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Chapter 1

1. Introduction

Fully updated for Android Studio Hedgehog (2023.1.1) and the new UI, this book teaches you how to develop
Android-based applications using the Java programming language.

This book begins with the basics and outlines how to set up an Android development and testing environment,
followed by an overview of areas such as tool windows, the code editor, and the Layout Editor tool. An
introduction to the architecture of Android is followed by an in-depth look at the design of Android applications
and user interfaces using the Android Studio environment.

Chapters also cover the Android Architecture Components, including view models, lifecycle management,
Room database access, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the
ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers,
and direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App Links, Gradle build configuration, in-app
billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some Java programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.payloadbooks.com/product/hedgehogjava
The steps to load a project from the code samples into Android Studio are as follows:
1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at info@payloadbooks.com.


https://www.payloadbooks.com/product/hedgehogjava
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1.3 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.payloadbooks.com/hedgehogjava

If you find an error not listed in the errata, please let us know by emailing our technical support team at info@
payloadbooks.com. They are there to help you and will work to resolve any problems you may encounter.


https://www.payloadbooks.com/hedgehogjava

Chapter 2

2. Setting up an Android Studio
Development Environment

Before any work can begin on developing an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE), including the Android Software Development Kit (SDK) and the
Open]DK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements

Android application development may be performed on any of the following system types:
« Windows 8/10/11 64-bit

« macOS 10.14 or later running on Intel or Apple silicon

« Chrome OS device with Intel i5 or higher

o Linux systems with version 2.31 or later of the GNU C Library (glibc)

o Minimum of 8GB of RAM

« Approximately 8GB of available disk space

« 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package

Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Hedgehog 2023.1.1
using the Android API 34 SDK (UpsideDownCake), which, at the time of writing, are the latest stable releases.

Android Studio is, however, subject to frequent updates, so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page, which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio, there may be differences
between this book and the software. A web search for “Android Studio Hedgehog” should provide the option to
download the older version if these differences become a problem. Alternatively, visit the following web page to
find Android Studio Hedgehog 2023.1.1 in the archives:

https://developer.android.com/studio/archive


https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive
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2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is performed.

2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation to
meet your requirements in terms of the file system location into which Android Studio should be installed and
whether or not it should be made available to other system users. When prompted to select the components to
install, ensure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11, this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS

Android Studio for macOS is downloaded as a disk image (.dmg) file. Once the android-studio-<version>-mac.
dmg file has been downloaded, locate it in a Finder window and double-click on it to open it, as shown in Figure
2-1:

Figure 2-1

To install the package, drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

4
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2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed, and execute the following command:

tar xvfz /<path to package>/android-studio-<version>-linux.tar.gz

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Therefore,

assuming that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory,
and execute the following command:

./studio.sh

2.4 The Android Studio setup wizard

If you have previously installed an earlier version of Android Studio, the first time this new version is launched,
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have
settings from a previous version and would like to import them into the latest installation, select the appropriate
option and location. Alternatively, indicate that you do not need to import any previous settings and click the
OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2

If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select
the Standard installation option before clicking Next.
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Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click the Finish
button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen using your chosen Ul theme:

Figure 2-4
2.5 Installing additional Android SDK packages

The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.
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This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Settings dialog
will appear as shown in Figure 2-5:

Figure 2-5

Google pairs each release of Android Studio with a maximum supported Application Programming Interface
(API) level of the Android SDK. In the case of Android Studio Hedgehog, this is Android UpsideDownCake
(API Level 34). This information can be confirmed using the following link:

https://developer.android.com/studio/releases#api-level-support

Immediately after installing Android Studio for the first time, it is likely that only the latest supported version
of the Android SDK has been installed. To install older versions of the Android SDK, select the checkboxes
corresponding to the versions and click the Apply button. The rest of this book assumes that the Android
UpsideDownCake (API Level 34) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo).
This ensures that the apps run on a wide range of Android devices. Within the list of SDK versions, enable
the checkbox next to Android 8.0 (Oreo) and click the Apply button. Click the OK button to install the SDK
in the resulting confirmation dialog. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:


https://developer.android.com/studio/releases#api-level-support
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Figure 2-6

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

« Android SDK Build-tools

« Android Emulator

« Android SDK Platform-tools
» Google Play Services

« Intel x86 Emulator Accelerator (HAXM installer)”

Google USB Driver (Windows only)
o Layout Inspector image server for API 31-34

"Note that the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based
Macs.

If any of the above packages are listed as Not Installed or requiring an update, select the checkboxes next to those
packages and click the Apply button to initiate the installation process. If the HAXM emulator settings dialog
appears, select the recommended memory allocation:
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Figure 2-8

Once the installation is complete, review the package list and ensure that the selected packages are listed as
Installed in the Status column. If any are listed as Not installed, make sure they are selected and click the Apply
button again.

2.6 Installing the Android SDK Command-line Tools

Android Studio includes tools that allow some tasks to be performed from your operating system command
line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab, and locate the
Android SDK Command-line Tools (latest) package as shown in Figure 2-9:

Figure 2-9
If the command-line tools package is not already installed, enable it and click Apply, followed by OK to complete
the installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add
them to the system’s PATH environment variable.
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Regardless of your operating system, you will need to configure the PATH environment variable to include the
following paths (where <path_to_android_sdk_installation> represents the file system location into which you
installed the Android SDK):

<path to android sdk installation>/sdk/cmdline-tools/latest/bin
<path to android sdk installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:

Figure 2-10

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1

1.  On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from
the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of
icons, select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it, and click
the Edit... button. Using the New button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the following
entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin
C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering ¢md into the Run
dialog. Within the Command Prompt window, enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command-line options when executed.
Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:
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'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10

Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.3 Windows 11

Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux

This configuration can be achieved on Linux by adding a command to the .bashrc file in your home directory
(specifics may differ depending on the particular Linux distribution in use). Assuming that the Android SDK
bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file would read as
follows:

export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS

Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:

/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory, it will be necessary to use the sudo command when creating the file.
For example:

sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management

Android Studio is a large and complex software application with many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded, it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:
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Figure 2-11

To view and modify the current memory configuration, select the File -> Settings... main menu option (Android
Studio -> Settings... on macOS) and, in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure
2-12 below:

Figure 2-12

When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the
currently loaded project. On the other hand, when a project is built and run from within Android Studio,
several background processes (referred to as daemons) perform the task of compiling and running the app.
When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an
open project, select the Tools -> SDK Manager... menu option from the main menu.

2.8 Updating Android Studio and the SDK

From time to time, new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).
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2.9 Summary

Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). This chapter covers the steps necessary to install these packages on Windows,
macO§, and Linux.
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Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have explained how to configure an environment suitable for developing
Android applications using the Android Studio IDE. Before moving on to slightly more advanced topics, now
is a good time to validate that all required development packages are installed and functioning correctly. The
best way to achieve this goal is to create an Android application and compile and run it. This chapter will cover
creating an Android application project using Android Studio. Once the project has been created, a later chapter
will explore using the Android emulator environment to perform a test run of the application.

3.1 About the Project

The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also use one of the most basic Android Studio project templates. This simplicity allows us to introduce some key
aspects of Android app development without overwhelming the beginner by introducing too many concepts,
such as the recommended app architecture and Android architecture components, at once. When following
the tutorial in this chapter, rest assured that the techniques and code used in this initial example project will be
covered in much greater detail later.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1
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Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity

The next step is to define the type of initial activity to be created for the application. Options are available to
create projects for Phone and Tablet, Wear OS, Television, or Automotive. A range of different activity types is
available when developing Android applications, many of which will be covered extensively in later chapters.
For this example, however, select the Phone and Tablet option from the Templates panel, followed by the option
to create an Empty Views Activity. The Empty Views Activity option creates a template user interface consisting
of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name uniquely identifies the application within the Android application ecosystem. Although this
can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your
domain name followed by the application’s name. For example, if your domain is www.mycompany.com, and the
application has been named AndroidSample, then the package name might be specified as follows:

com.mycompany.androidsample

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your

home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This minimum SDK will be used in most projects
created in this book unless a necessary feature is only available in a more recent version. The objective here is to
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build an app using the latest Android SDK while retaining compatibility with devices running older versions of
Android (in this case, as far back as Android 8.0). The text beneath the Minimum SDXK setting will outline the
percentage of Android devices currently in use on which the app will run. Click on the Help me choose button
(highlighted in Figure 3-3) to see a full breakdown of the various Android versions still in use:

Figure 3-3

Finally, change the Language menu to Java and select Kotlin DSL (build.gradle.kts) as the build configuration
language before clicking Finish to create the project.

3.5 Enabling the New Android Studio UI

Android Studio is transitioning to a new, modern user interface that is not enabled by default in the Hedgehog
version. If your installation of Android Studio resembles Figure 3-4 below, then you will need to enable the new
UI before proceeding:

Figure 3-4

Enable the new UI by selecting the File -> Settings... menu option (Android Studio -> Settings... on macOS) and
selecting the New UT option under Appearance and Behavior in the left-hand panel. From the main panel, turn
on the Enable new UI checkbox before clicking Apply, followed by OK to commit the change:

17



Creating an Example Android App in Android Studio

Figure 3-5

When prompted, restart Android Studio to activate the new user interface.

3.6 Moditying the Example Application

Once Android Studio has restarted, the main window will reappear using the new UI and containing our
AndroidSample project as illustrated in Figure 3-6 below:

Figure 3-6

The newly created project and references to associated files are listed in the Project tool window on the left side
of the main project window. The Project tool window has several modes in which information can be displayed.
By default, this panel should be in Android mode. This setting is controlled by the menu at the top of the panel
as highlighted in Figure 3-7. If the panel is not currently in Android mode, use the menu to switch mode:
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Figure 3-7
3.7 Moditying the User Interface

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the Project tool window file hierarchy. Once located in the Project tool window,
double-click on the file to load it into the user interface Layout Editor tool, which will appear in the center panel
of the Android Studio main window:

Figure 3-8
In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A range of other
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device options are available by clicking on this menu.

Use the System UI Mode button () to turn Night mode on and off for the device screen layout. To change
the orientation of the device representation between landscape and portrait, use the drop-down menu showing

the icon.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user
interface components that may be used to construct a user interface, such as buttons, labels, and text fields.
However, it should be noted that not all user interface components are visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel, which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-9:

Figure 3-9

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to ensure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a
U-shaped icon. When disabled, the icon appears with a diagonal line through it (Figure 3-10). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-10

The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns, with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-11, for example, the Button view is currently selected within the Buttons category:
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Figure 3-11

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-12

The next step is to change the text currently displayed by the Button component. The panel located to the right
of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected
component in the layout. Within this panel, locate the text property in the Common Attributes section and
change the current value from “Button” to “Convert’, as shown in Figure 3-13:
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Figure 3-13

The second text property with a wrench next to it allows a text property to be set, which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing how a visual component and the layout
will behave with different settings without running the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer Constraints
button (Figure 3-14) to add any missing constraints to the layout:

Figure 3-14

It is important to explain the warning button in the top right-hand corner of the Layout Editor tool, as indicated
in Figure 3-15. This warning indicates potential problems with the layout. For details on any problems, click on
the button:

Figure 3-15
When clicked, the Problems tool window (Figure 3-16) will appear, describing the nature of the problems:

Figure 3-16
This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected
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within the layout file. In our example, only the following problem is listed:
button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:

Hardcoded string "Convert", should use @string resource
The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This I18N message informs us that a potential issue exists concerning the future internationalization of the
project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an “N”
and has 18 letters in between). The warning reminds us that attributes and values such as text strings should be
stored as resources wherever possible when developing Android applications. Doing so enables changes to the
appearance of the application to be made by modifying resource files instead of changing the application source
code. This can be especially valuable when translating a user interface to a different spoken language. If all of the
text in a user interface is contained in a single resource file, for example, that file can be given to a translator, who
will then perform the translation work and return the translated file for inclusion in the application. This enables
multiple languages to be targeted without the necessity for any source code changes to be made. In this instance,
we are going to create a new resource named convert_string and assign to it the string “Convert”

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-17:

Figure 3-17

After selecting this option, the Extract Resource panel (Figure 3-18) will appear. Within this panel, change the
resource name field to convert_string and leave the resource value set to Convert before clicking on the OK
button:

Figure 3-18
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The next widget to be added is an EditText widget, into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars” Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout, as shown in Figure 3-19:

Figure 3-19

Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

Figure 3-20
Repeat the steps to set the id of the TextView widget to textView, if necessary.

