Emulator 50
Resource
string creation 23
Resource File 25
Resource Management 97
Resource Manager , 57
result receiver 469
Reverse-geocoding 635
Reverse Geocoding 634
Room
Data Access Object (DAO) 552
entities 552, 553
In-Memory Database 559
Repository 552
Room Database 552
tutorial 569
Room Database Persistence 551
Room Persistence Library 548, 551
root element 125
root view 127
Run
tool window 57
Running Devices
tool window 69

runOnUiThread() 727

S

safeargs 333
Sample Data 142, 407

tutorial 407
Saved State 267, 301

library dependencies 303
SavedStateHandle 302, 303

contains() method 303

keys() method 303

remove() method 303
Saved State module 301
SavedStateViewModelFactory 302
ScaleGestureDetector class 241
Scale-independent 193
SDK Packages 6
Secure Sockets Layer (SSL) 85
SeekBar 253
sendBroadcast() method 467, 469
sendOrderedBroadcast() method 467, 469
SEND_SMS permission 502
sendStickyBroadcast() method 467
Sensor permissions 502
Service

anatomy 434

launch at system start 435

manifest file entry 434

overview 88

run in separate process 435
ServiceConnection class 486
Service Process 98
Service Restart Options 434
setAudioEncoder() method 620
setAudioSource() method 620
setBackgroundColor() 198
setCompassEnabled() method 640
setContentView() method 197, 203
setld() method 198
setMyLocationButtonEnabled() method 641
setOnClickListener() method 215,217
setOnDoubleTapListener() method 229, 232
setOutputFile() method 620
setOutputFormat() method 620

Index

setResult() method 439
setRotateGesturesEnabled() method 641
setScrollGesturesEnabled() method 641
setText() method 122
setTiltGesturesEnabled() method 641
settings.gradle.kts file 756
setTransition() 347
setVideoSource() method 620
setZoomControlsEnabled() method 640, 641
SHA-256 certificate fingerprint 441
shouldOverrideUrlLoading() method 654
SimpleOnScaleGestureListener 241
SimpleOnScaleGestureListener class 243
SMS permissions 502
Snackbar 375, 376, 377
Snapshots

emulator 47
sp 193
Spread chain 150
Spread inside 180
Spread inside chain 150
SQL 546
SQLite 545

AVD command-line use 547

Columns and Data Types 545

overview 546

Primary keys 546
StaggeredGridLayoutManager 393
startActivity() method 437
startForeground() method 98
START_NOT_STICKY 434
START_REDELIVER_INTENT 434
START_STICKY 434
State

restoring 122
State Change

handling 101
Statement Completion 76
Status Bar Widgets 73

Memory Indicator 73
Sticky Broadcast Intents 469
Stopped state 100

777

Index

Storage Access Framework 585
ACTION_CREATE_DOCUMENT 586
ACTION_OPEN_DOCUMENT 586
deleting a file 589
example 591
file creation 594
file filtering 586
file reading 587
file writing 588
intents 586
MIME Types 587
Persistent Access 589
picker 585

Storage permissions 503

StringBuilder object 597

strings.xml file 27

Structure
tool window 58

Structured Query Language 546

Structure tool window 58

SUBS 718

subscriptions 713

SupportMapFragment class 629

Switcher 60

System Broadcasts 473

system requirements 3

T

TabLayout
adding to layout 385
app
tabGravity property 390
tabMode property 390
example 382
fixed mode 389
getltemCount() method 381
overview 381
TableLayout 126, 561
TableRow 561
Telephony Manager 86
Templates

blank vs. empty 129

778

Terminal

tool window 58
Theme

building a custom 745
Theming 743

tutorial 747
Time Cycle Keyframes 347
TODO

tool window 59
ToolbarListener 250
tools

layout 247
Tool window bars 56
Tool windows 56
Touch Actions 222
Touch Event Listener

implementation 223
Touch Events

intercepting 221
Touch handling 221

U

UiSettings class 629
unbindService() method 433
unregisterReceiver() method 469
upload key 702
URL Mapping 683
USB connection issues

resolving 66
USE_BIOMETRIC 692
user interface state 105

USE_SIP permission 502

\%

Video Playback 599
VideoView class 599
methods 599
supported formats 599
view bindings
enabling 92
using 92

View class

setting properties 204
view conversion 141
ViewGroup 125
View Groups 125
View Hierarchy 127
ViewHolder class 394

sample implementation 401
ViewModel

adding LiveData 279

data access 276

overview 266

saved state 301

Saved State 267, 301

tutorial 271
ViewModelProvider 274
ViewModel Saved State 301
ViewPager

adding to layout 385

example 382
Views 125

Java creation 197
View System 86
Virtual Device Configuration dialog 32
Virtual Sensors 47

Visible Process 98

w

WebViewClient 649, 654

WebView view 457

Weighted chain 150, 180

Welcome screen 53

Widget Dimensions 151

Widget Group Alignment 173
Widgets palette 186

WiFi debugging 67

Wireless debugging 67

Wireless pairing 67

wrap_content properties 195
WRITE_CALENDAR permission 502
WRITE_CALL_LOG permission 502
WRITE_CONTACTS permission 502

WRITE_EXTERNAL_STORAGE permission 503

X

XML Layout File
manual creation 193

vs. Java Code 197

Index

779

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Installing the Android SDK Command-line Tools
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Enabling the New Android Studio UI
	3.6 Modifying the Example Application
	3.7 Modifying the User Interface
	3.8 Reviewing the Layout and Resource Files
	3.9 Adding Interaction
	3.10 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Removing the Device Frame
	4.9 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Creating a Resizable Emulator
	5.10 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Menu Bar
	6.3 The Main Window
	6.4 The Tool Windows
	6.5 The Tool Window Menus
	6.6 Android Studio Keyboard Shortcuts
	6.7 Switcher and Recent Files Navigation
	6.8 Changing the Android Studio Theme
	6.9 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Device Mirroring
	7.7 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android App
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Overview of Android View Binding
	11.1 Find View by Id
	11.2 View Binding
	11.3 Converting the AndroidSample project
	11.4 Enabling View Binding
	11.5 Using View Binding
	11.6 Choosing an Option
	11.7 View Binding in the Book Examples
	11.8 Migrating a Project to View Binding
	11.9 Summary

	12. Understanding Android Application and Activity Lifecycles
	12.1 Android Applications and Resource Management
	12.2 Android Process States
	12.2.1 Foreground Process
	12.2.2 Visible Process
	12.2.3 Service Process
	12.2.4 Background Process
	12.2.5 Empty Process

	12.3 Inter-Process Dependencies
	12.4 The Activity Lifecycle
	12.5 The Activity Stack
	12.6 Activity States
	12.7 Configuration Changes
	12.8 Handling State Change
	12.9 Summary

	13. Handling Android Activity State Changes
	13.1 New vs. Old Lifecycle Techniques
	13.2 The Activity and Fragment Classes
	13.3 Dynamic State vs. Persistent State
	13.4 The Android Lifecycle Methods
	13.5 Lifetimes
	13.6 Foldable Devices and Multi-Resume
	13.7 Disabling Configuration Change Restarts
	13.8 Lifecycle Method Limitations
	13.9 Summary

	14. Android Activity State Changes by Example
	14.1 Creating the State Change Example Project
	14.2 Designing the User Interface
	14.3 Overriding the Activity Lifecycle Methods
	14.4 Filtering the Logcat Panel
	14.5 Running the Application
	14.6 Experimenting with the Activity
	14.7 Summary

	15. Saving and Restoring the State of an Android Activity
	15.1 Saving Dynamic State
	15.2 Default Saving of User Interface State
	15.3 The Bundle Class
	15.4 Saving the State
	15.5 Restoring the State
	15.6 Testing the Application
	15.7 Summary

	16. Understanding Android Views, View Groups and Layouts
	16.1 Designing for Different Android Devices
	16.2 Views and View Groups
	16.3 Android Layout Managers
	16.4 The View Hierarchy
	16.5 Creating User Interfaces
	16.6 Summary

	17. A Guide to the Android Studio Layout Editor Tool
	17.1 Basic vs. Empty Views Activity Templates
	17.2 The Android Studio Layout Editor
	17.3 Design Mode
	17.4 The Palette
	17.5 Design Mode and Layout Views
	17.6 Night Mode
	17.7 Code Mode
	17.8 Split Mode
	17.9 Setting Attributes
	17.10 Transforms
	17.11 Tools Visibility Toggles
	17.12 Converting Views
	17.13 Displaying Sample Data
	17.14 Creating a Custom Device Definition
	17.15 Changing the Current Device
	17.16 Layout Validation
	17.17 Summary

	18. A Guide to the Android ConstraintLayout
	18.1 How ConstraintLayout Works
	18.1.1 Constraints
	18.1.2 Margins
	18.1.3 Opposing Constraints
	18.1.4 Constraint Bias
	18.1.5 Chains
	18.1.6 Chain Styles

	18.2 Baseline Alignment
	18.3 Configuring Widget Dimensions
	18.4 Guideline Helper
	18.5 Group Helper
	18.6 Barrier Helper
	18.7 Flow Helper
	18.8 Ratios
	18.9 ConstraintLayout Advantages
	18.10 ConstraintLayout Availability
	18.11 Summary

	19. A Guide to Using ConstraintLayout in Android Studio
	19.1 Design and Layout Views
	19.2 Autoconnect Mode
	19.3 Inference Mode
	19.4 Manipulating Constraints Manually
	19.5 Adding Constraints in the Inspector
	19.6 Viewing Constraints in the Attributes Window
	19.7 Deleting Constraints
	19.8 Adjusting Constraint Bias
	19.9 Understanding ConstraintLayout Margins
	19.10 The Importance of Opposing Constraints and Bias
	19.11 Configuring Widget Dimensions
	19.12 Design Time Tools Positioning
	19.13 Adding Guidelines
	19.14 Adding Barriers
	19.15 Adding a Group
	19.16 Working with the Flow Helper
	19.17 Widget Group Alignment and Distribution
	19.18 Converting other Layouts to ConstraintLayout
	19.19 Summary