Add any missing layout constraints by clicking on the Infer Constraints button. At this point, the layout should
resemble that shown in Figure 3-21:
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Figure 3-21
3.8 Reviewing the Layout and Resource Files

Before moving on to the next step, we will look at some internal aspects of user interface design and resource
handling. In the previous section, we changed the user interface by modifying the activity_main.xml file using
the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a user-friendly way to edit the
underlying XML content of the file. In practice, there is no reason why you cannot modify the XML directly to
make user interface changes, and, in some instances, this may actually be quicker than using the Layout Editor
tool. In the top right-hand corner of the Layout Editor panel are the View Modes buttons marked A through C
in Figure 3-22 below:

Figure 3-22

By default, the editor will be in Design mode (button C), whereby only the visual representation of the layout is
displayed. In Code mode (A), the editor will display the XML for the layout, while in Split mode (B), both the
layout and XML are displayed, as shown in Figure 3-23:
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Figure 3-23

The button to the left of the View Modes button (marked B in Figure 3-22 above) is used to toggle between Code
and Split modes quickly.

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button, and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although complexity and content vary, all user
interface layouts are structured in this hierarchical, XML-based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel, with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="match parent"
tools:context=".MainActivity"
android:background="#££2438" >

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the layout color changes in real-time to match the new setting in the XML file. Note also that a small
red square appears in the XML editor’s left margin (also called the gutter) next to the line containing the color
setting. This is a visual cue to the fact that the color red has been set on a property. Clicking on the red square
will display a color chooser allowing a different color to be selected:
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Figure 3-24

Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently, the XML should read as follows:
<resources>
<string name="app name">AndroidSample</string>
<string name="convert string">Convert</string>
<string name="dollars hint">dollars</string>
</resources>

To demonstrate resources in action, change the string value currently assigned to the convert_string resource to
“Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file in the editor
panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor
tool in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights, and
then press Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml
file and take you to the line in that file where this resource is declared. Use this opportunity to revert the string
resource to the original “Convert” text and to add the following additional entry for a string resource that will
be referenced later in the app code:
<resources>

<string name="app name">AndroidSample</string>

<string name="convert string">Convert</string>

<string name="dollars hint">dollars</string>

<string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor by clicking on the Open editor
link in the top right-hand corner of the editor window. This will display the Translation Editor in the main panel
of the Android Studio window:
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Figure 3-25

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.9 Adding Interaction

The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button, the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can
be implemented in several ways and is covered in a later chapter entitled “An Overview and Example of Android
Event Handling”. Return the layout editor to Design mode, select the Button widget in the layout editor, refer to
the Attributes tool window, and specify a method named convertCurrency as shown below:

Figure 3-26

Next, double-click on the MainActivity.java file in the Project tool window (app -> java -> <package name> ->
MainActivity) to load it into the code editor and add the code for the convertCurrency method to the class file so
that it reads as follows, noting that it is also necessary to import some additional Android packages:

package com.ebookfrenzy.androidsample;
import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.TextView;
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import java.util.Locale;
public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity main);

public void convertCurrency (View view) {

EditText dollarText = findViewById(R.id.dollarText) ;
TextView textView = findViewById (R.id.textView) ;

if ('dollarText.getText().toString().equals("")) {

float dollarValue = Float.parseFloat(dollarText.getText () .toString())
float euroValue = dollarValue * 0.85F;
textView.setText (String. format (Locale.ENGLISH,"%$.2f", euroValue))

} else {
textView.setText (R.string.no_value_ string) ;

}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewByld, passing through the id assigned within the layout file. A check is then made to ensure
that the user has entered a dollar value, and if so, that value is extracted, converted from a String to a floating
point value, and converted to euros. Finally, the result is displayed on the TextView widget.

If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters. In
particular, the topic of accessing widgets from within code using findByViewld and an introduction to an
alternative technique referred to as view binding will be covered in the chapter entitled “An Overview of Android
View Binding”.

3.10 Summary

While not excessively complex, several steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to ensure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly string values, and briefly touched on layouts. Next, we looked at the
underlying XML used to store Android application user interface designs.

Finally, an onClick event was added to a Button connected to a method implemented to extract the user input
from the EditText component, convert it from dollars to euros and then display the result on the TextView.
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With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.
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Chapter 20

20. Working with ConstraintLayout
Chains and Ratios in Android Studio

The previous chapters have introduced the key features of the ConstraintLayout class and outlined the best
practices for ConstraintLayout-based user interface design within the Android Studio Layout Editor. Although
the concepts of ConstraintLayout chains and ratios were outlined in the chapter entitled “A Guide to the Android
ConstraintLayout”, we have not yet addressed how to use these features within the Layout Editor. Therefore,
this chapter’s focus is to provide practical steps on how to create and manage chains and ratios when using the
ConstraintLayout class.

20.1 Creating a Chain

Chains may be implemented by adding a few lines to an activity’s XML layout resource file or by using some
chain-specific features of the Layout Editor.

Consider a layout consisting of three Button widgets constrained to be positioned in the top-left, top-center, and
top-right of the ConstraintLayout parent, as illustrated in Figure 20-1:

Figure 20-1
To represent such a layout, the XML resource layout file might contain the following entries for the button
widgets:
<Button
android:id="@+id/buttonl”
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginStart="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintStart toStartOf="parent"
app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button2"
android:layout width="wrap content"

android:layout height="wrap content"
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android:layout marginkEnd="8dp"

android:layout marginStart="8dp"

android:layout marginTop="16dp"
android:text="Button"

app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toStartOf="@+id/button3”
app:layout constraintStart toEndOf="@+id/buttonl”
app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button3"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toEndOf="parent"
app:layout constraintTop toTopOf="parent" />

As currently configured, there are no bi-directional constraints to group these widgets into a chain. To address
this, additional constraints need to be added from the right-hand side of button1 to the left side of button2 and
from the left side of button3 to the right side of button2 as follows:
<Button

android:id="@+id/buttonl"

android:layout width="wrap content"

android:layout height="wrap content"

android:layout marginStart="8dp"

android:layout marginTop="16dp"

android:text="Button"

app:layout constraintHorizontal bias="0.5"

app:layout constraintStart toStartOf="parent"

app:layout constraintTop toTopOf="parent"

app:layout_constraintEnd toStartOf="@+id/button2" />

<Button
android:id="@+id/button2"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginStart="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toStartOf="@+id/button3”
app:layout constraintStart toEndOf="@+id/buttonl”
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app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button3"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toEndOf="parent"
app:layout constraintTop toTopOf="parent"
app:layout constraintStart toEndOf="@+id/button2" />

With these changes, the widgets now have bi-directional horizontal constraints configured. This constitutes a
ConstraintLayout chain represented visually within the Layout Editor by chain connections, as shown in Figure
20-2 below. Note that the chain has defaulted to the spread chain style in this configuration.

Figure 20-2

A chain may also be created by right-clicking on one of the views and selecting the Chains -> Create Horizontal
Chain or Chains -> Create Vertical Chain menu options.

20.2 Changing the Chain Style

If no chain style is configured, the ConstraintLayout will default to the spread chain style. The chain style can be
altered by right-clicking any of the widgets in the chain and selecting the Cycle Chain Mode menu option. Each
time the menu option is clicked, the style will switch to another setting in the order of spread, spread inside, and
packed.

Alternatively, the style may be specified in the Attributes tool window unfolding the layout_constraints property
and changing either the horizontal_chainStyle or vertical_chainStyle property depending on the orientation of
the chain:

Figure 20-3
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20.3 Spread Inside Chain Style

Figure 20-4 illustrates the effect of changing the chain style to the spread inside chain style using the above
techniques:

Figure 20-4
20.4 Packed Chain Style

Using the same technique, changing the chain style property to packed causes the layout to change, as shown in
Figure 20-5:

Figure 20-5
20.5 Packed Chain Style with Bias

The positioning of the packed chain may be influenced by applying a bias value. The bias can be between 0.0 and
1.0, with 0.5 representing the parent’s center. Bias is controlled by selecting the chain head widget and assigning
a value to the layout_constraintHorizontal_bias or layout_constraintVertical_bias attribute in the Attributes
panel. Figure 20-6 shows a packed chain with a horizontal bias setting of 0.2:

Figure 20-6
20.6 Weighted Chain

The final area of chains to explore involves weighting the individual widgets to control how much space each
widget in the chain occupies within the available space. A weighted chain may only be implemented using
the spread chain style, and any widget within the chain that responds to the weight property must have the
corresponding dimension property (height for a vertical chain and width for a horizontal chain) configured
for match constraint mode. Match constraint mode for a widget dimension may be configured by selecting the
widget, displaying the Attributes panel, and changing the dimension to match_constraint (equivalent to 0dp).
In Figure 20-7, for example, the layout_width constraint for a button has been set to match_constraint (0dp) to
indicate that the width of the widget is to be determined based on the prevailing constraint settings:
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Figure 20-7

Assuming that the spread chain style has been selected and all three buttons have been configured such that the
width dimension is set to match the constraints, the widgets in the chain will expand equally to fill the available
space:

Figure 20-8

The amount of space occupied by each widget relative to the other widgets in the chain can be controlled by
adding weight properties to the widgets. Figure 20-9 shows the effect of setting the layout_constraintHorizontal_
weight property to 4 on buttonl, and to 2 on both button2 and button3:

Figure 20-9
As a result of these weighting values, button1 occupies half of the space (4/8), while button2 and button3 each
occupy one-quarter (2/8) of the space.

20.7 Working with Ratios

ConstraintLayout ratios allow one widget dimension to be sized relative to the widget’s other dimension (also
referred to as aspect ratio). For example, an aspect ratio setting could be applied to an ImageView to ensure that
its width is always twice its height.
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A dimension ratio constraint is configured by setting the constrained dimension to match constraint mode
and configuring the layout_constraintDimensionRatio attribute on that widget to the required ratio. This ratio
value may be specified as a float value or a width:height ratio setting. The following XML excerpt, for example,
configures a ratio of 2:1 on an ImageView widget:
<ImageView

android:layout width="0dp"

android:layout height="100dp"

android:i1d="@+id/imageView"

app:layout constraintDimensionRatio="2:1" />

The above example demonstrates how to configure a ratio when only one dimension is set to match constraint. A
ratio may also be applied when both dimensions are set to match constraint mode. This involves specifying the
ratio preceded with either an H or a W to indicate which of the dimensions is constrained relative to the other.

Consider, for example, the following XML excerpt for an ImageView object:
<ImageView
android:layout width="0dp"
android:layout height="0dp"
android:1d="@+id/imageView"
app:layout constraintBottom toBottomOf="parent"
app:layout constraintRight toRightOf="parent"
app:layout constraintLeft toLeftOf="parent"
app:layout constraintTop toTopOf="parent"

app:layout constraintDimensionRatio="W,1:3" />

In the above example, the height will be defined subject to the constraints applied to it. In this case, constraints
have been configured such that it is attached to the top and bottom of the parent view, essentially stretching the
widget to fill the entire height of the parent. On the other hand, the width dimension has been constrained to
be one-third of the ImageView’s height dimension. Consequently, whatever size screen or orientation the layout
appears on, the ImageView will always be the same height as the parent and the width one-third of that height.