	20. Working with ConstraintLayout Chains and Ratios in Android Studio
	20.1 Creating a Chain
	20.2 Changing the Chain Style
	20.3 Spread Inside Chain Style
	20.4 Packed Chain Style
	20.5 Packed Chain Style with Bias
	20.6 Weighted Chain
	20.7 Working with Ratios
	20.8 Summary

	21. An Android Studio Layout Editor ConstraintLayout Tutorial
	21.1 An Android Studio Layout Editor Tool Example
	21.2 Preparing the Layout Editor Environment
	21.3 Adding the Widgets to the User Interface
	21.4 Adding the Constraints
	21.5 Testing the Layout
	21.6 Using the Layout Inspector
	21.7 Summary

	22. Manual XML Layout Design in Android Studio
	22.1 Manually Creating an XML Layout
	22.2 Manual XML vs. Visual Layout Design
	22.3 Summary

	23. Managing Constraints using Constraint Sets
	23.1 Java Code vs. XML Layout Files
	23.2 Creating Views
	23.3 View Attributes
	23.4 Constraint Sets
	23.4.1 Establishing Connections
	23.4.2 Applying Constraints to a Layout
	23.4.3 Parent Constraint Connections
	23.4.4 Sizing Constraints
	23.4.5 Constraint Bias
	23.4.6 Alignment Constraints
	23.4.7 Copying and Applying Constraint Sets
	23.4.8 ConstraintLayout Chains
	23.4.9 Guidelines
	23.4.10 Removing Constraints
	23.4.11 Scaling
	23.4.12 Rotation

	23.5 Summary

	24. An Android ConstraintSet Tutorial
	24.1 Creating the Example Project in Android Studio
	24.2 Adding Views to an Activity
	24.3 Setting View Attributes
	24.4 Creating View IDs
	24.5 Configuring the Constraint Set
	24.6 Adding the EditText View
	24.7 Converting Density Independent Pixels (dp) to Pixels (px)
	24.8 Summary

	25. A Guide to Using Apply Changes in Android Studio
	25.1 Introducing Apply Changes
	25.2 Understanding Apply Changes Options
	25.3 Using Apply Changes
	25.4 Configuring Apply Changes Fallback Settings
	25.5 An Apply Changes Tutorial
	25.6 Using Apply Code Changes
	25.7 Using Apply Changes and Restart Activity
	25.8 Using Run App
	25.9 Summary

	26. An Overview and Example of Android Event Handling
	26.1 Understanding Android Events
	26.2 Using the android:onClick Resource
	26.3 Event Listeners and Callback Methods
	26.4 An Event Handling Example
	26.5 Designing the User Interface
	26.6 The Event Listener and Callback Method
	26.7 Consuming Events
	26.8 Summary

	27. Android Touch and Multi-touch Event Handling
	27.1 Intercepting Touch Events
	27.2 The MotionEvent Object
	27.3 Understanding Touch Actions
	27.4 Handling Multiple Touches
	27.5 An Example Multi-Touch Application
	27.6 Designing the Activity User Interface
	27.7 Implementing the Touch Event Listener
	27.8 Running the Example Application
	27.9 Summary

	28. Detecting Common Gestures Using the Android Gesture Detector Class
	28.1 Implementing Common Gesture Detection
	28.2 Creating an Example Gesture Detection Project
	28.3 Implementing the Listener Class
	28.4 Creating the GestureDetectorCompat Instance
	28.5 Implementing the onTouchEvent() Method
	28.6 Testing the Application
	28.7 Summary

	29. Implementing Custom Gesture and Pinch Recognition on Android
	29.1 The Android Gesture Builder Application
	29.2 The GestureOverlayView Class
	29.3 Detecting Gestures
	29.4 Identifying Specific Gestures
	29.5 Installing and Running the Gesture Builder Application
	29.6 Creating a Gestures File
	29.7 Creating the Example Project
	29.8 Extracting the Gestures File from the SD Card
	29.9 Adding the Gestures File to the Project
	29.10 Designing the User Interface
	29.11 Loading the Gestures File
	29.12 Registering the Event Listener
	29.13 Implementing the onGesturePerformed Method
	29.14 Testing the Application
	29.15 Configuring the GestureOverlayView
	29.16 Intercepting Gestures
	29.17 Detecting Pinch Gestures
	29.18 A Pinch Gesture Example Project
	29.19 Summary

	30. An Introduction to Android Fragments
	30.1 What is a Fragment?
	30.2 Creating a Fragment
	30.3 Adding a Fragment to an Activity using the Layout XML File
	30.4 Adding and Managing Fragments in Code
	30.5 Handling Fragment Events
	30.6 Implementing Fragment Communication
	30.7 Summary

	31. Using Fragments in Android Studio - An Example
	31.1 About the Example Fragment Application
	31.2 Creating the Example Project
	31.3 Creating the First Fragment Layout
	31.4 Migrating a Fragment to View Binding
	31.5 Adding the Second Fragment
	31.6 Adding the Fragments to the Activity
	31.7 Making the Toolbar Fragment Talk to the Activity
	31.8 Making the Activity Talk to the Text Fragment
	31.9 Testing the Application
	31.10 Summary

	32. Modern Android App Architecture with Jetpack
	32.1 What is Android Jetpack?
	32.2 The “Old” Architecture
	32.3 Modern Android Architecture
	32.4 The ViewModel Component
	32.5 The LiveData Component
	32.6 ViewModel Saved State
	32.7 LiveData and Data Binding
	32.8 Android Lifecycles
	32.9 Repository Modules
	32.10 Summary

	33. An Android ViewModel Tutorial
	33.1 About the Project
	33.2 Creating the ViewModel Example Project
	33.3 Removing Unwanted Project Elements
	33.4 Designing the Fragment Layout
	33.5 Implementing the View Model
	33.6 Associating the Fragment with the View Model
	33.7 Modifying the Fragment
	33.8 Accessing the ViewModel Data
	33.9 Testing the Project
	33.10 Summary

	34. An Android Jetpack LiveData Tutorial
	34.1 LiveData - A Recap
	34.2 Adding LiveData to the ViewModel
	34.3 Implementing the Observer
	34.4 Summary

	35. An Overview of Android Jetpack Data Binding
	35.1 An Overview of Data Binding
	35.2 The Key Components of Data Binding
	35.2.1 The Project Build Configuration
	35.2.2 The Data Binding Layout File
	35.2.3 The Layout File Data Element
	35.2.4 The Binding Classes
	35.2.5 Data Binding Variable Configuration
	35.2.6 Binding Expressions (One-Way)
	35.2.7 Binding Expressions (Two-Way)
	35.2.8 Event and Listener Bindings

	35.3 Summary

	36. An Android Jetpack Data Binding Tutorial
	36.1 Removing the Redundant Code
	36.2 Enabling Data Binding
	36.3 Adding the Layout Element
	36.4 Adding the Data Element to Layout File
	36.5 Working with the Binding Class
	36.6 Assigning the ViewModel Instance to the Data Binding Variable
	36.7 Adding Binding Expressions
	36.8 Adding the Conversion Method
	36.9 Adding a Listener Binding
	36.10 Testing the App
	36.11 Summary

	37. An Android ViewModel Saved State Tutorial
	37.1 Understanding ViewModel State Saving
	37.2 Implementing ViewModel State Saving
	37.3 Saving and Restoring State
	37.4 Adding Saved State Support to the ViewModelDemo Project
	37.5 Summary

	38. Working with Android Lifecycle-Aware Components
	38.1 Lifecycle Awareness
	38.2 Lifecycle Owners
	38.3 Lifecycle Observers
	38.4 Lifecycle States and Events
	38.5 Summary

	39. An Android Jetpack Lifecycle Awareness Tutorial
	39.1 Creating the Example Lifecycle Project
	39.2 Creating a Lifecycle Observer
	39.3 Adding the Observer
	39.4 Testing the Observer
	39.5 Creating a Lifecycle Owner
	39.6 Testing the Custom Lifecycle Owner
	39.7 Summary

	40. An Overview of the Navigation Architecture Component
	40.1 Understanding Navigation
	40.2 Declaring a Navigation Host
	40.3 The Navigation Graph
	40.4 Accessing the Navigation Controller
	40.5 Triggering a Navigation Action
	40.6 Passing Arguments
	40.7 Summary

	41. An Android Jetpack Navigation Component Tutorial
	41.1 Creating the NavigationDemo Project
	41.2 Adding Navigation to the Build Configuration
	41.3 Creating the Navigation Graph Resource File
	41.4 Declaring a Navigation Host
	41.5 Adding Navigation Destinations
	41.6 Designing the Destination Fragment Layouts
	41.7 Adding an Action to the Navigation Graph
	41.8 Implement the OnFragmentInteractionListener
	41.9 Adding View Binding Support to the Destination Fragments
	41.10 Triggering the Action
	41.11 Passing Data Using Safeargs
	41.12 Summary

	42. An Introduction to MotionLayout
	42.1 An Overview of MotionLayout
	42.2 MotionLayout
	42.3 MotionScene
	42.4 Configuring ConstraintSets
	42.5 Custom Attributes
	42.6 Triggering an Animation
	42.7 Arc Motion
	42.8 Keyframes
	42.8.1 Attribute Keyframes
	42.8.2 Position Keyframes

	42.9 Time Linearity
	42.10 KeyTrigger
	42.11 Cycle and Time Cycle Keyframes
	42.12 Starting an Animation from Code
	42.13 Summary

	43. An Android MotionLayout Editor Tutorial
	43.1 Creating the MotionLayoutDemo Project
	43.2 ConstraintLayout to MotionLayout Conversion
	43.3 Configuring Start and End Constraints
	43.4 Previewing the MotionLayout Animation
	43.5 Adding an OnClick Gesture
	43.6 Adding an Attribute Keyframe to the Transition
	43.7 Adding a CustomAttribute to a Transition
	43.8 Adding Position Keyframes
	43.9 Summary