The same results may also be achieved without manually editing the XML resource file. Whenever a widget
dimension is set to match constraint mode, a ratio control toggle appears in the Inspector area of the property
panel. Figure 20-10, for example, shows the layout width and height attributes of a button widget set to match
constraint mode and 100dp respectively, and highlights the ratio control toggle in the widget sizing preview:

Figure 20-10

By default, the ratio sizing control is toggled off. Clicking on the control enables the ratio constraint and displays
an additional field where the ratio may be changed:
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Figure 20-11
20.8 Summary

Both chains and ratios are powerful features of the ConstraintLayout class intended to provide additional
options for designing flexible and responsive user interface layouts within Android applications. As outlined in
this chapter, the Android Studio Layout Editor has been enhanced to make it easier to use these features during
the user interface design process.
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Chapter 25

25. A Guide to Using Apply Changes
in Android Studio

Now that some of the basic concepts of Android development using Android Studio have been covered, this is
a good time to introduce the Android Studio Apply Changes feature. As all experienced developers know, every
second spent waiting for an app to compile and run is better spent writing and refining code.

25.1 Introducing Apply Changes

In early versions of Android Studio, each time a change to a project needed to be tested, Android Studio would
recompile the code, convert it to Dex format, generate the APK package file, and install it on the device or
emulator. Having performed these steps, the app would finally be launched and ready for testing. Even on a
fast development system, this process takes considerable time to complete. It is not uncommon for it to take a
minute or more for this process to complete for a large application.

Apply Changes, in contrast, allows many code and resource changes within a project to be reflected nearly
instantaneously within the app while it is already running on a device or emulator session.

Consider, for example, an app being developed in Android Studio which has already been launched on a device
or emulator. If changes are made to resource settings or the code within a method, Apply Changes will push
the updated code and resources to the running app and dynamically “swap” the changes. The changes are then
reflected in the running app without the need to build, deploy and relaunch the entire app. This often allows
changes to be tested in a fraction of the time without Apply Changes.

25.2 Understanding Apply Changes Options

Android Studio provides three options for applying changes to a running app in the form of Run App, Apply
Changes and Restart Activity and Apply Code Changes. These options can be summarized as follows:

o Run App - Stops the currently running app and restarts it. If no changes have been made to the project since
it was last launched, this option will restart the app. If, on the other hand, changes have been made to the
project, Android Studio will rebuild and re-install the app onto the device or emulator before launching it.

« Apply Code Changes - This option can be used when the only changes made to a project involve modifications
to the body of existing methods or when a new class or method has been added. When selected, the changes
will be applied to the running app without needing to restart the app or the currently running activity. This
mode cannot, however, be used when changes have been made to any project resources, such as a layout file.
Other restrictions include removing methods, changing a method signature, renaming classes, and other
structural code changes. It is also impossible to use this option when changes have been made to the project
manifest.

o Apply Changes and Restart Activity - When selected, this mode will dynamically apply any code or resource
changes made within the project and restart the activity without re-installing or restarting the app. Unlike the
Apply Code changes option, this can be used when changes have been made to the code and resources of the
project. However, the same restrictions involving some structural code changes and manifest modifications

apply.
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25.3 Using Apply Changes

When a project has been loaded into Android Studio but is not yet running on a device or emulator, it can be
launched as usual using either the run (marked A in Figure 25-1) or debug (B) button located in the toolbar:

Figure 25-1

After the app has launched and is running, a stop button (marked A in Figure 25-2) will appear, and the Apply
Changes and Restart Activity (B) and Apply Code Changes (C) buttons will be enabled:

Figure 25-2

If the changes cannot be applied when one of the Apply Changes buttons is selected, Android Studio will display
a message indicating the failure and an explanation. Figure 25-3, for example, shows the message displayed by
Android Studio when the Apply Code Changes option is selected after a change has been made to a resource file:

Figure 25-3

In this situation, the solution is to use the Apply Changes and Restart Activity option (for which alink is provided).
Similarly, the following message will appear when an attempt to apply changes that involve the removal of a
method is made:

Figure 25-4

In this case, the only option is to click on the Run App button to re-install and restart the app. As an alternative
to manually selecting the correct option, Android Studio may be configured to automatically fall back to
performing a Run App operation.
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25.4 Configuring Apply Changes Fallback Settings

The Apply Changes fallback settings are located in the Android Studio Settings dialog. Within the Settings
dialog, select the Build, Execution, Deployment entry in the left-hand panel, followed by Deployment, as shown
in Figure 25-5:

Figure 25-5

Once the required options have been enabled, click on Apply, followed by the OK button to commit the changes
and dismiss the dialog. After these defaults have been enabled, Android Studio will automatically re-install and
restart the app when necessary.

25.5 An Apply Changes Tutorial
Launch Android Studio, select the New Project option from the welcome screen, and choose the Basic Views

Activity template within the resulting new project dialog before clicking the Next button.

Enter ApplyChanges into the Name field and specify com.ebookfrenzy.applychanges as the package name. Before
clicking the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

25.6 Using Apply Code Changes
Begin by clicking the run button and selecting an emulator or physical device as the run target. After clicking the

run button, track the time before the example app appears on the device or emulator.

Once running, click on the action button (the button displaying an envelope icon in the screen’s lower right-hand
corner). Note that a Snackbar instance appears, displaying text which reads “Replace with your own action”, as
shown in Figure 25-6:

Figure 25-6

Once the app is running, the Apply Changes buttons should have been enabled, indicating that certain project
changes can be applied without reinstalling and restarting the app. To see this in action, edit the MainActivity.
java file, locate the onCreate method, and modify the action code so that a different message is displayed when
the action button is selected:
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binding.fab.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick(View view) {
Snackbar.make (view, "Apply Changes is Amazing!", Snackbar.LENGTH LONG)

.setAction ("Action", null).show();

)

With the code change implemented, click the Apply Code Changes button and note that a message appears
within a few seconds indicating the app has been updated. Tap the action button and note that the new message
is now displayed in the Snackbar.

25.7 Using Apply Changes and Restart Activity

Any resource change will require the use of the Apply Changes and Restart Activity option. Within Android
Studio, select the app -> res -> layout -> fragment_first.xml layout file. With the Layout Editor tool in Design
mode, select the default TextView component and change the text property in the attributes tool window to
“Hello Android”

Ensure that the fallback options outlined in “Configuring Apply Changes Fallback Settings” above are turned
off before clicking on the Apply Code Changes button. Note that the request fails because this change involves
project resources. Click on the Apply Changes and Restart Activity button and verify that the activity restarts and
displays the new text on the TextView widget.

25.8 Using Run App

As previously described, removing a method requires the complete re-installation and restart of the running
app. To experience this, edit the MainActivityjava file and add a new method after the onCreate method as
follows:

public void demoMethod () {
}

Use the Apply Code Changes button and confirm that the changes are applied without re-installing the app.

Next, delete the new method and verify that clicking on either of the two Apply Changes buttons will result in
the request failing. The only way to run the app after such a change is to click the Run App button.

25.9 Summary

Apply Changes is a feature of Android Studio designed to significantly accelerate the code, build and run cycle
performed when developing an app. The Apply Changes feature can push updates to the running application, in
many cases, without reinstalling or restarting the app. Apply Changes provides several different levels of support
depending on the nature of the modification being applied to the project.
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Chapter 32

32. Modern Android App
Architecture with Jetpack

For many years, Google did not recommend a specific approach to building Android apps other than to provide
tools and development kits while letting developers decide what worked best for a particular project or individual
programming style. That changed in 2017 with the introduction of the Android Architecture Components,
which, in turn, became part of Android Jetpack when it was released in 2018.

This chapter provides an overview of the concepts of Jetpack, Android app architecture recommendations, and
some key architecture components. Once the basics have been covered, these topics will be covered in more
detail and demonstrated through practical examples in later chapters.

32.1 What is Android Jetpack?

Android Jetpack consists of Android Studio, the Android Architecture Components, the Android Support
Library, and a set of guidelines recommending how an Android App should be structured. The Android
Architecture Components are designed to make it quicker and easier to perform common tasks when developing
Android apps while also conforming to the key principle of the architectural guidelines.

While all Android Architecture Components will be covered in this book, this chapter will focus on the key
architectural guidelines and the ViewModel, LiveData, and Lifecycle components while introducing Data
Binding and Repositories.

Before moving on, it is important to understand that the Jetpack approach to app development is optional.
While highlighting some of the shortcomings of other techniques that have gained popularity over the years,
Google stopped short of completely condemning those approaches to app development. Google is taking the
position that while there is no right or wrong way to develop an app, there is a reccommended way.

32.2 The “Old” Architecture

In the chapter entitled “Creating an Example Android App in Android Studio”, an Android project was created
consisting of a single activity that contained all of the code for presenting and managing the user interface
together with the back-end logic of the app. Until the introduction of Jetpack, the most common architecture
followed this paradigm with apps consisting of multiple activities (one for each screen within the app), with each
activity class to some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example, an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

32.3 Modern Android Architecture

At the most basic level, Google now advocates single-activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept referred to as “separation of concerns”). One of the keys to this approach
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is the ViewModel component.

32.4 The ViewModel Component

The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the
code responsible for displaying and managing the user interface and interacting with the operating system.
When designed this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data those controllers need.

The ViewModel only knows about the data model and corresponding logic. It knows nothing about the user
interface and does not attempt to directly access or respond to events relating to views within the user interface.
When a Ul controller needs data to display, it asks the ViewModel to provide it. Similarly, when the user enters
data into a view within the user interface, the UI controller passes it to the ViewModel for handling.

This separation of responsibility addresses the issues relating to the lifecycle of UI controllers. Regardless of how
often the UT controller is recreated during the lifecycle of an app, the ViewModel instances remain in memory,
thereby maintaining data consistency. For example, a ViewModel used by an activity will remain in memory
until the activity finishes, which, in the single activity app, is not until the app exits.

Figure 32-1
32.5 The LiveData Component

Consider an app that displays real-time data, such as the current price of a financial stock. The app could
use a stock price web service to continuously update the data model within the ViewModel with the latest
information. This real-time data is of use only if it is displayed to the user promptly. There are only two ways that
the UI controller can ensure that the latest data is displayed in the user interface. One option is for the controller
to continuously check with the ViewModel to determine if the data has changed since it was last displayed.
However, the problem with this approach is that it could be more efficient. To maintain the real-time nature of
the data feed, the UI controller would have to run on a loop, continuously checking for the data to change.

A better solution would be for the UI controller to receive a notification when a specific data item within a
ViewModel changes. This is made possible by using the LiveData component. LiveData is a data holder that
allows a value to become observable. In basic terms, an observable object can notify other objects when changes
to its data occur, thereby solving the problem of ensuring that the user interface always matches the data within
the ViewModel.

This means, for example, that a UI controller interested in a ViewModel value can set up an observer, which will,
in turn, be notified when that value changes. In our hypothetical application, for example, the stock price would
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be wrapped in a LiveData object within the ViewModel, and the UI controller would assign an observer to the
value, declaring a method to be called when the value changes. When triggered by data change, this method will
read the updated value from the ViewModel and use it to update the user interface.

Figure 32-2

A LiveData instance may also be declared as mutable, allowing the observing entity to update the underlying
value held within the LiveData object. The user might, for example, enter a value in the user interface that needs
to overwrite the value stored in the ViewModel.

Another of the key advantages of using LiveData is that it is aware of the lifecycle state of its observers. If,
for example, an activity contains a LiveData observer, the corresponding LiveData object will know when the
activity’s lifecycle state changes and respond accordingly. If the activity is paused (perhaps the app is put into the
background), the LiveData object will stop sending events to the observer. Suppose the activity has just started
or resumes after being paused. In that case, the LiveData object will send a LiveData event to the observer so
that the activity has the most up-to-date value. Similarly, the LiveData instance will know when the activity is
destroyed and remove the observer to free up resources.

So far, we've only talked about UI controllers using observers. In practice, however, an observer can be used
within any object that conforms to the Jetpack approach to lifecycle management.

32.6 ViewModel Saved State

Android allows the user to place an active app in the background and return to it after performing other tasks
on the device (including running other apps). When a device runs low on resources, the operating system will
rectify this by terminating background app processes, starting with the least recently used app. However, when
the user returns to the terminated background app, it should appear in the same state as when it was placed in
the background, regardless of whether it was terminated. In terms of the data associated with a ViewModel, this
can be implemented using the ViewModel Saved State module. This module allows values to be stored in the
app’s saved state and restored in case of system-initiated process termination. This topic will be covered later in
the “An Android ViewModel Saved State Tutorial” chapter.

32.7 LiveData and Data Binding

Android Jetpack includes the Data Binding Library, which allows data in a ViewModel to be mapped directly to
specific views within the XML user interface layout file. In the AndroidSample project created earlier, code had
to be written to obtain references to the EditText and TextView views and to set and get the text properties to
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reflect data changes. Data binding allows the LiveData value stored in the ViewModel to be referenced directly
within the XML layout file avoiding the need to write code to keep the layout views updated.

Figure 32-3

Data binding will be covered in greater detail, starting with the chapter “An Overview of Android Jetpack Data
Binding”.

32.8 Android Lifecycles

The duration from when an Android component is created to the point that it is destroyed is called the lifecycle.
During this lifecycle, the component will change between different lifecycle states, usually under the operating
systemy’s control and in response to user actions. An activity, for example, will begin in the initialized state before
transitioning to the created state. Once the activity runs, it will switch to the started state, from which it will cycle
through various states, including created, started, resumed, and destroyed.

Many Android Framework classes and components allow other objects to access their current state. Lifecycle
observers may also be used so that an object receives a notification when the lifecycle state of another object
changes. The ViewModel component uses this technique behind the scenes to identify when an observer
has restarted or been destroyed. This functionality is not limited to Android framework and architecture
components. It may also be built into any other classes using a set of lifecycle components included with the
architecture components.

Objects that can detect and react to lifecycle state changes in other objects are said to be lifecycle-aware. In
contrast, objects that provide access to their lifecycle state are called lifecycle owners. The chapter entitled
“Working with Android Lifecycle-Aware Components” will cover Lifecycles in greater detail.

32.9 Repository Modules

If a ViewModel obtains data from one or more external sources (such as databases or web services, it is important
to separate the code involved in handling those data sources from the ViewModel class. Failure to do this would,
after all, violate the separation of concerns guidelines. To avoid mixing this functionality with the ViewModel,
Google’s architecture guidelines recommend placing this code in a separate Repository module.

A repository is not an Android architecture component but a Java class created by the app developer that is
responsible for interfacing with the various data sources. The class then provides an interface to the ViewModel,
allowing that data to be stored in the model.

268



Modern Android App Architecture with Jetpack

Figure 32-4
32.10 Summary

Until recently, Google has tended not to recommend any particular approach to structuring an Android app.
That has now changed with the introduction of Android Jetpack, consisting of tools, components, libraries, and
architecture guidelines. Google now recommends that an app project be divided into separate modules, each
responsible for a particular area of functionality, otherwise known as “separation of concerns”.

In particular, the guidelines recommend separating the view data model of an app from the code responsible
for handling the user interface. In addition, the code responsible for gathering data from data sources such as
web services or databases should be built into a separate repository module instead of being bundled with the
view model.

Android Jetpack includes the Android Architecture Components, designed to make developing apps that
conform to the recommended guidelines easier. This chapter has introduced the ViewModel, LiveData, and
Lifecycle components. These will be covered in more detail, starting with the next chapter. Other architecture
components not mentioned in this chapter will be covered later in the book.
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Chapter 34

34. An Android Jetpack LiveData
Tutorial

The previous chapter began building an app to conform to the recommended Jetpack architecture guidelines.
These initial steps involved implementing the data model for the app user interface within a ViewModel instance.

This chapter will further enhance the app design using the LiveData architecture component. Once LiveData
support has been added to the project in this chapter, the next chapters (starting with “An Overview of Android
Jetpack Data Binding”) will use the Jetpack Data Binding library to eliminate even more code from the project.

34.1 LiveData - A Recap

LiveData was previously introduced in the “Modern Android App Architecture with Jetpack” chapter. As described
earlier, the LiveData component can be used as a wrapper around data values within a view model. Once
contained in a LiveData instance, those variables become observable to other objects within the app, typically
Ul controllers such as Activities and Fragments. This allows the UTI controller to receive a notification whenever
the underlying LiveData value changes. An observer is set up by creating an instance of the Observer class and
defining an onChange() method to be called when the LiveData value changes. Once the Observer instance has
been created, it is attached to the LiveData object via a call to the LiveData object’s observe() method.

LiveData instances can be declared mutable using the MutableLiveData class, allowing both the ViewModel and
UI controller to change the underlying data value.

34.2 Adding LiveData to the ViewModel

Launch Android Studio, open the ViewModelDemo project created in the previous chapter, and open the
MainViewModel.java file, which should currently read as follows:

package com.ebookfrenzy.viewmodeldemo;
import androidx.lifecycle.ViewModel;
public class MainViewModel extends ViewModel ({

private static final Float rate = 0.74F;
private String dollarText = "";

private Float result = OF;

public void setAmount (String wvalue) {
this.dollarText = value;

result = Float.parseFloat (dollarText) *rate;

public Float getResult ()
{
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return result;

}

This stage in the chapter aims to wrap the result variable in a MutableLiveData instance (the object will need
to be mutable so that the value can be changed each time the user requests a currency conversion). Begin by
modifying the class so that it now reads as follows, noting that an additional package needs to be imported when
making use of LiveData:

package com.ebookfrenzy.viewmodeldemo;

import androidx.lifecycle.MutablelLiveData;

import androidx.lifecycle.ViewModel;
public class MainViewModel extends ViewModel ({

private static final Float rate = 0.74F;

private String dollarText = "";

privateFloat—resutt—0F;

final private MutableliveData<Float> result = new MutableLiveData<>() ;

public void setAmount (String value) {
this.dollarText = value;

result = Float.parseFloat (dollarText) *rate;

public Float getResult()
{

return result;

}

Now that the result variable is contained in a mutable LiveData instance, both the setAmount() and getResult()
methods must be modified. In the case of the setAmount() method, a value can no longer be assigned to the
result variable using the assignment (=) operator. Instead, the LiveData setValue() method must be called,
passing through the new value as an argument. As currently implemented, the getResult() method is declared to
return a Float value and must be changed to return a MutableLiveData object. Making these remaining changes
results in the following class file:

package com.ebookfrenzy.viewmodeldemo;

import androidx.lifecycle.MutableLiveData;

import androidx.lifecycle.ViewModel;
public class MainViewModel extends ViewModel ({

private static final Float rate = 0.74F;
private String dollarText = "";
final private MutablelLiveData<Float> result = new MutablelLiveData<>();
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public void setAmount (String wvalue) {
this.dollarText = value;
resutt—Ftoat-parseFtoattdottarfext)y*rate;
result.setValue (Float.parseFloat (dollarText) *rate) ;

public MutablelLiveData<Float> getResult()
{

return result;

)
34.3 Implementing the Observer

Now that the conversion result is contained within a LiveData instance, the next step is configuring an observer
within the UI controller, which, in this example, is the FirstFragment class. Locate the FirstFragment.java class
(app -> java -> <package name> -> FirstFragment), double-click on it to load it into the editor, and modify the
onViewCreated() method to create a new Observer instance named resultObserver:

package com.ebookfrenzy.viewmodeldemo;

import androidx.lifecycle.Observer;

@QOverride
public void onViewCreated (@NonNull View view, @Nullable Bundle
savedInstanceState) {

super.onViewCreated (view, savedInstanceState);

binding.resultText.setText (String.format (Locale.ENGLISH,"%.2f",
viewModel.getResult()));

final Observer<Float> resultObserver = new Observer<Float>() {
@Override
public void onChanged (@Nullable final Float result) {
binding.resultText.setText (String.format (Locale.ENGLISH,
"%.2f", result));

}

The resultObserver instance declares the onChanged() method which, when called, is passed the current result
value, which it then converts to a string and displays on the resultText TextView object. The next step is to add
the observer to the result LiveData object, a reference that can be obtained via a call to the getResult() method of
the ViewModel object. Since updating the result TextView is now the responsibility of the onChanged() callback
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method, the existing lines of code to perform this task can now be deleted:

@Override
public void onViewCreated (@NonNull View view, @Nullable Bundle
savedInstanceState) {

super.onViewCreated (view, savedInstanceState);

final Observer<Float> resultObserver = new Observer<Float>() {
@Override
public void onChanged(@Nullable final Float result) {
binding.resultText.setText (String.format (Locale.ENGLISH,
"%.2f", result));

}i
viewModel.getResult () .observe (getViewLifecycleOwner () , resultObserver) ;

binding.convertButton.setOnClickListener (v -> {
if (!binding.dollarText.getText ().toString().equals("")) {
viewModel.setAmount (String.format (Locale.ENGLISH, "%s"

binding.dollarText.getText ()));

2 V4 =] hl =T i S N WA Y
rewMoger.getnesutrc () /) )
} else {
binding.resultText.setText ("No Value");

|
}

Compile and run the app, enter a value into the dollar field, click on the Convert button, and verify that the
converted euro amount appears on the TextView. This confirms that the observer received notification that the
result value had changed and called the onChanged() method to display the latest data.

Note in the above implementation of the on ViewCreated() method that the line of code responsible for displaying
the current result value each time the method was called was removed. This was originally put in place to ensure
that the displayed value was recovered if the Fragment was recreated for any reason. Because LiveData monitors
the lifecycle status of its observers, this step is no longer necessary. When LiveData detects that the UI controller
was recreated, it automatically triggers any associated observers and provides the latest data. Verify this by
rotating the device while a euro value is displayed on the TextView object and confirming that the value is not
lost.

Before moving on to the next chapter, close the project, copy the ViewModelDemo project folder, and save it as
ViewModelDemo_LiveData to be used later when saving the ViewModel state.
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34.4 Summary

This chapter demonstrated the use of the Android LiveData component to ensure that the data displayed to
the user always matches that stored in the ViewModel. This relatively simple process consisted of wrapping a
ViewModel data value within a LiveData object and setting up an observer within the UI controller subscribed
to the LiveData value. Each time the LiveData value changes, the observer is notified, and the onChanged()
method is called and passed the updated value.

Adding LiveData support to the project has gone some way towards simplifying the design of the project.
Additional and significant improvements are also possible using the Data Binding Library, details of which will
be covered in the next chapter.
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Chapter 42

42. An Introduction to MotionLayout

The MotionLayout class provides an easy way to add animation effects to the views of a user interface layout.
This chapter will begin by providing an overview of MotionLayout and introduce the concepts of MotionScenes,
Transitions, and Keyframes. Once these basics have been covered, the next two chapters (entitled “An Android
MotionLayout Editor Tutorial” and “A MotionLayout KeyCycle Tutorial”) will provide additional detail and
examples of MotionLayout animation in action through the creation of example projects.

42.1 An Overview of MotionLayout

MotionLayout is a layout container, the primary purpose of which is to animate the transition of views within
a layout from one state to another. MotionLayout could, for example, animate the motion of an ImageView
instance from the top left-hand corner of the screen to the bottom right-hand corner over a specified time.
In addition to the position of a view, other attribute changes may also be animated, such as the color, size, or
rotation angle. These state changes can also be interpolated (such that a view moves, rotates, and changes size
throughout the animation).

The motion of a view using MotionLayout may be performed in a straight line between two points or
implemented to follow a path comprising intermediate points at different positions between the start and end
points. MotionLayout also supports using touches and swipes to initiate and control animation.

MotionLayout animations are declared entirely in XML and do not typically require writing code. These XML
declarations may be implemented manually in the Android Studio code editor, visually using the MotionLayout
editor, or combining both approaches.

42.2 MotionLayout

When implementing animation, the ConstraintLayout container typically used in a user interface must first be
converted to a MotionLayout instance (a task which can be achieved by right-clicking on the ConstraintLayout
in the layout editor and selecting the Convert to MotionLayout menu option). MotionLayout also requires at
least version 2.0.0 of the ConstraintLayout library.

Unsurprisingly since it is a subclass of ConstraintLayout, MotionLayout supports all of the layout features of the
ConstraintLayout. Therefore, a user interface layout can be similarly designed when using MotionLayout for
views that do not require animation.

For views that are to be animated, two ConstraintSets are declared, defining the appearance and location of the
view at the start and end of the animation. A transition declaration defines keyframes to apply additional effects
to the target view between these start and end states and click and swipe handlers used to start and control the
animation.