	44. A MotionLayout KeyCycle Tutorial
	44.1 An Overview of Cycle Keyframes
	44.2 Using the Cycle Editor
	44.3 Creating the KeyCycleDemo Project
	44.4 Configuring the Start and End Constraints
	44.5 Creating the Cycles
	44.6 Previewing the Animation
	44.7 Adding the KeyFrameSet to the MotionScene
	44.8 Summary

	45. Working with the Floating Action Button and Snackbar
	45.1 The Material Design
	45.2 The Design Library
	45.3 The Floating Action Button (FAB)
	45.4 The Snackbar
	45.5 Creating the Example Project
	45.6 Reviewing the Project
	45.7 Removing Navigation Features
	45.8 Changing the Floating Action Button
	45.9 Adding an Action to the Snackbar
	45.10 Summary

	46. Creating a Tabbed Interface using the TabLayout Component
	46.1 An Introduction to the ViewPager2
	46.2 An Overview of the TabLayout Component
	46.3 Creating the TabLayoutDemo Project
	46.4 Creating the First Fragment
	46.5 Duplicating the Fragments
	46.6 Adding the TabLayout and ViewPager2
	46.7 Performing the Initialization Tasks
	46.8 Testing the Application
	46.9 Customizing the TabLayout
	46.10 Summary

	47. Working with the RecyclerView and CardView Widgets
	47.1 An Overview of the RecyclerView
	47.2 An Overview of the CardView
	47.3 Summary

	48. An Android RecyclerView and CardView Tutorial
	48.1 Creating the CardDemo Project
	48.2 Modifying the Basic Views Activity Project
	48.3 Designing the CardView Layout
	48.4 Adding the RecyclerView
	48.5 Adding the Image Files
	48.6 Creating the RecyclerView Adapter
	48.7 Initializing the RecyclerView Component
	48.8 Testing the Application
	48.9 Responding to Card Selections
	48.10 Summary

	49. A Layout Editor Sample Data Tutorial
	49.1 Adding Sample Data to a Project
	49.2 Using Custom Sample Data
	49.3 Summary

	50. Working with the AppBar and Collapsing Toolbar Layouts
	50.1 The Anatomy of an AppBar
	50.2 The Example Project
	50.3 Coordinating the RecyclerView and Toolbar
	50.4 Introducing the Collapsing Toolbar Layout
	50.5 Changing the Title and Scrim Color
	50.6 Summary

	51. An Android Studio Primary/Detail Flow Tutorial
	51.1 The Primary/Detail Flow
	51.2 Creating a Primary/Detail Flow Activity
	51.3 Adding the Primary/Detail Flow Activity
	51.4 Modifying the Primary/Detail Flow Template
	51.5 Changing the Content Model
	51.6 Changing the Detail Pane
	51.7 Modifying the ItemDetailFragment Class
	51.8 Modifying the ItemListFragment Class
	51.9 Adding Manifest Permissions
	51.10 Running the Application
	51.11 Summary

	52. An Overview of Android Services
	52.1 Intent Service
	52.2 Bound Service
	52.3 The Anatomy of a Service
	52.4 Controlling Destroyed Service Restart Options
	52.5 Declaring a Service in the Manifest File
	52.6 Starting a Service Running on System Startup
	52.7 Summary

	53. An Overview of Android Intents
	53.1 An Overview of Intents
	53.2 Explicit Intents
	53.3 Returning Data from an Activity
	53.4 Implicit Intents
	53.5 Using Intent Filters
	53.6 Automatic Link Verification
	53.7 Manually Enabling Links
	53.8 Checking Intent Availability
	53.9 Summary

	54. Android Explicit Intents – A Worked Example
	54.1 Creating the Explicit Intent Example Application
	54.2 Designing the User Interface Layout for MainActivity
	54.3 Creating the Second Activity Class
	54.4 Designing the User Interface Layout for SecondActivity
	54.5 Reviewing the Application Manifest File
	54.6 Creating the Intent
	54.7 Extracting Intent Data
	54.8 Launching SecondActivity as a Sub-Activity
	54.9 Returning Data from a Sub-Activity
	54.10 Testing the Application
	54.11 Summary

	55. Android Implicit Intents – A Worked Example
	55.1 Creating the Android Studio Implicit Intent Example Project
	55.2 Designing the User Interface
	55.3 Creating the Implicit Intent
	55.4 Adding a Second Matching Activity
	55.5 Adding the Web View to the UI
	55.6 Obtaining the Intent URL
	55.7 Modifying the MyWebView Project Manifest File
	55.8 Installing the MyWebView Package on a Device
	55.9 Testing the Application
	55.10 Manually Enabling the Link
	55.11 Automatic Link Verification
	55.12 Summary

	56. Android Broadcast Intents and Broadcast Receivers
	56.1 An Overview of Broadcast Intents
	56.2 An Overview of Broadcast Receivers
	56.3 Obtaining Results from a Broadcast
	56.4 Sticky Broadcast Intents
	56.5 The Broadcast Intent Example
	56.6 Creating the Example Application
	56.7 Creating and Sending the Broadcast Intent
	56.8 Creating the Broadcast Receiver
	56.9 Registering the Broadcast Receiver
	56.10 Testing the Broadcast Example
	56.11 Listening for System Broadcasts
	56.12 Summary

	57. Android Local Bound Services – A Worked Example
	57.1 Understanding Bound Services
	57.2 Bound Service Interaction Options
	57.3 A Local Bound Service Example
	57.4 Adding a Bound Service to the Project
	57.5 Implementing the Binder
	57.6 Binding the Client to the Service
	57.7 Completing the Example
	57.8 Testing the Application
	57.9 Summary

	58. Android Remote Bound Services – A Worked Example
	58.1 Client to Remote Service Communication
	58.2 Creating the Example Application
	58.3 Designing the User Interface
	58.4 Implementing the Remote Bound Service
	58.5 Configuring a Remote Service in the Manifest File
	58.6 Launching and Binding to the Remote Service
	58.7 Sending a Message to the Remote Service
	58.8 Summary

	59. An Overview of Java Threads, Handlers and Executors
	59.1 The Application Main Thread
	59.2 Thread Handlers
	59.3 A Threading Example
	59.4 Building the App
	59.5 Creating a New Thread
	59.6 Implementing a Thread Handler
	59.7 Passing a Message to the Handler
	59.8 Java Executor Concurrency
	59.9 Working with Runnable Tasks
	59.10 Shutting down an Executor Service
	59.11 Working with Callable Tasks and Futures
	59.12 Handling a Future Result
	59.13 Scheduling Tasks
	59.14 Summary

	60. Making Runtime Permission Requests in Android
	60.1 Understanding Normal and Dangerous Permissions
	60.2 Creating the Permissions Example Project
	60.3 Checking for a Permission
	60.4 Requesting Permission at Runtime
	60.5 Providing a Rationale for the Permission Request
	60.6 Testing the Permissions App
	60.7 Summary

	61. An Android Notifications Tutorial
	61.1 An Overview of Notifications
	61.2 Creating the NotifyDemo Project
	61.3 Designing the User Interface
	61.4 Creating the Second Activity
	61.5 Creating a Notification Channel
	61.6 Requesting Notification Permission
	61.7 Creating and Issuing a Notification
	61.8 Launching an Activity from a Notification
	61.9 Adding Actions to a Notification
	61.10 Bundled Notifications
	61.11 Summary

	62. An Android Direct Reply Notification Tutorial
	62.1 Creating the DirectReply Project
	62.2 Designing the User Interface
	62.3 Requesting Notification Permission
	62.4 Creating the Notification Channel
	62.5 Building the RemoteInput Object
	62.6 Creating the PendingIntent
	62.7 Creating the Reply Action
	62.8 Receiving Direct Reply Input
	62.9 Updating the Notification
	62.10 Summary

	63. Foldable Devices and Multi-Window Support
	63.1 Foldables and Multi-Window Support
	63.2 Using a Foldable Emulator
	63.3 Entering Multi-Window Mode
	63.4 Enabling and using Freeform Support
	63.5 Checking for Freeform Support
	63.6 Enabling Multi-Window Support in an App
	63.7 Specifying Multi-Window Attributes
	63.8 Detecting Multi-Window Mode in an Activity
	63.9 Receiving Multi-Window Notifications
	63.10 Launching an Activity in Multi-Window Mode
	63.11 Configuring Freeform Activity Size and Position
	63.12 Summary

	64. An Overview of Android SQLite Databases
	64.1 Understanding Database Tables
	64.2 Introducing Database Schema
	64.3 Columns and Data Types
	64.4 Database Rows
	64.5 Introducing Primary Keys
	64.6 What is SQLite?
	64.7 Structured Query Language (SQL)
	64.8 Trying SQLite on an Android Virtual Device (AVD)
	64.9 The Android Room Persistence Library
	64.10 Summary

	65. The Android Room Persistence Library
	65.1 Revisiting Modern App Architecture
	65.2 Key Elements of Room Database Persistence
	65.2.1 Repository
	65.2.2 Room Database
	65.2.3 Data Access Object (DAO)
	65.2.4 Entities
	65.2.5 SQLite Database

	65.3 Understanding Entities
	65.4 Data Access Objects
	65.5 The Room Database
	65.6 The Repository
	65.7 In-Memory Databases
	65.8 Database Inspector
	65.9 Summary

	66. An Android TableLayout and TableRow Tutorial
	66.1 The TableLayout and TableRow Layout Views
	66.2 Creating the Room Database Project
	66.3 Converting to a LinearLayout
	66.4 Adding the TableLayout to the User Interface
	66.5 Configuring the TableRows
	66.6 Adding the Button Bar to the Layout
	66.7 Adding the RecyclerView
	66.8 Adjusting the Layout Margins
	66.9 Summary