The start and end ConstraintSets and the transitions are declared within a MotionScene XML file.

42.3 MotionScene

As we have seen in earlier chapters, an XML layout file contains the information necessary to configure the
appearance and layout behavior of the static views presented to the user, and this is still the case when using
MotionLayout. For non-static views (in other words, the views that will be animated), those views are still
declared within the layout file, but the start, end, and transition declarations related to those views are stored
in a separate XML file referred to as the MotionScene file (so called because all of the declarations are defined
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within a MotionScene element). This file is imported into the layout XML file and contains the start and end
ConstraintSets and Transition declarations (a single file can contain multiple ConstraintSet pairs and Transition
declarations, allowing different animations to be targeted to specific views within the user interface layout).

The following listing shows a template for a MotionScene file:

<?xml version="1.0" encoding="utf-8"?>

<MotionScene
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:motion="http://schemas.android.com/apk/res-auto">

<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
</KeyFrameSet>

</Transition>

<ConstraintSet android:id="Q@+id/start">
</ConstraintSet>

<ConstraintSet android:id="@+id/end">
</ConstraintSet>

</MotionScene>

In the above XML, ConstraintSets named start and end (though any name can be used) have been declared,
which, at this point, are yet to contain any constraint elements. The Transition element defines that these
ConstraintSets represent the animation start and end points and contain an empty KeyFrameSet element ready
to be populated with additional animation keyframe entries. The Transition element also includes a millisecond
duration property to control the running time of the animation.

ConstraintSets do not have to imply the motion of a view. It is possible to have the start and end sets declare the
same location on the screen and then use the transition to animate other property changes, such as scale and
rotation angle.

ConstraintSets do not have to imply the motion of a view. It is possible, for example, to have the start and end
sets declare the same location on the screen and then use the transition to animate other property changes, such
as scale and rotation angle.

42 .4 Configuring ConstraintSets

The ConstraintSets in the MotionScene file allow the full set of ConstraintLayout settings to be applied to a view
regarding positioning, sizing, and relation to the parent and other views. In addition, the following attributes
may also be included within the ConstraintSet declarations:

o alpha
« visibility
« elevation

« rotation
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e rotationX
o rotationY
« translationX

translationY

translationZ

« scaleX
o scaleY

For example, to rotate the view by 180° during the animation, the following could be declared within the start
and end constraints:
<ConstraintSet android:id="@+id/start">

<Constraint

motion:layout constraintStart toStartOf="parent"
android:rotation="0">
</Constraint>
</ConstraintSet>

<ConstraintSet android:id="Q@+id/end">

<Constraint

motion:layout constraintBottom toBottomOf="parent"
android:rotation="180">
</Constraint>
</ConstraintSet>

The above changes tell MotionLayout that the view is to start at 0° and then, during the animation, rotate a full
180° before coming to rest upside-down.

42.5 Custom Attributes

In addition to the standard attributes listed above, it is possible to specify a range of custom attributes (declared
using CustomAttribute). In fact, just about any property available on the view type can be specified as a
custom attribute for inclusion in an animation. To identify the attribute’s name, find the getter/setter name
from the documentation for the target view class, remove the get/set prefix, and lower the case of the first
remaining character. For example, to change the background color of a Button view in code, we might call the
setBackgroundColor() setter method as follows:

myButton.setBackgroundColor (Color.RED)

When setting this attribute in a constraint set or keyframe, the attribute name will be backgroundColor. In
addition to the attribute name, the value must also be declared using the appropriate type from the following
list of options:

« motion:customBoolean - Boolean attribute values.

339



An Introduction to MotionLayout

« motion:customColorValue - Color attribute values.

o motion:customDimension - Dimension attribute values.

« motion:customFloatValue - Floating point attribute values.
« motion:customIntegerValue - Integer attribute values.

» motion:customStringValue - String attribute values

For example, a color setting will need to be assigned using the customColorValue type :
<CustomAttribute
motion:attributeName="backgroundColor"

motion:customColorValue="#43CC76" />

The following excerpt from a MotionScene file, for example, declares start and end constraints for a view in
addition to changing the background color from green to red:

<ConstraintSet android:id="@+id/start">
<Constraint
android:layout width="wrap content"
android:layout height="wrap content"
motion:layout editor absoluteX="21dp"
android:id="@+id/button"
motion:layout constraintTop toTopOf="parent"
motion:layout constraintStart toStartOf="parent" >
<CustomAttribute
motion:attributeName="backgroundColor"
motion:customColorValue="#33CC33" />
</Constraint>
</ConstraintSet>

<ConstraintSet android:id="@+id/end">
<Constraint
android:layout width="wrap content"
android:layout height="wrap content"
motion:layout editor absolutey="21dp"
android:id="@+id/button"
motion:layout constraintEnd toEndOf="parent"
motion:layout constraintBottom toBottomOf="parent" >
<CustomAttribute
motion:attributeName="backgroundColor"
motion:customColorValue="#F80A1F" />
</Constraint>
</ConstraintSet>
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42.6 Triggering an Animation

Without some event to tell MotionLayout to start the animation, none of the settings in the MotionScene file will
affect the layout (except that the view will be positioned based on the setting in the start ConstraintSet).

The animation can be configured to start in response to either screen tap (OnClick) or swipe motion (OnSwipe)
gesture. The OnClick handler causes the animation to start and run until completion, while OnSwipe will
synchronize the animation to move back and forth along the timeline to match the touch motion. The OnSwipe
handler will also respond to “flinging” motions on the screen. The OnSwipe handler also provides options
to configure how the animation reacts to dragging in different directions and the side of the target view to
which the swipe is to be anchored. This allows, for example, left-ward dragging motions to move a view in the
corresponding direction while preventing an upward motion from causing a view to move sideways (unless, of
course, that is the required behavior).

The OnSwipe and OnClick declarations are contained within the Transition element of a MotionScene file.
In both cases, the view id must be specified. For example, to implement an OnSwipe handler responding to
downward drag motions anchored to the bottom edge of a view named button, the following XML would be
placed in the Transition element:

<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
</KeyFrameSet>
<OnSwipe
motion: touchAnchorId="@+id/button"
motion:dragDirection="dragDown"
motion:touchAnchorSide="bottom" />
</Transition>

Alternatively, to add an OnClick handler to the same button:
<OnClick motion:targetId="@id/button"
motion:clickAction="toggle" />

In the above example, the action has been set to foggle mode. This mode and the other available options can be
summarized as follows:

o toggle - Animates to the opposite state. For example, if the view is currently at the transition start point, it will
transition to the end point, and vice versa.

o jumpToStart - Changes immediately to the start state without animation.
« jumpToEnd - Changes immediately to the end state without animation.
« transitionToStart - Transitions with animation to the start state.

« transitionToEnd - Transitions with animation to the end state.
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42.7 Arc Motion

By default, a movement of view position will travel in a straight line between the start and end points. To change
the motion to an arc path, use the pathMotionArc attribute as follows within the start constraint, configured with
either a startHorizontal or startVertical setting to define whether the arc is to be concave or convex:
<ConstraintSet android:id="@+id/start">
<Constraint

android:layout width="wrap content"

android:layout height="wrap content"

motion:layout editor absoluteX="21ldp"

android:id="@+id/button"

motion:layout constraintTop toTopOf="parent"

motion:layout constraintStart toStartOf="parent"

motion:pathMotionArc="startVertical" >

Figure 42-1 illustrates startVertical and startHorizontal arcs in comparison to the default straight line motion:

Figure 42-1
42.8 Keyframes

All of the ConstraintSet attributes outlined so far only apply to the start and end points of the animation. In other
words, if the rotation property were set to 180° on the end point, the rotation would begin when the animation
starts and complete when the end point is reached. It is not, therefore, possible to configure the rotation to reach
the full 180° at a point 50% of the way through the animation and then rotate back to the original orientation by
the end. Fortunately, this type of effect is available using Keyframes.

Keyframes are used to define intermediate points during the animation at which state changes are to occur.
Keyframes could, for example, be declared such that the background color of a view is to have transitioned to
blue at a point 50% of the way through the animation, green at the 75% point, and then back to the original color
by the end of the animation. Keyframes are implemented within the Transition element of the MotionScene file
embedded into the KeyFrameSet element.

MotionLayout supports several types of Keyframe which can be summarized as follows:

42.8.1 Attribute Keyframes

Attribute Keyframes (declared using KeyAttribute) allow view attributes to be changed at intermediate points
in the animation timeline. KeyAttribute supports the attributes listed above for ConstraintSets combined with
the ability to specify where the change will take effect in the animation timeline. For example, the following
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Keyframe declaration will gradually cause the button view to double in size horizontally (scaleX) and vertically
(scaleY), reaching full size at 50% through the timeline. For the remainder of the timeline, the view will decrease
in size to its original dimensions:
<Transition
motion:constraintSetEnd="@+id/end"
motion:constraintSetStart="@id/start"
motion:duration="1000">
<KeyFrameSet>
<KeyAttribute
motion:motionTarget="@+id/button"
motion: framePosition="50"
android:scaleX="2.0" />
<KeyAttribute
motion:motionTarget="@+id/button"
motion: framePosition="50"
android:scaley="2.0" />
</KeyFrameSet>

42.8.2 Position Keyframes

Position keyframes (KeyPosition) modify the path followed by a view as it moves between the start and
end locations. By placing key positions at different points on the timeline, a path of just about any level of
complexity can be applied to an animation. Positions are declared using x and y coordinates combined with
the corresponding points in the transition timeline. These coordinates must be declared relative to one of the
following coordinate systems:

o parentRelative - The x and y coordinates are relative to the parent container where the coordinates are
specified as a percentage (represented as a value between 0.0 and 1.0):

Figure 42-2
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o deltaRelative - Instead of relative to the parent, the x and y coordinates are relative to the start and end
positions. For example, the start point is (0, 0) the end point (1, 1). Keep in mind that the x and y coordinates
can be negative values):

Figure 42-3

« pathRelative - The x and y coordinates are relative to the path, where the straight line between the start and
end points serves as the graph’s X-axis. Once again, coordinates are represented as a percentage (0.0 to 1.0).
This is similar to the deltaRelative coordinate space but takes into consideration the angle of the path. Once
again coordinates may be negative:

Figure 42-4
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As an example, the following ConstraintSets declare start and end points on either side of a device screen. By
default, a view transition using these points would move in a straight line across the screen, as illustrated in
Figure 42-5:

Figure 42-5

Suppose, however, that the view is required to follow a path similar to that shown in Figure 42-6 below:

Figure 42-6
To achieve this, keyframe position points could be declared within the transition as follows:
<KeyPosition
motion:motionTarget="@+id/button”
motion:framePosition="25"
motion:keyPositionType="pathRelative"
motion:percentY="0.3"

motion:percentX="0.25"/>

<KeyPosition
motion:motionTarget="@+id/button"
motion:framePosition="75"
motion:keyPositionType="pathRelative"
motion:percentY="-0.3"

motion:percentX="0.75"/>

The above elements create keyframe position points 25% and 75% through the path using the pathRelative
coordinate system. The first position is placed at coordinates (0.25, 0.3) and the second at (0.75, -0.3). These
position keyframes can be visualized as illustrated in Figure 42-7 below:
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Figure 42-7
42.9 Time Linearity

Without additional settings, the animations outlined above will be performed at a constant speed. To vary
the animation speed (for example, so that it accelerates and then decelerates), the transition easing attribute
(transitionEasing) can be used within a ConstraintSet or Keyframe.