	67. An Android Room Database and Repository Tutorial
	67.1 About the RoomDemo Project
	67.2 Modifying the Build Configuration
	67.3 Building the Entity
	67.4 Creating the Data Access Object
	67.5 Adding the Room Database
	67.6 Adding the Repository
	67.7 Adding the ViewModel
	67.8 Creating the Product Item Layout
	67.9 Adding the RecyclerView Adapter
	67.10 Preparing the Main Activity
	67.11 Adding the Button Listeners
	67.12 Adding LiveData Observers
	67.13 Initializing the RecyclerView
	67.14 Testing the RoomDemo App
	67.15 Using the Database Inspector
	67.16 Summary

	68. Accessing Cloud Storage using the Android Storage Access Framework
	68.1 The Storage Access Framework
	68.2 Working with the Storage Access Framework
	68.3 Filtering Picker File Listings
	68.4 Handling Intent Results
	68.5 Reading the Content of a File
	68.6 Writing Content to a File
	68.7 Deleting a File
	68.8 Gaining Persistent Access to a File
	68.9 Summary

	69. An Android Storage Access Framework Example
	69.1 About the Storage Access Framework Example
	69.2 Creating the Storage Access Framework Example
	69.3 Designing the User Interface
	69.4 Adding the Activity Launchers
	69.5 Creating a New Storage File
	69.6 Saving to a Storage File
	69.7 Opening and Reading a Storage File
	69.8 Testing the Storage Access Application
	69.9 Summary

	70. Video Playback on Android using the VideoView and MediaController Classes
	70.1 Introducing the Android VideoView Class
	70.2 Introducing the Android MediaController Class
	70.3 Creating the Video Playback Example
	70.4 Designing the VideoPlayer Layout
	70.5 Downloading the Video File
	70.6 Configuring the VideoView
	70.7 Adding the MediaController to the Video View
	70.8 Setting up the onPreparedListener
	70.9 Summary

	71. Android Picture-in-Picture Mode
	71.1 Picture-in-Picture Features
	71.2 Enabling Picture-in-Picture Mode
	71.3 Configuring Picture-in-Picture Parameters
	71.4 Entering Picture-in-Picture Mode
	71.5 Detecting Picture-in-Picture Mode Changes
	71.6 Adding Picture-in-Picture Actions
	71.7 Summary

	72. An Android Picture-in-Picture Tutorial
	72.1 Adding Picture-in-Picture Support to the Manifest
	72.2 Adding a Picture-in-Picture Button
	72.3 Entering Picture-in-Picture Mode
	72.4 Detecting Picture-in-Picture Mode Changes
	72.5 Adding a Broadcast Receiver
	72.6 Adding the PiP Action
	72.7 Testing the Picture-in-Picture Action
	72.8 Summary

	73. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	73.1 Playing Audio
	73.2 Recording Audio and Video using the MediaRecorder Class
	73.3 About the Example Project
	73.4 Creating the AudioApp Project
	73.5 Designing the User Interface
	73.6 Checking for Microphone Availability
	73.7 Initializing the Activity
	73.8 Implementing the recordAudio() Method
	73.9 Implementing the stopAudio() Method
	73.10 Implementing the playAudio() method
	73.11 Configuring and Requesting Permissions
	73.12 Testing the Application
	73.13 Summary

	74. Working with the Google Maps Android API in Android Studio
	74.1 The Elements of the Google Maps Android API
	74.2 Creating the Google Maps Project
	74.3 Creating a Google Cloud Billing Account
	74.4 Creating a New Google Cloud Project
	74.5 Enabling the Google Maps SDK
	74.6 Generating a Google Maps API Key
	74.7 Adding the API Key to the Android Studio Project
	74.8 Testing the Application
	74.9 Understanding Geocoding and Reverse Geocoding
	74.10 Adding a Map to an Application
	74.11 Requesting Current Location Permission
	74.12 Displaying the User’s Current Location
	74.13 Changing the Map Type
	74.14 Displaying Map Controls to the User
	74.15 Handling Map Gesture Interaction
	74.15.1 Map Zooming Gestures
	74.15.2 Map Scrolling/Panning Gestures
	74.15.3 Map Tilt Gestures
	74.15.4 Map Rotation Gestures

	74.16 Creating Map Markers
	74.17 Controlling the Map Camera
	74.18 Summary

	75. Printing with the Android Printing Framework
	75.1 The Android Printing Architecture
	75.2 The Print Service Plugins
	75.3 Google Cloud Print
	75.4 Printing to Google Drive
	75.5 Save as PDF
	75.6 Printing from Android Devices
	75.7 Options for Building Print Support into Android Apps
	75.7.1 Image Printing
	75.7.2 Creating and Printing HTML Content
	75.7.3 Printing a Web Page
	75.7.4 Printing a Custom Document

	75.8 Summary

	76. An Android HTML and Web Content Printing Example
	76.1 Creating the HTML Printing Example Application
	76.2 Printing Dynamic HTML Content
	76.3 Creating the Web Page Printing Example
	76.4 Removing the Floating Action Button
	76.5 Removing Navigation Features
	76.6 Designing the User Interface Layout
	76.7 Accessing the WebView from the Main Activity
	76.8 Loading the Web Page into the WebView
	76.9 Adding the Print Menu Option
	76.10 Summary

	77. A Guide to Android Custom Document Printing
	77.1 An Overview of Android Custom Document Printing
	77.1.1 Custom Print Adapters

	77.2 Preparing the Custom Document Printing Project
	77.3 Creating the Custom Print Adapter
	77.4 Implementing the onLayout() Callback Method
	77.5 Implementing the onWrite() Callback Method
	77.6 Checking a Page is in Range
	77.7 Drawing the Content on the Page Canvas
	77.8 Starting the Print Job
	77.9 Testing the Application
	77.10 Summary

	78. An Introduction to Android App Links
	78.1 An Overview of Android App Links
	78.2 App Link Intent Filters
	78.3 Handling App Link Intents
	78.4 Associating the App with a Website
	78.5 Summary

	79. An Android Studio App Links Tutorial
	79.1 About the Example App
	79.2 The Database Schema
	79.3 Loading and Running the Project
	79.4 Adding the URL Mapping
	79.5 Adding the Intent Filter
	79.6 Adding Intent Handling Code
	79.7 Testing the App
	79.8 Creating the Digital Asset Links File
	79.9 Testing the App Link
	79.10 Summary

	80. An Android Biometric Authentication Tutorial
	80.1 An Overview of Biometric Authentication
	80.2 Creating the Biometric Authentication Project
	80.3 Configuring Device Fingerprint Authentication
	80.4 Adding the Biometric Permission to the Manifest File
	80.5 Designing the User Interface
	80.6 Adding a Toast Convenience Method
	80.7 Checking the Security Settings
	80.8 Configuring the Authentication Callbacks
	80.9 Adding the CancellationSignal
	80.10 Starting the Biometric Prompt
	80.11 Testing the Project
	80.12 Summary

	81. Creating, Testing, and Uploading an Android App Bundle
	81.1 The Release Preparation Process
	81.2 Android App Bundles
	81.3 Register for a Google Play Developer Console Account
	81.4 Configuring the App in the Console
	81.5 Enabling Google Play App Signing
	81.6 Creating a Keystore File
	81.7 Creating the Android App Bundle
	81.8 Generating Test APK Files
	81.9 Uploading the App Bundle to the Google Play Developer Console
	81.10 Exploring the App Bundle
	81.11 Managing Testers
	81.12 Rolling the App Out for Testing
	81.13 Uploading New App Bundle Revisions
	81.14 Analyzing the App Bundle File
	81.15 Summary

	82. An Overview of Android In-App Billing
	82.1 Preparing a Project for In-App Purchasing
	82.2 Creating In-App Products and Subscriptions
	82.3 Billing Client Initialization
	82.4 Connecting to the Google Play Billing Library
	82.5 Querying Available Products
	82.6 Starting the Purchase Process
	82.7 Completing the Purchase
	82.8 Querying Previous Purchases
	82.9 Summary

	83. An Android In-App Purchasing Tutorial
	83.1 About the In-App Purchasing Example Project
	83.2 Creating the InAppPurchase Project
	83.3 Adding Libraries to the Project
	83.4 Designing the User Interface
	83.5 Adding the App to the Google Play Store
	83.6 Creating an In-App Product
	83.7 Enabling License Testers
	83.8 Initializing the Billing Client
	83.9 Querying the Product
	83.10 Launching the Purchase Flow
	83.11 Handling Purchase Updates
	83.12 Consuming the Product
	83.13 Restoring a Previous Purchase
	83.14 Testing the App
	83.15 Troubleshooting
	83.16 Summary

	84. Creating and Managing Overflow Menus on Android
	84.1 The Overflow Menu
	84.2 Creating an Overflow Menu
	84.3 Displaying an Overflow Menu
	84.4 Responding to Menu Item Selections
	84.5 Creating Checkable Item Groups
	84.6 Menus and the Android Studio Menu Editor
	84.7 Creating the Example Project
	84.8 Designing the Menu
	84.9 Modifying the onOptionsItemSelected() Method
	84.10 Testing the Application
	84.11 Summary

	85. Working with Material Design 3 Theming
	85.1 Material Design 2 vs. Material Design 3
	85.2 Understanding Material Design Theming
	85.3 Material Design 3 Theming
	85.4 Building a Custom Theme
	85.5 Summary

	86. A Material Design 3 Theming and Dynamic Color Tutorial
	86.1 Creating the ThemeDemo Project
	86.2 Designing the User Interface
	86.3 Building a New Theme
	86.4 Adding the Theme to the Project
	86.5 Enabling Dynamic Color Support
	86.6 Previewing Dynamic Colors
	86.7 Summary

	87. An Overview of Gradle in Android Studio
	87.1 An Overview of Gradle
	87.2 Gradle and Android Studio
	87.2.1 Sensible Defaults
	87.2.2 Dependencies
	87.2.3 Build Variants
	87.2.4 Manifest Entries
	87.2.5 APK Signing
	87.2.6 ProGuard Support

	87.3 The Property and Settings Gradle Build File
	87.4 The Top-level Gradle Build File
	87.5 Module Level Gradle Build Files
	87.6 Configuring Signing Settings in the Build File
	87.7 Running Gradle Tasks from the Command Line
	87.8 Summary

	Index