For complex easing requirements, the linearity can be defined by plotting points on a cubic Bézier curve, for
example:

motion:layout constraintBottom toBottomOf="parent"
motion:transitionEasing="cubic(0.2, 0.7, 0.3, 1)"
android:rotation="360">

If you are unfamiliar with Bézier curves, consider using the curve generator online at the following URL:
https://cubic-bezier.com/

For most requirements, however, easing can be specified using the built-in standard, accelerate and decelerate
values:

motion:layout constraintBottom toBottomOf="parent"
motion:transitionEasing="decelerate"

android:rotation="360">

42.10 KeyTrigger

The trigger keyframe (KeyTrigger) allows a method on a view to be called when the animation reaches a
specified frame position within the animation timeline. This also takes into consideration the direction of the
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animations. For example, different methods can be called depending on whether the animation runs forward or
backward. Consider a button that is to be made visible when the animation moves beyond 20% of the timeline.
The KeyTrigger would be implemented within the KeyFrameSet of the Transition element as follows using the
onPositiveCross property:

<KeyFrameSet>
<KeyTrigger
motion: framePosition="20"
motion:onPositiveCross="show"

motion:motionTarget="@id/button"/>

Similarly, if the same button is to be hidden when the animation is reversed and drops below 10%, a second key
trigger could be added using the onNegativeCross property:
<KeyTrigger

motion:framePosition="10"

motion:onNegativeCross="show"

motion:motionTarget="Q@id/button2"/>

If the animation is using toggle action, use the onCross property:
<KeyTrigger
motion:framePosition="10"
motion:onCross="show"

motion:motionTarget="@id/button2"/>

42.11 Cycle and Time Cycle Keyframes

While position keyframes can be used to add intermediate state changes into the animation, this would
quickly become cumbersome if large numbers of repetitive positions and changes needed to be implemented.
For situations where state changes need to be performed repetitively with predictable changes, MotionLayout
includes the Cycle and Time Cycle keyframes. The chapter entitled “A MotionLayout KeyCycle Tutorial” will
cover this topic in detail.

42.12 Starting an Animation from Code

So far in this chapter, we have only looked at controlling an animation using the OnSwipe and OnClick handlers.
It is also possible to start an animation from within code by calling methods on the MotionLayout instance. The
following code, for example, runs the transition from start to end with a duration of 2000ms for a layout named
motionLayout:

motionLayout.setTransitionDuration (2000) ;

motionLayout.transitionToEnd () ;
In the absence of additional settings, the start and end states used for the animation will be those declared in the

Transition declaration of the MotionScene file. To use specific start and end constraint sets, reference them by id
in a call to the setTransition() method of the MotionLayout instance:

motionLayout.setTransition (R.id.myStart, R.id.myEnd) ;

motionLayout.transitionToEnd () ;

To monitor the state of an animation while it is running, add a transition listener to the MotionLayout instance
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as follows:

motionLayout.setTransitionListener (transitionListener);

MotionLayout.TransitionListener transitionListener =
new MotionLayout.TransitionListener () {
@Override
public void onTransitionStarted(MotionLayout motionLayout,
int startId, int endId) {
// Called when the transition starts

@Override
public void onTransitionChange (MotionLayout motionLayout, int startId,
int endId, float progress) {
// Called each time a property changes. Track progress value to find

// current position

@Override
public void onTransitionCompleted(MotionLayout motionLayout, int currentId) {

// Called when the transition is complete

@Override
public void onTransitionTrigger (MotionLayout motionLayout, int triggerId,
boolean positive, float progress) {

// Called when a trigger keyframe threshold is crossed

i
42.13 Summary

MotionLayout is a subclass of ConstraintLayout designed specifically to add animation effects to the views in
user interface layouts. MotionLayout works by animating the transition of a view between two states defined
by start and end constraint sets. Additional animation effects may be added between these start and end points
using keyframes.

Animations may be triggered via OnClick or OnSwipe handlers or programmatically via method calls on the
MotionLayout instance.
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64. An Overview of Android SQLite
Databases

Mobile applications that do not need to store at least some persistent data are few and far between. The use of
databases is an essential aspect of most applications, ranging from almost entirely data-driven applications to
those that need to store small amounts of data, such as the prevailing game score.

The importance of persistent data storage becomes even more evident when considering the transient lifecycle
of the typical Android application. With the ever-present risk that the Android runtime system will terminate
an application component to free up resources, a comprehensive data storage strategy to avoid data loss is a key
factor in designing and implementing any application development strategy.

This chapter will cover the SQLite database management system bundled with the Android operating system
and outline the Android SDK classes that facilitate persistent SQLite-based database storage within an Android
application. Before delving into the specifics of SQLite in the context of Android development, however, a brief
overview of databases and SQL will be covered.

64.1 Understanding Database Tables

Database Tables provide the most basic level of data structure in a database. Each database can contain multiple
tables, each designed to hold information of a specific type. For example, a database may contain a customer
table that contains the name, address, and telephone number of each of the customers of a particular business.
The same database may also include a products table used to store the product descriptions with associated
product codes for the items sold by the business.

Each table in a database is assigned a name that must be unique within that particular database. A table name,
once assigned to a table in one database, may not be used for another table except within the context of another
database.

64.2 Introducing Database Schema

Database Schemas define the characteristics of the data stored in a database table. For example, the table schema
for a customer database table might define the customer name as a string of no more than 20 characters long and
the customer phone number is a numerical data field of a certain format.

Schemas are also used to define the structure of entire databases and the relationship between the various tables
in each database.

64.3 Columns and Data Types

It is helpful at this stage to begin viewing a database table as similar to a spreadsheet where data is stored in rows
and columns.

Each column represents a data field in the corresponding table. For example, a table’s name, address, and
telephone data fields are all columns.

Each column, in turn, is defined to contain a certain type of data. Therefore, a column designed to store numbers
would be defined as containing numerical data.
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64.4 Database Rows

Each new record saved to a table is stored in a row. Each row, in turn, consists of the columns of data associated
with the saved record.

Once again, consider the spreadsheet analogy described earlier in this chapter. Each entry in a customer table
is equivalent to a row in a spreadsheet, and each column contains the data for each customer (name, address,
telephone, etc.). When a new customer is added to the table, a new row is created, and the data for that customer
is stored in the corresponding columns of the new row.

Rows are also sometimes referred to as records or entries, and these terms can generally be used interchangeably.

64.5 Introducing Primary Keys

Each database table should contain one or more columns that can be used to identify each row in the table
uniquely. This is known in database terminology as the Primary Key. For example, a table may use a bank
account number column as the primary key. Alternatively, a customer table may use the customer’s social
security number as the primary key.

Primary keys allow the database management system to uniquely identify a specific row in a table. Without
a primary key, retrieving or deleting a specific row in a table would not be possible because there can be no
certainty that the correct row has been selected. For example, suppose a table existed where the customer’s last
name had been defined as the primary key. Imagine the problem if more than one customer named “Smith” were
recorded in the database. Without some guaranteed way to identify a specific row uniquely, ensuring the correct
data was being accessed at any given time would be impossible.

Primary keys can comprise a single column or multiple columns in a table. To qualify as a single column primary
key, no two rows can contain matching primary key values. When using multiple columns to construct a primary
key, individual column values do not need to be unique, but all the columns’ values combined must be unique.

64.6 What is SQLite?

SQLite is an embedded, relational database management system (RDBMS). Most relational databases (Oracle,
SQL Server, and MySQL being prime examples) are standalone server processes that run independently and
cooperate with applications requiring database access. SQLite is referred to as embedded because it is provided in
the form of a library that is linked into applications. As such, there is no standalone database server running in
the background. All database operations are handled internally within the application through calls to functions
in the SQLite library.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

SQLite is written in the C programming language, so the Android SDK provides a Java-based “wrapper” around
the underlying database interface. This consists of classes that may be utilized within an application’s Java or
Kotlin code to create and manage SQLite-based databases.

For additional information about SQLite, refer to https://www.sqlite.org.

64.7 Structured Query Language (SQL)

Data is accessed in SQLite databases using a high-level language known as Structured Query Language. This is
usually abbreviated to SQL and pronounced sequel. SQL is a standard language used by most relational database
management systems. SQLite conforms mostly to the SQL-92 standard.
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SQL is a straightforward and easy-to-use language designed specifically to enable the reading and writing of
database data. Because SQL contains a small set of keywords, it can be learned quickly. In addition, SQL syntax is
more or less identical between most DBMS implementations, so having learned SQL for one system, your skills
will likely transfer to other database management systems.

While some basic SQL statements will be used within this chapter, a detailed overview of SQL is beyond the
scope of this book. However, many other resources provide a far better overview of SQL than we could ever hope
to provide in a single chapter here.

64.8 Trying SQLite on an Android Virtual Device (AVD)

For readers unfamiliar with databases and SQLite, diving right into creating an Android application that
uses SQLite may seem intimidating. Fortunately, Android is shipped with SQLite pre-installed, including an
interactive environment for issuing SQL commands from within an adb shell session connected to a running
Android AVD emulator instance. This is a useful way to learn about SQLite and SQL and an invaluable tool for
identifying problems with databases created by applications running in an emulator.

To launch an interactive SQLite session, begin by running an AVD session. This can be achieved within Android
Studio by launching the Android Virtual Device Manager (Tools -> AVD Manager), selecting a previously
configured AVD, and clicking on the start button.

Once the AVD is up and running, open a Terminal or Command-Prompt window and connect to the emulator
using the adb command-line tool as follows (note that the —e flag directs the tool to look for an emulator with
which to connect, rather than a physical device):

adb —-e shell

Once connected, the shell environment will provide a command prompt at which commands may be entered.
Begin by obtaining superuser privileges using the su command:

Generic x86:/ su

root@android:/ #

If a message indicates that superuser privileges are not allowed, the AVD instance likely includes Google Play

support. To resolve this, create a new AVD and, on the “Choose a device definition” screen, select a device that
does not have a marker in the “Play Store” column.

The data in SQLite databases are stored in database files on the file system of the Android device on which the
application is running. By default, the file system path for these database files is as follows:

/data/data/<package name>/databases/<database filename>.db

For example, if an application with the package name com.example. MyDBApp creates a database named
mydatabase.db, the path to the file on the device would read as follows:

/data/data/com.example.MyDBApp/databases/mydatabase.db

For this exercise, therefore, change directory to /data/data within the adb shell and create a sub-directory
hierarchy suitable for some SQLite experimentation:

cd /data/data

mkdir com.example.dbexample

cd com.example.dbexample

mkdir databases

cd databases

With a suitable location created for the database file, launch the interactive SQLite tool as follows:

root@android:/data/data/databases # sglite3 ./mydatabase.db
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sqlite3 ./mydatabase.db
SQLite version 3.8.10.2 2015-05-20 18:17:19
Enter ".help" for usage hints.

sglite>

At the sqlite> prompt, commands may be entered to perform tasks such as creating tables and inserting and
retrieving data. For example, to create a new table in our database with fields to hold ID, name, address, and
phone number fields, the following statement is required:

create table contacts (_id integer primary key autoincrement, name text, address

text, phone text);

Note that each row in a table should have a primary key that is unique to that row. In the above example, we have
designated the ID field as the primary key, declared it as being of type integer, and asked SQLite to increment
the number automatically each time a row is added. This is a common way to ensure that each row has a unique
primary key. On most other platforms, the primary key’s name choice is arbitrary. In the case of Android,
however, the key must be named _id for the database to be fully accessible using all Android database-related
classes. The remaining fields are each declared as being of type text.

To list the tables in the currently selected database, use the .tables statement:
sglite> .tables

contacts

To insert records into the table:

sglite> insert into contacts (name, address, phone) wvalues ("Bill Smith", "123
Main Street, California™, "123-555-2323");

sglite> insert into contacts (name, address, phone) wvalues ("Mike Parks", "10
Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:

sglite> select * from contacts;

1|Bill Smith|123 Main Street, Californial|l23-555-2323

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:

sglite> select * from contacts where name="Mike Parks";

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:

sglite> .exit

When running an Android application in the emulator environment, any database files will be created on the
emulator’s file system using the previously discussed path convention. This has the advantage that you can

connect with adb, navigate to the location of the database file, load it into the sqlite3 interactive tool, and perform
tasks on the data to identify possible problems occurring in the application code.

It is also important to note that while connecting with an adb shell to a physical Android device is possible, the
shell is not granted sufficient privileges by default to create and manage SQLite databases. Therefore, database
problem debugging is best performed using an AVD session.

64.9 The Android Room Persistence Library

As previously mentioned, SQLite is written in the C programming language, while Android applications are
primarily developed using Java or Kotlin. To bridge this “language gap” in the past, the Android SDK included
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a set of classes that provide a layer on top of the SQLite database management system. Although available in
the SDK, use of these classes still involved writing a considerable amount of code and did not take advantage of
the new architecture guidelines and features such as LiveData and lifecycle management. The Android Jetpack
Architecture Components include the Room persistent library to address these shortcomings. This library
provides a high-level interface on top of the SQLite database system, making it easy to store data locally on
Android devices with minimal coding while also conforming to the recommendations for modern application
architecture.

The next few chapters will provide an overview and tutorial on SQLite database management using the Room
persistence library.

64.10 Summary

SQLite is a lightweight, embedded relational database management system included in the Android framework
and provides a mechanism for implementing organized persistent data storage for Android applications. When
combined with the Room persistence library, Android provides a modern way to implement data storage from
within an Android app.

This chapter provided an overview of databases in general and SQLite in particular within the context of
Android application development. The next chapters will provide an overview of the Room persistence library,
after which we will work through the creation of an example application.
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Chapter 65

65. The Android Room Persistence
Library

Included with the Android Architecture Components, the Room persistence library is designed to make it easier
to add database storage support to Android apps in a way consistent with the Android architecture guidelines.
With the basics of SQLite databases covered in the previous chapter, this chapter will explore the basic concepts
behind Room-based database management, the key elements that work together to implement Room support
within an Android app, and how these are implemented in terms of architecture and coding. Having covered
these topics, the next two chapters will put this theory into practice with an example Room database project.

65.1 Revisiting Modern App Architecture

The chapter entitled “Modern Android App Architecture with Jetpack” introduced the concept of modern app
architecture and stressed the importance of separating different areas of responsibility within an app. The
diagram illustrated in Figure 65-1 outlines the recommended architecture for a typical Android app:

Figure 65-1

With the top three levels of this architecture covered in some detail in earlier chapters of this book, it is time to
explore the repository and database architecture levels in the context of the Room persistence library.

65.2 Key Elements of Room Database Persistence

Before going into greater detail later in the chapter, it is first worth summarizing the key elements involved in
working with SQLite databases using the Room persistence library:
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65.2.1 Repository

As previously discussed, the repository module contains all of the code necessary for directly handling all data
sources used by the app. This avoids the need for the UI controller and ViewModel to contain code directly
accessing sources such as databases or web services.

65.2.2 Room Database

The room database object provides the interface to the underlying SQLite database. It also provides the repository
with access to the Data Access Object (DAO). An app should only have one room database instance, which may
be used to access multiple database tables.

65.2.3 Data Access Object (DAO)

The DAO contains the SQL statements required by the repository to insert, retrieve and delete data within
the SQLite database. These SQL statements are mapped to methods which are then called from within the
repository to execute the corresponding query.

65.2.4 Entities

An entity is a class that defines the schema for a table within the database, defines the table name, column names,
and data types, and identifies which column is to be the primary key. In addition to declaring the table schema,
entity classes contain getter and setter methods that provide access to these data fields. The data returned to
the repository by the DAO in response to the SQL query method calls will take the form of instances of these
entity classes. The getter methods will then be called to extract the data from the entity object. Similarly, when
the repository needs to write new records to the database, it will create an entity instance, configure values on
the object via setter calls, then call insert methods declared in the DAO, passing through entity instances to be
saved.

65.2.5 SQLite Database

The SQLite database is responsible for storing and providing access to the data. The app code, including the
repository, should never directly access this underlying database. All database operations are performed using a
combination of the room database, DAOs, and entities.

The architecture diagram in Figure 65-2 illustrates how these different elements interact to provide Room-based
database storage within an Android app:

Figure 65-2
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The numbered connections in the above architecture diagram can be summarized as follows:

1. The repository interacts with the Room Database to get a database instance which, in turn, is used to obtain
references to DAO instances.

2. 'The repository creates entity instances and configures them with data before passing them to the DAO for
use in search and insertion operations.

3. The repository calls methods on the DAO passing through entities to be inserted into the database and
receives entity instances back in response to search queries.

4. 'When a DAO has results to return to the repository, it packages them into entity objects.
5. The DAO interacts with the Room Database to initiate database operations and handle results.

6. The Room Database handles all low-level interactions with the underlying SQLite database, submitting
queries and receiving results.

With a basic outline of the key elements of database access using the Room persistent library covered, it is time
to explore entities, DAOs, room databases, and repositories in more detail.

65.3 Understanding Entities

Each database table will have associated with it an entity class. This class defines the schema for the table and
takes the form of a standard Java class interspersed with some special Room annotations. An example Java class
declaring the data to be stored within a database table might read as follows:

public class Customer ({

private int id;
private String name;

private string address;

public Customer (String name, String address) {
this.id = id;
this.name = name;

this.address = address;

public int getId() {
return this.id;

}
public String getName () {

return this.name;

public int getAddress () {

return this.address;

public void setId(int id) {
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this.id = id;

public void setName (String name) {

this.name = name;

public void setAddress (int quantity) {

this.address = address;

}

As currently implemented, the above code declares a basic Java class containing several variables representing
database table fields and a collection of getter and setter methods. This class, however, is not yet an entity. To
make this class into an entity and to make it accessible within SQL statements, some Room annotations need to
be added as follows:

@Entity (tableName = "customers")

public class Customer {

@PrimaryKey (autoGenerate = true)
@NonNull
@ColumnInfo (name = "customerId")

private int id;

@ColumnInfo (name = "customerName")

private String name;

private String address;

public Customer (String name, String address) {
this.id = id;

this.name = name;

this.address = address;

public int getId() {

return this.id;

public String getName () {

return this.name;

public String getAddress () {

return this.address;
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public void setId(@NonNull int id) {
this.id = id;

public void setName (String name) {

this.name = name;

public void setAddress (int quantity) {

this.address = address;

}

The above annotations begin by declaring that the class represents an entity and assigns a table name of
“customers”. This is the name by which the table will be referenced in the DAO SQL statements:

@Entity(tableName = "customers")

Every database table needs a column to act as the primary key. In this case, the customer id is declared as the
primary key. Annotations have also been added to assign a column name to be referenced in SQL queries and to
indicate that the field cannot be used to store null values. Finally, the id value is configured to be auto-generated.
This means the system automatically generates the id assigned to new records to avoid duplicate keys:

@PrimaryKey (autoGenerate = true)
@NonNull
@ColumnInfo (name = "customerId")

private int id;

A column name is also assigned to the customer name field. Note, however, that no column name was assigned
to the address field. This means that the address data will still be stored within the database but is not required
to be referenced in SQL statements. If a field within an entity is not required to be stored within a database, use
the @Ignore annotation:

@Ignore

private String myString;

Finally, the setter method for the id variable is modified to prevent attempts to assign a null value:
public void setId(@NonNull int id) {

this.id = id;
}

Annotations may also be included within an entity class to establish relationships with other entities using a
relational database concept referred to as foreign keys. Foreign keys allow a table to reference the primary key
in another table. For example, a relationship could be established between an entity named Purchase and our
existing Customer entity as follows:
@Entity (foreignKeys = {@ForeignKey(entity = Customer.class,

parentColumns = "customerId",

childColumns = "buyerId",

onDelete = ForeignKey.CASCADE,

onUpdate = ForeignKey.RESTRICT})

public class Purchase {
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@PrimaryKey (autoGenerate = true)
@ColumnInfo (name = "purchaseId")

private int purchaseld;

@ColumnInfo (name = "buyerId")

private int buyerId;

}

Note that the foreign key declaration also specifies the action to be taken when a parent record is deleted or
updated. Available options are CASCADE, NO_ACTION, RESTRICT, SET_DEFAULT, and SET_NULL.

65.4 Data Access Objects

A Data Access Object allows access to the data stored within a SQLite database. A DAO is declared as a standard
Java interface with additional annotations that map specific SQL statements to methods that the repository may
then call.

The first step is to create the interface and declare it as a DAO using the @Dao annotation:
@Dhao
public interface CustomerDao {

}

Next, entries are added consisting of SQL statements and corresponding method names. The following
declaration, for example, allows all of the rows in the customers table to be retrieved via a call to a method
named getAllCustomers():
@Dao
public interface CustomerDao {
QQuery ("SELECT * FROM customers")
LiveData<List<Customer>> getAllCustomers () ;
}
The getAllCustomers() method returns a List object containing a Customer entity object for each record retrieved

from the database table. The DAO is also using LiveData so that the repository can observe changes to the
database.

Arguments may also be passed into the methods and referenced within the corresponding SQL statements.
Consider the following DAO declaration, which searches for database records matching a customer’s name
(note that the column name referenced in the WHERE condition is the name assigned to the column in the
entity class):

@Query ("SELECT * FROM customers WHERE name = :customerName")

List<Customer> findCustomer (String customerName) ;

In this example, the method is passed a string value which is, in turn, included within an SQL statement by
prefixing the variable name with a colon (:).

A basic insertion operation can be declared as follows using the @Insert convenience annotation:

@Insert

void addCustomer (Customer customer);

This is referred to as a convenience annotation because the Room persistence library can infer that the Customer

556



The Android Room Persistence Library

entity passed to the addCustomer() method is to be inserted into the database without the need for the SQL
insert statement to be provided. Multiple database records may also be inserted in a single transaction as follows:

@Insert

public void insertCustomers (Customer... customers) ;

The following DAO declaration deletes all records matching the provided customer name:

@Query ("DELETE FROM customers WHERE name = :name")

void deleteCustomer (String name) ;

As an alternative to using the @Query annotation to perform deletions, the @Delete convenience annotation
may also be used. In the following example, all of the Customer records that match the set of entities passed to
the deleteCustomers() method will be deleted from the database:

@Delete

public void deleteCustomers (Customer... customers) ;

The @Update convenience annotation provides similar behavior when updating records:
@Update

public void updateCustomers (Customer... customers) ;

The DAO methods for these types of database operations may also be declared to return an int value indicating
the number of rows affected by the transaction, for example:

@Delete

public int deleteCustomers (Customer... customers);

65.5 The Room Database

The Room database class is created by extending the RoomDatabase class and acts as a layer on top of the
actual SQLite database embedded into the Android operating system. The class is responsible for creating and
returning a new room database instance and providing access to the database’s associated DAO instances.

The Room persistence library provides a database builder for creating database instances. Each Android app
should only have one room database instance, so it is best to implement defensive code within the class to
prevent more than one instance from being created.

An example Room Database implementation for use with the example customer table is outlined in the following
code listing:

import android.content.Context;

import android.arch.persistence.room.Database;

import android.arch.persistence.room.Room;

import android.arch.persistence.room.RoomDatabase;

@Database (entities = {Customer.class}, version = 1)

public class CustomerRoomDatabase extends RoomDatabase {
public abstract CustomerDao customerDao () ;
private static CustomerRoomDatabase INSTANCE;

static CustomerRoomDatabase getDatabase (final Context context) {
if (INSTANCE == null) {
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synchronized (CustomerRoomDatabase.class) {
if (INSTANCE == null) {
INSTANCE = Room.databaseBuilder (
context.getApplicationContext (),
CustomerRoomDatabase.class, "customer database")
Lbuild () ;

}
return INSTANCE;

}

Important areas to note in the above example are the annotation above the class declaration declaring the entities
with which the database is to work, the code to check that an instance of the class has not already been created
and the assignment of the name “customer_database” to the instance.

65.6 The Repository

The repository is responsible for getting a Room Database instance, using that instance to access associated
DAOs, and then making calls to DAO methods to perform database operations. A typical constructor for a
repository designed to work with a Room Database might read as follows:

public class CustomerRepository ({

private CustomerDao customerDao;

private CustomerRoomDatabase db;

public CustomerRepository (Application application) {
db = CustomerRoomDatabase.getDatabase (application);

customerDao = db.customerDao () ;

}

Once the repository can access the DAO, it can call the data access methods. The following code, for example,
calls the getAllCustomers() DAO method:
private LiveData<List<Customer>> allCustomers;

allCustomers = customerDao.getAllCustomers () ;

When calling DAO methods, it is important to note that unless the method returns a LiveData instance (which
automatically runs queries on a separate thread), the operation cannot be performed on the app’s main thread.
Attempting to do so will cause the app to crash with the following diagnostic output:

Cannot access database on the main thread since it may potentially lock the UI
for a long period of time

Since some database transactions may take a longer time to complete, running the operations on a separate
thread avoids the app appearing to lock up. As will be demonstrated in the chapter entitled “An Android Room
Database and Repository Tutorial”, this problem can be easily resolved by making use of Java threads (for more
information or a reminder of how to use threads, refer back to the chapter entitled “An Overview of Java Threads,
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Handlers and Executors”).

65.7 In-Memory Databases

The examples outlined in this chapter use a SQLite database that exists as a database file on the persistent storage
of an Android device. This ensures that the data persists even after the app process is terminated.

The Room database persistence library also supports in-memory databases. These databases reside entirely

in memory and are lost when the app terminates. The only change necessary to work with an in-memory

database is to call the Room.inMemoryDatabaseBuilder() method of the Room Database class instead of Room.

databaseBuilder(). The following code shows the difference between the method calls (note that the in-memory

database does not require a database name):

// Create a file storage based database

INSTANCE = Room.databaseBuilder (context.getApplicationContext (),
CustomerRoomDatabase.class, "customer database")
.build();

// Create an in-memory database

INSTANCE = Room.inMemoryDatabaseBuilder (context.getApplicationContext (),
CustomerRoomDatabase.class)
build();

65.8 Database Inspector

Android Studio includes a Database Inspector tool window which allows the Room databases associated with
running apps to be viewed, searched, and modified, as shown in Figure 65-3:

Figure 65-3
The Database Inspector will be covered in the chapter “An Android Room Database and Repository Tutorial”.

65.9 Summary

The Android Room persistence library is bundled with the Android Architecture Components and acts as an
abstract layer above the lower-level SQLite database. The library is designed to make it easier to work with
databases while conforming to the Android architecture guidelines. This chapter has introduced the elements
that interact to build Room-based database storage into Android app projects, including entities, repositories,
data access objects, annotations, and Room Database instances.

With the basics of SQLite and the Room architecture component covered, the next step is to create an example
app that puts this theory into practice. Since the user interface for the example application will require a forms-
based layout, the next chapter, entitled “An Android TableLayout and TableRow Tutorial”, will detour slightly
from the core topic by introducing the basics of the TableLayout and TableRow views.
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68. Accessing Cloud Storage using the
Android Storage Access Framework

Recent years have seen the wide adoption of remote storage services (otherwise known as “cloud storage”) to
store user files and data. Driving this growth are two key factors. One is that most mobile devices now provide
continuous, high speed internet connectivity, thereby making the transfer of data fast and affordable. The second
factor is that, relative to traditional computer systems (such as desktops and laptops) these mobile devices are
constrained in terms of internal storage resources. A high specification Android tablet today, for example,
typically comes with 128Gb of storage capacity. When compared with a mid-range laptop system with a 750Gb
disk drive, the need for the seamless remote storage of files is a key requirement for many mobile applications
today.

In recognition of this fact, Google introduced the Storage Access Framework as part of the Android 4.4 SDK.
This chapter will provide a high level overview of the storage access framework in preparation for the more
detail oriented tutorial contained in the next chapter, entitled “An Android Storage Access Framework Example”.

68.1 The Storage Access Framework

From the perspective of the user, the Storage Access Framework provides an intuitive user interface that
allows the user to browse, select, delete and create files hosted by storage services (also referred to as document
providers) from within Android applications. Using this browsing interface (also referred to as the picker), users
can, for example, browse through the files (such as documents, audio, images and videos) hosted by their chosen
document providers. Figure 68-1, for example, shows the picker user interface displaying a collection of files
hosted by a document provider service:

Figure 68-1
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Document providers can range from cloud-based services to local document providers running on the same
device as the client application. At the time of writing, the most prominent document providers compatible
with the Storage Access Framework are Box and, unsurprisingly, Google Drive. It is highly likely that other
cloud storage providers and application developers will soon also provide services that conform to the Android
Storage Access Framework.

In addition to cloud based document providers the picker also provides access to internal storage on the device,
providing a range of file storage options to the application user.

Through a set of Intents, Android application developers can incorporate these storage capabilities into
applications with just a few lines of code. A particularly compelling aspect of the Storage Access Framework from
the point of view of the developer is that the underlying document provider selected by the user is completely
transparent to the application. Once the storage functionality has been implemented using the framework
within an application, it will work with all document providers without any code modifications.

68.2 Working with the Storage Access Framework

Android includes a set of Intents designed to integrate the features of the Storage Access Framework into
Android applications. These intents display the Storage Access Framework picker user interface to the user and
return the results of the interaction to the application via a call to the onActivityResult() method of the activity
that launched the intent. When the onActivityResult() method is called, it is passed the Uri of the selected file
together with a value indicating the success or otherwise of the operation.

The Storage Access Framework intents can be summarized as follows:

o ACTION_OPEN_DOCUMENT - Provides the user with access to the picker user interface so that files
may be selected from the document providers configured on the device. Selected files are passed back to the
application in the form of Uri objects.

o ACTION_CREATE_DOCUMENT - Allows the user to select a document provider, a location on that
provider’s storage and a file name for a new file. Once selected, the file is created by the Storage Access
Framework and the Uri of that file returned to the application for further processing.

68.3 Filtering Picker File Listings

The files listed within the picker user interface when an intent is started may be filtered using a variety of options.
Consider, for example, the following code to configure an ACTION_OPEN_DOCUMENT intent:

Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT);

When launched, the above intent will cause the picker user interface to be displayed, allowing the user to browse
and select any files hosted by available document providers. Once a file has been selected by the user, a reference
to that file will be provided to the application in the form of a Uri object. The application can then open the
file using the openFileDescriptor(Uri, String) method. There is some risk, however, that not all files listed by a
document provider can be opened in this way. The exclusion of such files within the picker can be achieved by
modifying the intent using the CATEGORY_OPENABLE option. For example:

Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT);
intent.addCategory (Intent.CATEGORY_ OPENABLE) ;

When the intent is now displayed, files which cannot be opened using the openFileDescriptor() method will be
listed but not selectable by the user.

Another useful approach to filtering allows the files available for selection to be restricted by file type. This
involves specifying the types of the files the application is able to handle. An image editing application might,
for example, only want to provide the user with the option of selecting image files from the document providers.
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This is achieved by configuring the intent object with the MIME types of the files that are to be selectable by
the user. The following code, for example, specifies that only image files are suitable for selection in the picker:

intent.addCategory (Intent.CATEGORY OPENABLE) ;
intent.setType ("image/*") ;

This could be further refined to limit selection to JPEG images:
intent.setType ("image/jpeg") ;

Alternatively, an audio player app might only be able to handle audio files:

intent.setType ("audio/*") ;
The audio app might be limited even further in only supporting the playback of MP4 based audio files:
intent.setType ("audio/mp4") ;

A wide range of MIME type settings are available for use when working with the Storage Access Framework, the
more common of which can be found listed online at:

https://en.wikipedia.org/wiki/Internet_media_type#List_of_common_media_types

68.4 Handling Intent Results

Since we are launching intents which will return a result, the registerForActivityResult() method (covered in the
chapter entitled “Android Explicit Intents — A Worked Example”) needs to be used to create a launcher and declare
alambda to handle the returned data, for example:
ActivityResultLauncher<Intent> startOpenForResult = registerForActivityResult (
new ActivityResultContracts.StartActivityForResult (),
new ActivityResultCallback<ActivityResult>() {
@Override
public void onActivityResult (ActivityResult result) {
if (result.getResultCode() == Activity.RESULT OK) {
Intent data = result.getDatal();

// Read file content from Uri here

|

Once declared, the intent can be configured and launched as follows:
Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT);
intent.addCategory (Intent.CATEGORY OPENABLE) ;
intent.setType ("text/plain");

startOpenForResult.launch (intent) ;

68.5 Reading the Content of a File

The exact steps required to read the content of a file hosted by a document provider will depend to a large extent
on the type of the file. The steps to read lines from a text file, for example, differ from those for image or audio
files.

An image file can be assigned to a Bitmap object by extracting the file descriptor from the Uri object and then
decoding the image into a BitmapFactory instance. For example:
ParcelFileDescriptor pFileDescriptor =

getContentResolver () .openFileDescriptor (uri, "r");
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FileDescriptor fileDescriptor =

pFileDescriptor.getFileDescriptor () ;
Bitmap image = BitmapFactory.decodeFileDescriptor (fileDescriptor);
pFileDescriptor.close() ;

myImageView.setImageBitmap (image) ;

« »

Note that the file descriptor is opened in “r” mode. This indicates that the file is to be opened for reading. Other
options are “w” for write access and “rwt” for read and write access, where existing content in the file is truncated
by the new content.

Reading the content of a text file requires slightly more work and the use of an InputStream object. The following
code, for example, reads the lines from a text file:

InputStream inputStream = getContentResolver ().openlnputStream(uri);

BufferedReader reader = new BufferedReader (new InputStreamReader (
inputStream)) ;

String readline;

while ((readline = reader.readLine()) != null) {
// Do something with each line in the file

}

inputStream.close () ;

68.6 Writing Content to a File

Writing to an open file hosted by a document provider is similar to reading with the exception that an output
stream is used instead of an input stream. The following code, for example, writes text to the output stream of
the storage based file referenced by the specified Uri:
try{

ParcelFileDescriptor pFileDescriptor = this.getContentResolver() .

openFileDescriptor (uri, "w");

FileOutputStream fileOutputStream =
new FileOutputStream(pFileDescriptor.getFileDescriptor());

String textContent = "Some sample text";
fileOutputStream.write (textContent.getBytes ());
fileOutputStream.close () ;
pFileDescriptor.close();

} catch (FileNotFoundException e) {
e.printStackTrace() ;

} catch (IOException e) {

e.printStackTrace () ;
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First, the file descriptor is extracted from the Uri, this time requesting write permission to the target file. The
file descriptor is subsequently used to obtain a reference to the file’s output stream. The content (in this example,
some text) is then written to the output stream before the file descriptor and output stream are closed.

68.7 Deleting a File

Whether a file can be deleted from storage depends on whether or not the files document provider supports
deletion of the file. Assuming deletion is permitted, it may be performed on a designated Uri as follows:
if (DocumentsContract.deleteDocument (getContentResolver (), uri))
// Deletion was successful
else
// Deletion failed

68.8 Gaining Persistent Access to a File

When an application gains access to a file via the Storage Access Framework, the access will remain valid until
the Android device on which the application is running is restarted. Persistent access to a specific file can be
obtained by “taking” the necessary permissions for the Uri. The following code, for example, persists read and
write permissions for the file referenced by the fileUri Uri instance:
final int takeFlags = intent.getFlags()

& (Intent.FLAG GRANT READ URI PERMISSION

| Intent.FLAG GRANT WRITE URI PERMISSION) ;

getContentResolver () .takePersistableUriPermission (fileUri, takeFlags);

Once the permissions for the file have been taken by the application, and assuming the Uri has been saved by the
application, the user should be able to continue accessing the file after a device restart without the user having
to reselect the file from the picker interface.

If, at any time, the persistent permissions are no longer required, they can be released via a call to the
releasePersistableUriPermission() method of the content resolver:
final int releaseFlags = intent.getFlags/()

& (Intent.FLAG GRANT READ URI PERMISSION

| Intent.FLAG GRANT WRITE URI PERMISSION);

getContentResolver () .releasePersistableUriPermission (fileUri,

releaseFlags);

68.9 Summary

It is interesting to consider how perceptions of storage have changed in recent years. Once synonymous with
high capacity internal hard disk drives, the term “storage” is now just as likely to refer to storage space hosted
remotely in the cloud and accessed over an internet connection. This is increasingly the case with the wide
adoption of resource constrained, “always-connected” mobile devices with minimal internal storage capacity.

The Android Storage Access Framework provides a simple mechanism for both users and application developers
to seamlessly gain access to files stored in the cloud. Through the use of a set of intents and a built-in user
interface for selecting document providers and files, comprehensive cloud based storage can now be integrated
into Android applications with a minimal amount of coding.
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